EP0600799B1 - Aktive Antenne mit variabler Polarisations-Synthese - Google Patents

Aktive Antenne mit variabler Polarisations-Synthese Download PDF

Info

Publication number
EP0600799B1
EP0600799B1 EP93402925A EP93402925A EP0600799B1 EP 0600799 B1 EP0600799 B1 EP 0600799B1 EP 93402925 A EP93402925 A EP 93402925A EP 93402925 A EP93402925 A EP 93402925A EP 0600799 B1 EP0600799 B1 EP 0600799B1
Authority
EP
European Patent Office
Prior art keywords
phase
shifters
controllable
polarization
circuit according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93402925A
Other languages
English (en)
French (fr)
Other versions
EP0600799A1 (de
Inventor
Gérard Caille
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel SA
Alcatel Alsthom Compagnie Generale dElectricite
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel SA, Alcatel Alsthom Compagnie Generale dElectricite filed Critical Alcatel SA
Publication of EP0600799A1 publication Critical patent/EP0600799A1/de
Application granted granted Critical
Publication of EP0600799B1 publication Critical patent/EP0600799B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/245Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction provided with means for varying the polarisation 

Definitions

  • the invention relates to active antennas, which are made up of a large number of radiating sources excited by microwave power amplifiers during transmission, or whose received signals are amplified by low noise amplifiers at reception. Such antennas are used in various applications such as telecommunications or radars; the invention will be particularly advantageous for radars.
  • the usual architecture of a monostatic radar involves the use of a lane transmission and reception channel which lead to the same radiant source.
  • a switch allows the selection of the transmission channel to transmit a radar signal in pulses, the time space between the emission pulses being used to listen, in selecting the reception channel, the radar echoes which come back from the environment.
  • the increase demand makes us look for a better use of the radio spectrum. This concern translates by the use of fine, orientable beams, and sometimes even polarized to allow the reuse of frequencies. These characteristics can be combined advantageously in realizations of array antennas.
  • the invention will find an application in such antennas telecommunications, more specifically designed but not exclusively for the broadcast.
  • antennas transmission and reception are spaced from each other others, sometimes by the tens or even hundreds of kilometers.
  • Network antennas can be designed to fulfill the two missions, emission and reception, or they can be designed to fill only one of these two missions.
  • a variant of the invention will be applicable for each of these possibilities.
  • active antennas for radars monostatic to have evolved considerably in recent years, and in the current state of the art, the radiating sources are connected to active transmission / reception modules (MAER or T ⁇ R in English), made in MMIC technology (Monolithic Microwave Integrated Circuits) or in hybrid technology. Transmission / reception switching is generally included in the active module, a schematic diagram of which is given in Figure 1, with its location within the antenna.
  • Figure 1 schematically shows an antenna active radar, operating alternately in transmission and in reception.
  • the alternation of transmission / reception is ensured by switches 25, 52 controlled by a synchronization clock 24.
  • orthogonal polarizations can be selected by switch 26, for the reception as for the emission.
  • Phase and gain are controllable by control means 23, also both in transmission and in reception.
  • the values of order which will be provided for ordering a track of reception given, are not necessarily the same as for the same channel used for transmission.
  • a single active module transmission / reception is shown, including phase shifter controllable 27 and a controllable attenuator 28, for adjust the gain of the module.
  • the transmitter 21 supplies its signals to a distributor / combiner 22, which supplies the active I / O modules.
  • the phase and the attenuation of the signal will be determined by the controllable phase shifter 27 and the controllable attenuator 28, according to the instructions given by the control computer 23.
  • the switches 25 and 52 will be controlled by the clock 24 to engage the power channel, and the signal will be amplified by the power amplifier 29, before being sent to the radiating sources S ij .
  • the receiver 31 receives the signals from the combiner / distributor 22, which are routed by the active E / R modules.
  • the signals coming from the radiating sources S ij are switched by the switches 25, 52 on the reception channel and pass through a low noise amplifier 30.
  • the phase shift and the attenuation are applied by the controllable phase shifter 27 and the controllable attenuator 28, controlled by the control computer 23.
  • Beams can also be formed, for example with stiff sides and side lobes low, to improve antenna performance when ambiguities of echoes, and in the presence of noise sources, thanks to controllable phase shifters and attenuators.
  • switches 26 one of the two orthogonal polarizations can be selected, interesting for the radar because the useful signal and the noise have different variations depending on the polarization, which allows an optimization of the signal ratio on noise by acting on the polarization.
  • Elementary sources are radiant elements capable of providing polarized radiation, the polarization of which can take at least two orthogonal values, for example horizontal (H) and vertical (V), or circular polarizations right and left (R, L).
  • Cornets with square, circular or hexagonal are radiating elements that can generate H or V polarizations. They are particularly suitable to high power antennas or ground is not a element criticized.
  • the printed radiant elements are paving stones metallic photo-etched on a thin dielectric substrate with low microwave losses. They allow the production of radiant panels comprising a lot of elementary sources, these panels can be thin, light, and even conformable. For generate orthogonal polarizations with patches it just excite them by two points offset by 90 ° by relative to the center of the patch, as shown in Figure 1.
  • the link between the MAER and the patch can be online coaxial or microstrip, for example. If only one MAER must order several patches, they can be grouped in sub-networks, connected to MAER by distributors in microstrip line for each H and V polarization
  • the circuit of Figure 2 further includes, a additional protection for low noise amplifiers against any unwanted reflections coming back radiating sources S k / ij when they are powered by power amplifiers, in case of mismatch of the antenna.
  • These protection means are switches 32a, 32b placed in shunt towards ground, on the inputs of low noise amplifiers. These switches are also controlled by the clock 24, at the same time and in synchronization with E / R switches 25a, 25b.
  • the optional isolators 33a, 33b allow evacuation to the mass the power reflected (a second time) by these protection means 32a, 32b.
  • the microwave circulators 52a, 52b replace advantageously, on the amplifier chains H, V respectively, the switch 52 of the MAER of FIG. 1.
  • the insertion losses of the circulators are lower than losses caused by conventional switches used in MAER.
  • the switches are located between the amplifiers and the radiating elements (FIG. 1), they severely strain the radar link budget (or the merit factor of the active antenna) , by their losses L e and L r which occur twice, in transmission and reception.
  • the invention overcomes these drawbacks of prior art. According to the invention, a configuration of MAER is proposed which avoid the losses of the switches of the first solution, without increasing the mass and the overall dimensions of the assembly, at equal power, as in the second solution.
  • the invention provides an alternating transmission and reception (E / R) microwave circuit for synthesis antenna with variable polarization synthesis, this E / R circuit able to supply excitation signals for at least two polarizations. orthogonal to radiating sources via two respective channels, these channels supplied respectively by two amplifying power transmission chains; this E / R circuit able to receive at least two signals having orthogonal polarizations detected by these same sources and supplying two low noise amplifier chains in reception; said E / R circuit comprising, in addition to the phase shifter located on the common channel intended to point or form the beam, at least one phase shifter controllable on a transmission channel, and at least one phase shifter controllable on a reception channel intended to choose the polarization said circuit characterized in that the two power amplifier chains operate simultaneously during transmission, and in that the two low noise amplifier chains operate simultaneously during reception.
  • E / R alternating transmission and reception
  • the polarizations H (horizontal) and V (vertical) are obtained by sum or difference of two orthogonal polarizations, inclined by 45 ° to the horizontal: each of them is connected directly to one of the two paths of the E / R circuit.
  • the two chains power amplifiers are powered from a power divider in phase, allowing easy synthesis linear orthogonal polarizations; according to another advantageous realization, the two amplifying chains of power are supplied from a hybrid coupler to two 90 ° phase-shifted outputs, allowing easy synthesis circular polarizations.
  • said phase shifters are one bit digital controllable phase shifters, this bit corresponding to its value, either at 0 ° or 180 °.
  • phase shifters are one bit digital controllable phase shifters, this bit depending on its value, either 0 ° or 90 °.
  • said phase shifters are two-bit digital controllable phase shifters, of which a first bit corresponding according to its value is 0 either 180 ° and a second corresponding bit according to its value either at 0 ° or 90 °.
  • an attenuator variable allows to adjust the gain of at least one chain power amplifier.
  • a variable attenuator adjusts the gain of at least one low noise amplifier chain.
  • said E / R circuit further includes at least two phase shifters and at least two quasi-continuously controllable attenuators, allowing the synthesis of any polarization, linear, circular, or elliptical.
  • said command quasi-continuous phase shifters and attenuators is analog design.
  • said command quasi-continuous phase shifters and attenuators is digital design, with a high number of bits, allowing the synthesis of any polarization, linear, circular, or elliptical.
  • the invention also relates to an antenna comprising E / R circuits according to one of the embodiments or previous variants.
  • the radiant sources are of printed type (or patch in English).
  • the sources radiant consist of annular slots photo-etched on one side of a dielectric substrate with low microwave losses, these slots being excited by photo-etched lines on the face opposite.
  • the slots ring fingers are excited by photo-etched lines on a hanging substrate.
  • the E / R circuits are made in MMIC technology.
  • miniature circulators are added to MMIC circuits to increase power maximum allowed.
  • duplexers miniatures comprising a circulator and an isolator are added to the circuits of the invention, in order to better isolate the transmission channels of the reception channels.
  • the antenna according to the invention is self-adaptive in polarization, for ability to extract useful radar signal in the presence of interference of any fixed polarization; to do, the antenna detects the polarization of the jammer, and adapts the phases and possibly the amplitudes of the signals emitted to work in a polarization orthogonal to that of the jammer.
  • FIG. 3 we see a first schematic example of a MAER circuit according to the invention. Compared to Figures 1 and 2 already described, we have simplified the diagram by ignoring the environment of the circuit shown; nevertheless, this circuit is intended to be installed in the same way as the circuits of the prior art, between a distributor / combiner (22 in FIG. 1) and a network of radiating sources S ij .
  • the variable attenuator 28 and phase shifter 27 are controlled by instructions given by the control computer (not shown), and the E / R switch 6 is controlled by a clock (not shown).
  • the elements 35a, 35b correspond either to the E / R switches (52 in FIG. 1), or to the circulators (52a, 52b in FIG.
  • the elements 5a are distributors and the elements 5b are combiners, the nature of which will be discussed below.
  • Elements 1, 2, 3, 4 are phase shifters, including at least one phase shifter controllable on a transmission channel (s 1 or s 3 ), and at least one phase shifter controllable on a reception channel (s 2 or s 4 ). According to the invention, it is therefore possible that there are only two controllable phase shifters, for example 3 and 4, and that the elements 1, 2 can be removed from this diagram. Several variants of the invention can be built around this general diagram, in particular by playing on the different possibilities for these elements 1, 2, 3, 4; a number of these possibilities will be described later.
  • the element 5a is a power distributor and the element 5b is a power combiner, both operating in phase, that is to say that the phase of the signals s 1 and s 3 is the same, and that the signals s 2 and s 4 are also combined in phase.
  • the elements 1 and 2 does not exist; and elements 3 and 4 are single-bit phase shifters, which introduce a phase shift of either 0 ° or 180 °, depending on the value of the control bit, supplied by control means not shown.
  • the radiating source S k / ij shown in FIG. 3 is an engraved "patch" of square shape, whose orientation is schematically significant. Indeed, the square is oriented with its diagonals respectively to the horizontal and vertically.
  • the propagation lines from switches or circulators 35a, 35b to the patch are mutually perpendicular and oriented at 45 ° from diagonals of the patch.
  • the amplitude of the signals s 1 and s 3 is the same, and the signals s 2 and s 4 have the same amplitudes too.
  • the phase shifter 3 is controlled, according to its control bit, at a value of 0 °, the two accesses are excited in phase by the two power amplifiers 29a, 29b, which results in a wave having a horizontal linear polarization.
  • the phase shifter 3 is controlled, according to its control bit, at a value of 180 °, the two accesses are excited in phase opposition by the two power amplifiers 29a, 29b, which results in a wave having a polarization vertical linear.
  • phase shifter 4 In the same way for reception, if the phase shifter 4 is controlled, according to its control bit, at a value of 0 °, the two accesses which are excited in phase, and after amplification by the two low noise amplifiers 30a, 30b, are combined in phase by the combiner 5b, which corresponds to a wave having a horizontal linear polarization on reception.
  • phase shifter 4 is controlled, according to its control bit, at a value of 180 °, the combiner 5b will have on its inputs the two signals s 2 and s 4 whose signal s 4 will have been phase shifted by 180 °, which means that, only if the two accesses are excited in phase opposition, and after amplification by the two low noise amplifiers 30a, 30b, the result is obtained which corresponds to a wave having a vertical linear polarization.
  • the schematic circuit of FIG. 3 can also provide orthogonal circular polarizations, with hybrid couplers at 90 ° 5a, 5b in place of the phase dividers / combiners considered above.
  • a hybrid coupler 5a on the transmission channel for example, the two power amplification chains will carry the same signal, except that the signal s 3 will be offset by + 90 ° in phase, compared to the signal s 1 (when the phase shifter 3 has a value of 0 °).
  • Excitation of the patch by two orthogonal accesses with a signal s 3 on the first access, offset by + 90 ° in phase with respect to the signal s 1 on the second orthogonal access, results in a wave having a right circular polarization, for example.
  • the reception channel can synthesize waves with right and left circular polarization in the same way, the design being perfectly symmetrical between the tracks transmission and reception.
  • the elements 35a, 35b can be E / R switches controlled by the clock (not shown), or they can be circulators, which allow the signal to pass through power amplifiers 29a, 29b to the radiating source S ij , or vice versa, from the source S ij to the low noise amplifiers 30a, 30b, but in no case will the signal be allowed to pass from the power amplifiers 29a, 29b to the low noise amplifiers 30a, 30b.
  • the circuit can have the ability to synthesize either linear orthogonal polarizations or orthogonal circular polarizations.
  • phase shifters with two control bits in blocks 3, 4 on the diagram, with dividers / combiners in phase for elements 5a, 5b.
  • the first command bit depending on its value, will give a phase from 0 ° or 180 ° as before, and to this phase will be added the phase controlled by the second control bit, from 0 ° or 90 °.
  • the circuit is equivalent to that discussed before where elements 5a, 5b were 90 ° hybrid couplers, that is, we we find us in a configuration that allows us to synthesize right and left circular polarizations.
  • a variant allowing the synthesis of linear orthogonal polarizations includes two 90 ° hybrid couplers 5a, 5b, and four 0 or 90 ° phase shifters to a control bit 1, 2, 3, 4.
  • a horizontal polarization of emission is obtained if the phase shifter 1 has a phase shift of 0 ° and the phase shifter 3 has a 90 ° phase shift (which is added to the 90 ° phase shift of the hybrid coupler); with the same to reception, with 0 ° on the phase shifter 2, and 90 ° on the phase shifter 4.
  • Vertical polarization is obtained by reversing the phase shifts of the four phase shifters.
  • the realization can be simplified by the fact that with identical phase shifters on all four channels, just select components with the same losses and insertion phases to approach the circuit ideal for polarization synthesis.
  • a final variant of Figure 3 will be for synthesize orthogonal circular polarizations, using the same trick as in the previous case: four phase shifters 1, 2, 3, 4 at 0 or 90 ° and one control bit, but with phase dividers / combiners 5a, 5b.
  • a right circular polarization is obtained with a 90 ° phase shift on phase shifters 1, 3 and 0 ° on phase shifters 2, 4; and conversely, a polarization left circular is obtained with a 90 ° phase shift on phase shifters 2, 4 and 0 ° on phase shifters 1 and 3.
  • the instant orientation of the polarization vector is given by the relative phases coming from the phase shifters 27a, 27b which can take arbitrary and variable values over time, and the relative amplitude of the signals passing through variable attenuators can also take arbitrary and time-varying values, for determine the length of each of the two projections of the vector of the electric field, on the two orthogonal axes, corresponding to the polarizations generated on each of the access to radiant elements.
  • the polarization will be linear when this phase shift is 180 °; it will be circular if it is +/- 90 °, and that the attenuations of the two channels are equal; we have an elliptical polarization in the case where the phase shift takes a different value, or linear, or good if the attenuations of the two channels are different.
  • the transmission signal arrives at a power divider, and is sent to the two circulators 7a, 7b after division in phase.
  • E / R circuits in parallel, the description of which conforms to the descriptions in the previous figures, with the same references representing the same elements in all the figures.
  • These two circuits deliver signals on two orthogonal accesses to the radiating source S ij , with a relative phase and a relative amplitude which are determined by the controllable attenuators and phase shifters 28a, 28b, and 27a, 27b respectively.
  • reception signal from the source S ij is probed by the two orthogonal ports, and the two received signals are amplified separately by the low noise amplifiers 30a, 30b. Their relative amplitude and their relative phase are adjusted by the controllable attenuators and phase shifters 28a, 28b and 27a, 27b respectively, according to the polarization of the received wave that one wishes to look at. These signals are then transmitted, via the circulators 7a, 7b to separate reception channels for signal processing in an appropriate computer (not shown).
  • This possibility of synthesis of a polarization arbitrary allows to obtain a self-adapting antenna, that is to say who can reconfigure to take into account a environment polluted by parasitic emissions intentional or not.
  • the principle consists in measuring the dominant polarization of the radio environment at the operating frequency band of the equipment, putting the attenuators and phase shifters in a state of reference. The polarization of the emission is then chosen orthogonal to this dominant polarization. This mode may allow operation significantly improved in the presence of interference intentional with stationary polarization, or in the case where unwanted specular reflections mask a target radar of small equivalent surface, but not presenting a specularity.
  • FIG 6 we have shown schematic a simplest configuration of a circuit microwave according to the invention. Following the characteristics of components used, this circuit will suitable for either transmitting or receiving signals polarized synthesis microwave. Such circuits find applications for radar antennas multistatic, for example, or in the antennas of telecommunications.
  • this circuit would be intended for amplification of signals for transmission.
  • element 5 is a divider of power, either a phase divider or a coupler hybrid with a 90 ° phase shift.
  • Blocks 1, 3 represent phase shifters controllable at 0, 1, or 2 bits, having values of phase shift of 0-0 °, 0-90 °, or 0-180 °, as in the Description of Figure 3.
  • the construction of the circuit is strictly analogous to the description given for this Figure 3, with regard to the transmission channel.
  • the components 20a, 20b are then amplifiers of power, which feed through channels inclined at 45 ° from the horizontal, the patches S k / ij.
  • this circuit would be intended for amplification of signals for reception.
  • a signal from very low level arriving at the radiating element S k / ij is routed by access roads inclined at 45 ° to horizontally, towards the low noise amplifiers 20a, 20b.
  • the signals will be combined either in phase or with a 90 ° phase shift, thanks to the means 5 which are either a phase combiner, i.e. a hybrid coupler with a 90 ° phase shift between its two inputs.
  • the signals will then routed through a phase shift and attenuation controllable according to the position of the radiating element in the network antenna network.
  • controllable phase shifters can to be almost continuous, as in the case of previous figure 5, to allow greater flexibility in the synthesis of polarizations, if necessary.
  • the radiating sources can also be annular slots photo-etched in an upper ground plane, excited by lines directed at 45 ° relative to the directions H and V, located in a lower plane, ie on the other face of the substrate comprising the plane mass and slots; either on a second suspended substrate, the two substrates kept spaced from each other by spacers or by a material having low microwave losses, such as foam or honeycomb.
  • Such constructions of networks of radiating sources and their power supplies are well known to those skilled in the art, and are described for example in the Proceedings of Military Microwaves 1992 , "Antennas for space scatteromertes and SARS", by R. Petersson , the description of the prior art of which forms an integral part of the present application.
  • circuits presented as an example in the figures can also be made according to different technologies without departing from the scope of the invention: if MMIC is a preferred technology for its low mass and congestion, as well as these remaining production costs reasonable for large series production, a higher transmitting power can be tolerated in using circulators instead of switches integrated downstream of the power amplifiers. The size and mass of these circulators are higher but the losses lower than the losses of MMIC switches.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)
  • Radar Systems Or Details Thereof (AREA)

Claims (18)

  1. Ultrahochfrequenzschaltung zum abwechselnden Senden und Empfangen (E/R) für Gruppenantennen mit variabler Polarisations-Synthese, wobei diese E/R-schaltung fähig ist, Erregungssignale für wenigstens zwei orthogonale Polarisationen an zwei Strahlungsquellen (S k / ij) über zwei jeweilige zugangswege zu liefern, wobei diese Zugangswege von zwei Sende-Leistungsverstärkerketten (29a, 29b) gespeist werden; wobei diese E/R-Schaltung fähig ist, wenigstens zwei Signale zum empfangen, die orthogonale Polarisation haben, die von denselben Quellen erfaßt werden und zwei Empfangsverstärkerketten (30a, 30b) mit geringem Rauschen speisen; dadurch gekennzeichnet, daß die E/R-Schaltung außerdem wenigstens einen steuerbaren Phasenschieber (1, 3) auf einem der beiden Sendewege und wenigstens einen steuerbaren Phasenschieber (2, 4) auf einem der beiden Empfangswege aufweist, und daß die beiden Leistungsverstärkerketten (29a, 29b) bei Sendung gleichzeitig arbeiten und daß die beiden Verstärkerketten (30a, 30b) mit geringem Rauschen bei Empfang gleichzeitig arbeiten.
  2. Schaltung nach Anspruch 1, dadurch gekennzeichnet, daß die beiden Zugangswege mit den Strahlungsquellen (S k / ij) so verbunden sind, daß Polarisationen erzeugt werden, die in bezug auf die Horizontale um 45° geneigt sind, was beim Spielen an den Phasenschiebern (1, 2, 3, 4) gestattet, die horizontale H oder vertikale V konventionelle Polarisation herzustellen.
  3. E/R-Schaltung nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß die beiden Leistungsverstärkerketten (29a, 29b) von einem Leistungsphasenteiler (5a) aus gespeist werden, der die leichte Synthese der orthogonalen, linearen Polarisationen gestattet.
  4. E/R-Schaltung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die beiden Leistungsverstärkerketten (29a, 29b) von einem Richtkoppler (5a) mit zwei um 90° phasenverschobenen Ausgängen aus gespeist werden, der die leichte Synthese von Zirkularpolarisationen gestattet.
  5. E/R-Schaltung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Phasenschieber steuerbare digitale Phasenschieber mit einem Bit sind, wobei dieses Bit je nach seinem Wert entweder 0° oder 180° entspricht.
  6. E/R-Schaltung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Phasenschieber steuerbare digitale Phasenschieber mit zwei Bits sind, wovon ein erstes Bit je nach seinem Wert entweder 0° oder 180° entspricht und ein zweites Bit je nach seinem Wert entweder 0° oder 90° entspricht, die gestatten, eine der folgenden vier konventionellen Polarisationen herzustellen: linear H oder V, zirkular rechts oder links.
  7. E/R-Schaltung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Phasenschieber steuerbare digitale Phasenschieber mit einem Bit sind, wobei dieses Bit je nach seinem Wert entweder 0° oder 90° entspricht.
  8. E/R-Schaltung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß ein Regelglied das Einstellen der Verstärkung wenigstens einer der Leistungsverstärkerketten gestattet.
  9. E/R-Schaltung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß ein Regelglied das Einstellen der Verstärkung wenigstens einer der Verstärkerketten mit geringem Rauschen gestattet.
  10. E/R-Schaltung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß die E/R-Schaltung außerdem wenigstens zwei Phasenschieber und wenigstens zwei in quasikontinuierlicher Weise steuerbare Dämpfungsglieder aufweist, die die Synthese irgendeiner Linear-, Zirkular- oder elliptischen Polarisation gestatten.
  11. E/R-Schaltung nach Anspruch 10, dadurch gekennzeichnet, daß die quasi-kontinuierliche Steuerung der Phasenschieber und der Dämpfungsglieder eine analoge Gestaltung hat.
  12. E/R-Schaltung nach Anspruch 10, dadurch gekennzeichnet, daß die quasi-kontinuierliche Steuerung der Phasenschieber und der Dämpfungsglieder eine digitale Gestaltung mit einer erhöhten Anzahl von Bits hat, die die Synthese irgendeiner Linear-, Zirkular- oder elliptischen Position gestattet.
  13. Gruppenantenne mit variabler Polarisations-Synthese an strahlenden Elementen, dadurch gekennzeichnet, daß die Antenne Sende/Empfangs-Schaltungen nach einem der Ansprüche 1 bis 12 aufweist.
  14. Gruppenantenne nach Anspruch 13, dadurch gekennzeichnet, daß die Antenne Strahlungsquellen aufweist, die vom gedruckten Typ sind (oder auf englisch "patch").
  15. Gruppenantenne nach Anspruch 13, dadurch gekennzeichnet, daß die Antenne Strahlungsquellen aufweist, die auf einer Seite eines dielektrischen Substrats, das geringe Ultrahochfrequenzverluste aufweist, photogravierte, ringförmige Spalte sind, wobei diese Spalte durch photogravierte Linien auf der entgegengesetzten Seite erregt werden.
  16. Gruppenantenne nach Anspruch 15, dadurch gekennzeichnet, daß die Spalte durch photogravierte Linien auf einem aufgehängten Substrat erregt werden.
  17. E/R-Schaltung nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, daß die Schaltung in MMIC-Technologie ausgeführt ist.
  18. Gruppenantenne nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, daß die Antenne eine sich in der Polarisation selbst anpassende Antenne ist.
EP93402925A 1992-12-04 1993-12-02 Aktive Antenne mit variabler Polarisations-Synthese Expired - Lifetime EP0600799B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9214661 1992-12-04
FR9214661A FR2699008B1 (fr) 1992-12-04 1992-12-04 Antenne active à synthèse de polarisation variable.

Publications (2)

Publication Number Publication Date
EP0600799A1 EP0600799A1 (de) 1994-06-08
EP0600799B1 true EP0600799B1 (de) 1998-10-14

Family

ID=9436258

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93402925A Expired - Lifetime EP0600799B1 (de) 1992-12-04 1993-12-02 Aktive Antenne mit variabler Polarisations-Synthese

Country Status (6)

Country Link
US (1) US5659322A (de)
EP (1) EP0600799B1 (de)
CA (1) CA2110634C (de)
DE (1) DE69321561T2 (de)
ES (1) ES2125317T3 (de)
FR (1) FR2699008B1 (de)

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE510995C2 (sv) * 1997-03-24 1999-07-19 Ericsson Telefon Ab L M Aktiv sändnings/mottagnings gruppantenn
US6181920B1 (en) 1997-10-20 2001-01-30 Ericsson Inc. Transmitter that selectively polarizes a radio wave
JP3967452B2 (ja) * 1998-03-13 2007-08-29 株式会社東芝 スペクトラム拡散無線伝送受信装置
US5969681A (en) * 1998-06-05 1999-10-19 Ericsson Inc. Extended bandwidth dual-band patch antenna systems and associated methods of broadband operation
FR2779873B1 (fr) * 1998-06-12 2000-09-01 Thomson Csf Antenne a balayage electronique a polarisation
US6442374B1 (en) * 1998-11-04 2002-08-27 Lockheed Martin Corporation Method and apparatus for high frequency wireless communication
US6701137B1 (en) 1999-04-26 2004-03-02 Andrew Corporation Antenna system architecture
US6621469B2 (en) 1999-04-26 2003-09-16 Andrew Corporation Transmit/receive distributed antenna systems
US6812905B2 (en) 1999-04-26 2004-11-02 Andrew Corporation Integrated active antenna for multi-carrier applications
US6362787B1 (en) 1999-04-26 2002-03-26 Andrew Corporation Lightning protection for an active antenna using patch/microstrip elements
US6583763B2 (en) 1999-04-26 2003-06-24 Andrew Corporation Antenna structure and installation
US6507952B1 (en) * 1999-05-25 2003-01-14 Rockwell Collins, Inc. Passenger entertainment system providing live video/audio programming derived from satellite broadcasts
US6337659B1 (en) * 1999-10-25 2002-01-08 Gamma Nu, Inc. Phased array base station antenna system having distributed low power amplifiers
CA2407601A1 (en) * 2000-04-29 2001-11-08 Merck Patent Gesellschaft Mit Beschraenkter Haftung Novel human phospholipase c delta 5
US6714768B2 (en) * 2001-08-06 2004-03-30 Motorola, Inc. Structure and method for fabricating semiconductor structures and polarization modulator devices utilizing the formation of a compliant substrate
US6900884B2 (en) * 2001-10-04 2005-05-31 Lockheed Martin Corporation Automatic measurement of the modulation transfer function of an optical system
US7046195B2 (en) * 2001-12-14 2006-05-16 Itt Manufacturing Enterprises, Inc. Single Ku-band multi-polarization gallium arsenide transmit chip
US6646599B1 (en) * 2002-03-15 2003-11-11 Itt Manufacturing Enterprises, Inc. Open loop array antenna beam steering architecture
US6703974B2 (en) 2002-03-20 2004-03-09 The Boeing Company Antenna system having active polarization correlation and associated method
US6983174B2 (en) * 2002-09-18 2006-01-03 Andrew Corporation Distributed active transmit and/or receive antenna
US6844863B2 (en) 2002-09-27 2005-01-18 Andrew Corporation Active antenna with interleaved arrays of antenna elements
US6906681B2 (en) * 2002-09-27 2005-06-14 Andrew Corporation Multicarrier distributed active antenna
US7280848B2 (en) * 2002-09-30 2007-10-09 Andrew Corporation Active array antenna and system for beamforming
US6972622B2 (en) 2003-05-12 2005-12-06 Andrew Corporation Optimization of error loops in distributed power amplifiers
US7271763B2 (en) * 2005-03-03 2007-09-18 The United States Of America As Represented By The Secretary Of The Army Hybrid-phased communication array
US7327304B2 (en) * 2005-03-24 2008-02-05 Agilent Technologies, Inc. System and method for minimizing background noise in a microwave image using a programmable reflector array
US7593753B1 (en) * 2005-07-19 2009-09-22 Sprint Communications Company L.P. Base station antenna system employing circular polarization and angular notch filtering
DE102005047973A1 (de) * 2005-10-06 2007-04-19 Kathrein-Austria Ges.M.B.H. Sende-Empfangsschaltung für überlappende Empfangs- und Sende-Bänder
US7646326B2 (en) * 2006-04-28 2010-01-12 The United States Of America As Represented By The Secretary Of The Air Force Method and apparatus for simultaneous synthetic aperture radar and moving target indication
US20090278732A1 (en) * 2006-04-28 2009-11-12 Paul Antonik Method and apparatus for simultaneous synthetic aperture radar and moving target indication
KR100968368B1 (ko) * 2006-10-27 2010-07-06 삼성전자주식회사 시분할복신 무선통신시스템에서 송수신 안테나 스위칭 장치
US7791536B2 (en) * 2007-06-24 2010-09-07 Raytheon Company High power phased array antenna system and method with low power switching
EP2332212B1 (de) * 2008-08-28 2015-07-08 Optis Cellular Technology, LLC Antennenanordnung zur störungsverringerung und mimo-kommunikation
WO2011056111A1 (en) * 2009-11-09 2011-05-12 Telefonaktiebolaget L M Ericsson (Publ) Method and arrangement for tuning polarizations for orthogonally polarized antennas
US8442469B2 (en) * 2009-12-15 2013-05-14 At&T Mobility Ii Llc Methods, system, and computer program product for optimizing signal quality of a composite received signal
EP2529448B1 (de) * 2010-01-29 2014-12-31 Orban Microwave Products (OMP) N.V. Zirkular polarisierte antenne und speisungsnetz
US8558735B2 (en) * 2010-08-20 2013-10-15 Lockheed Martin Corporation High-resolution radar map for multi-function phased array radar
US20130201066A1 (en) * 2012-02-02 2013-08-08 Harris Corporation Wireless communications device having loop antenna with four spaced apart coupling points and reflector and associated methods
US9766341B2 (en) 2014-11-13 2017-09-19 Novatel Inc. GNSS positioning system employing a reconfigurable antenna subsystem
KR20160098742A (ko) * 2015-02-11 2016-08-19 한국전자통신연구원 위상지연 특성을 보상하는 전력증폭기 및 이를 이용하는 전력 합성장치
CN106877002B (zh) * 2015-12-14 2020-09-11 中国航空工业集团公司雷华电子技术研究所 一种相位及功率比连续可调的极化控制网络
DE102016203160A1 (de) * 2016-02-29 2017-08-31 Robert Bosch Gmbh Radarsystem, umfassend eine Antennenanordnung zum Senden und Empfangen elektromagnetischer Strahlung
US10852390B2 (en) * 2017-12-20 2020-12-01 Waymo Llc Multiple polarization radar unit
DE102018213029A1 (de) * 2018-08-03 2020-02-06 Audi Ag Sende-/Empfangssystem für Funksignale
US10931033B2 (en) * 2019-01-23 2021-02-23 Qorvo Us, Inc. Multi-polarization millimeter wave (mmWave) transmitter/receiver architecture with shared power amplifiers
EP4001953A1 (de) * 2020-11-11 2022-05-25 Aptiv Technologies Limited Automobilradarsystem
CN113093117B (zh) * 2021-06-03 2021-09-07 成都雷电微晶科技有限公司 一种毫米波单通道控制tr组件

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3357013A (en) * 1954-02-26 1967-12-05 Gerald E Hart System for arbitrary antenna polarization control
US3022506A (en) * 1959-03-27 1962-02-20 Hughes Aircraft Co Arbitrarily polarized slot antenna
US4063248A (en) * 1976-04-12 1977-12-13 Sedco Systems, Incorporated Multiple polarization antenna element
US4737793A (en) * 1983-10-28 1988-04-12 Ball Corporation Radio frequency antenna with controllably variable dual orthogonal polarization
JPH04234201A (ja) * 1990-08-06 1992-08-21 Harry J Gould 電子的に回転可能な偏波アンテナ給電装置
DE9113444U1 (de) * 1991-10-29 1992-01-09 Siemens AG, 80333 München Sende/Empfangs-Modul für eine elektronisch phasengesteuerte Antenne
US5337058A (en) * 1993-04-16 1994-08-09 United Technologies Corporation Fast switching polarization diverse radar antenna system

Also Published As

Publication number Publication date
CA2110634A1 (fr) 1994-06-05
EP0600799A1 (de) 1994-06-08
ES2125317T3 (es) 1999-03-01
FR2699008A1 (fr) 1994-06-10
CA2110634C (fr) 2000-02-15
DE69321561D1 (de) 1998-11-19
US5659322A (en) 1997-08-19
FR2699008B1 (fr) 1994-12-30
DE69321561T2 (de) 1999-04-01

Similar Documents

Publication Publication Date Title
EP0600799B1 (de) Aktive Antenne mit variabler Polarisations-Synthese
EP2532050B1 (de) Bordinterne direktionale flachplattenantenne, fahrzeug mit einer solchen antenne und satellitentelekommunikationssystem mit einem solchen fahrzeug
EP2532046B1 (de) Flachplatten-abtastantenne für landfahrzeuganwendung, fahrzeug mit einer solchen antenne und satellitentelekommunikationssystem mit solch einem fahrzeug
CA2037841C (fr) Systeme d'antenne imprimee active a haut rendement pour radar spatial agile
EP3577720B1 (de) Elementare antenne mit einer planaren strahlungsvorrichtung
EP2706613B1 (de) Mehrfachband-Antenne mit variabler elektrischer Inklination
EP0890226B1 (de) Basisfunkstation mit zirkularpolarisierten antennen
EP3179551B1 (de) Kompakteinheit zur doppelpolarisierten ansteuerung für ein strahlungselement einer antenne, und kompaktes netz, das mindestens vier kompakte ansteuerungseinheiten umfasst
EP3188399B1 (de) Vollduplex-sender/-empfänger mit einem modul für die nicht reziproke frequenztransposition
EP2869396A1 (de) Leistungsverteiler, der eine T-Kupplung auf der E-Ebene umfasst, Speisenetzwerk und Antenne, die ein solches Speisenetzwerk umfasst
EP0315141A1 (de) Anregungsvorrichtung einer zirkularpolarisierten Welle mit einer Flachantenne in einem Hohlleiter
WO2013110793A1 (fr) Formateur multi-faisceaux à deux dimensions, antenne comportant un tel formateur multi-faisceaux et système de télécommunication par satellite comportant une telle antenne
WO2018141882A1 (fr) Antenne elementaire a dispositif rayonnant planaire
FR3039726A1 (fr) Dispositif d'emission/reception et antenne associee
EP3176875B1 (de) Aufbau einer aktiven hybriden rekonfigurierbaren strahlbildungsantenne
EP0605338B1 (de) Streifenleitungsantenne mit zwei Polarisationen und entsprechende Vorrichtung zum Senden/Empfangen
FR2666186A1 (fr) Duplexeur bidirectionnel pour ondes hyperfrequences polarisees realisable notamment en technologie monolithique sur arseniure de gallium.
FR2829298A1 (fr) Dispositif de commutation pour des appareils de reception et/ou d'emission d'ondes electromagnetiques
FR2831734A1 (fr) Dispositif pour la reception et/ou l'emission de signaux electromagnetiques a diversite de rayonnement
EP1533866A1 (de) Adaptive Phasengesteuerte Gruppenantenne mit digitaler Keulenformung
EP1286416B1 (de) Schliessen und Phasenverschieben einer Antenne
EP0638821B1 (de) In einem Satelliten untergebrachtes Mikrowellen-Abbildungsradarsystem mit doppeltem Erfassungsbereich
EP1677385A1 (de) Elektronisch gesteuerte breitbandige Antenne
FR2930845A1 (fr) Antenne active d'emission/reception a balayage electronique un plan

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT SE

17P Request for examination filed

Effective date: 19940914

17Q First examination report despatched

Effective date: 19960705

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL ALSTHOM COMPAGNIE GENERALE D'ELECTRICITE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT SE

REF Corresponds to:

Ref document number: 69321561

Country of ref document: DE

Date of ref document: 19981119

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990107

RAP4 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: ALCATEL

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2125317

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021128

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021202

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021206

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021212

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021218

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031203

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031202

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051202