EP0550748B1 - Installation pour produire du froid par reaction solide/gaz, le reacteur comportant des moyens de refroidissement - Google Patents

Installation pour produire du froid par reaction solide/gaz, le reacteur comportant des moyens de refroidissement Download PDF

Info

Publication number
EP0550748B1
EP0550748B1 EP92917729A EP92917729A EP0550748B1 EP 0550748 B1 EP0550748 B1 EP 0550748B1 EP 92917729 A EP92917729 A EP 92917729A EP 92917729 A EP92917729 A EP 92917729A EP 0550748 B1 EP0550748 B1 EP 0550748B1
Authority
EP
European Patent Office
Prior art keywords
condenser
heat
reactor
installation
solid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92917729A
Other languages
German (de)
English (en)
Other versions
EP0550748A1 (fr
Inventor
Jacques Bernier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe National Elf Aquitaine
Original Assignee
Societe National Elf Aquitaine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe National Elf Aquitaine filed Critical Societe National Elf Aquitaine
Publication of EP0550748A1 publication Critical patent/EP0550748A1/fr
Application granted granted Critical
Publication of EP0550748B1 publication Critical patent/EP0550748B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B35/00Boiler-absorbers, i.e. boilers usable for absorption or adsorption
    • F25B35/04Boiler-absorbers, i.e. boilers usable for absorption or adsorption using a solid as sorbent
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B17/00Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type
    • F25B17/08Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt
    • F25B17/083Sorption machines, plants or systems, operating intermittently, e.g. absorption or adsorption type the absorbent or adsorbent being a solid, e.g. salt with two or more boiler-sorbers operating alternately

Definitions

  • the present invention relates to an installation for producing cold using a solid and a gas (or fluid).
  • the known installation implements for example a reaction between a salt such as Mncl 2 and a gas such as ammonia (NH 3 ), as described for example in French patent 2,615,601.
  • a salt such as Mncl 2
  • a gas such as ammonia (NH 3 )
  • This installation comprises one or more reactors containing the solid, which are connected to an evaporator and a condenser by pipes in which the gas circulates.
  • Solid / gas reaction installations of the aforementioned type comprise finned reactors cooperating with fans to cool them.
  • the invention can also be applied to cold production installations using adsorption between a solid such as a zeolite and a fluid such as water.
  • the object of the present invention is to remedy the drawbacks of the refrigeration installations known above.
  • the invention thus relates to an installation for producing cold, implementing a reaction between a solid (s) and a gas (G), comprising at least two chambers (R1, R2) containing a solid (S1, S2) and comprising each of the cooling means, connected by tubing to a condenser whose role is to evacuate the heat of reaction or condensation outside, the heat transfers between the condenser and the chambers (Rl, R2) taking place by a fluid in phase change, the cooling means each comprising a heat exchanger having as cooling fluid the gas (G) used in the reaction with the solid (S).
  • the heat exchangers and the chambers are directly connected to the single condenser of the installation which forms the only element serving to condense the cooling fluid, as well as the reaction gas.
  • the thermal inertia of the reactor is much lower than in fan-cooled fin reactors.
  • a single condenser exchanger can cool several reactors, thereby reducing the size of the installation.
  • the heat dissipation can be located anywhere, which facilitates the installation of the installation, for example in a road vehicle.
  • the envelope defining an enclosure around the reactor provides thermal insulation which, in addition to reducing thermal losses, prevents the salt contained in the reactor from being at an insufficient temperature in relation to the temperature at very low outside temperatures. thermal equilibrium.
  • said condenser is connected to the enclosure by a first tube communicating with the lower part of the enclosure and provided with a valve, a second tube being connected to the upper part of the enclosure.
  • the refrigerant can be ammonia, when it is a reaction between a salt such as MnCL 2 and NH 3
  • a salt such as MnCL 2 and NH 3
  • the installation according to the invention is thus a very simple design. In addition, it contains only one fluid, namely ammonia, which facilitates filling.
  • ammonia has the advantage of having a high latent heat of vaporization and presents no risk of freezing or decomposition in a very wide range of temperatures.
  • the installation for producing cold implementing a reaction between a solid and a gas comprises a reactor R containing the solid S and connected to an evaporator E and a condenser C by pipes 100, 200 in which a fluid G circulates.
  • the means for cooling the reactor R comprise an envelope 300 surrounding the wall 400 of the reactor R and defining therewith a enclosure 500 filled with a refrigerant connected by pipes 600, 700 to a condenser 900 which is in heat exchange condition with a fan 110.
  • a fan 110 is also associated with the evaporator E and the condenser C.
  • the enclosure 500 thus constitutes an evaporator.
  • the condenser 900 is connected to the enclosure 500 by a first tubing 600 communicating with the lower part of the enclosure 500 and provided with a valve 111, a second tubing 700 being connected to the upper part of the enclosure 500.
  • the condenser 900 connected to the enclosure 500 is distinct from the condenser C which is connected to the reactor R and to the evaporator E.
  • the enclosure 500 and the condenser 900 thus replace the cooling fins known reactors.
  • the refrigerant G which circulates in the enclosure 500 is the same as that used for the implementation in the reactor R of the solid / gas reaction.
  • the enclosure 500 of the reactor R is connected by a tube 120 to the tank 130 of storage of said fluid G located between the evaporator E and the condenser C 1 .
  • This tubing 120 is provided with a valve 140 and communicates with the lower part of the enclosure 500.
  • the installation comprises only one condenser C 1 .
  • the enclosure 500 for cooling the reactor R is connected to a condenser C 1 by a pipe 150 which communicates with the upper part of this enclosure.
  • the single condenser C 1 has a heat exchange power greater than that (condenser C of FIG. 1) used when the cooling of the reactor R is ensured by means of a separate condenser.
  • the refrigerant used to cool the reactor R is ammonia.
  • the installation comprises an external source of energy 160 for heating the reactor R.
  • the reactor R comprises cooling fins 170 with which a fan 18 is associated.
  • heat exchange means 19 are provided which communicate by pipes 200, 210 with a tank 220 filled with a heat transfer fluid 230 which is heated by the external energy source 160.
  • the heat exchange means 190 are constituted by a tube 190a forming a coil inside the reactor R.
  • the heat transfer fluid 230 is heated so as to form an equilibrium between the liquid and vapor phases, the circulation of the fluid in the heat exchange means 190 being by thermosyphon.
  • the fluid is water brought to about 200 ° C under a pressure equal to about 15.10 5 Pascals.
  • the energy source 160 can be supplied by heat recovery from the exhaust of the internal combustion engine.
  • This energy source can however be constituted by a gas or oil burner, by an electrical resistance or by a solar collector.
  • the refrigeration installation according to the invention comprises three solid / gas reactors R1, R2, R3 each containing a salt S1, S2, S3, such as manganese chloride.
  • Each reactor has an ammonia gas inlet / outlet 2 1 , 2 2 , 2 3 .
  • the reactor R1 receives thermal energy through the exchanger 3 1 which surrounds the reactor. This thermal energy comes from the heating source 31.
  • the latter brings a liquid (water for example) contained in a pressurized tank 29 to boiling.
  • the water vapor formed passes through the piping 28 and is directed to the manifold 12.
  • This vapor at a temperature of the order of 180 ° C enters via the pipe 27 in the exchanger 3 1 of the reactor R1, where it condenses by heating the reactor.
  • the condensed water then passes at the outlet of the exchanger by the magnetic valve 6 1 which is in the open position and goes by gravity to the manifold 14 which returns the water to the tank 29 through the piping 30 to form a new cycle.
  • the magnetic valve 7 1 is open allowing the desorption of the reactor R1 into ammonia.
  • the ammonia gas goes to the condenser 16 via the manifold 11 and the pipe 15. There, the gas condenses under the effect of the cooling of the outside air, using the fan 17.
  • the liquid formed is sent to the reserve 19 by the piping 18.
  • the reactor R2 in the absorption phase the magnetic valve 8 2 is open, which creates a suction of ammonia at the low temperature from the evaporator 22 to the inlet 2 2 of the reactor R2.
  • the evaporator 22 is supplied with liquid ammonia via an expansion device 21.
  • the valve 25 is a regulating valve making it possible to control the evaporation temperature in the evaporator 22 and consequently the production of cold .
  • the phase of absorption of ammonia by the salt in the reactor R2 is exothermic, which requires removing the heat produced by via the exchanger 4 2 of the reactor, the magnetic valve 52 then being in the open position.
  • the exchanger 4 2 is supplied at the bottom with ammonia liquid coming from the bottle 19 by gravity through the piping 26 and the manifold 13.
  • the condenser 16 the gaseous ammonia condenses thanks to the cooling of the outside air which circulates therein using the fan 17.
  • the liquid formed returns to the tank 19 to form a new cycle.
  • the R3 reactor is in the cooling phase.
  • the valve 5 3 is open and the exchanger 4 3 receives liquid ammonia coming from the reservoir 19.
  • the liquid vaporizes therein thus cooling the reactor from 180 ° C. to the condensing temperature of the condenser 16.
  • the vapor passes through the piping 93 and therefore goes into the condenser 16 via the manifold 11 and the piping 15.
  • the reactor R1 is in the cooling phase.
  • the reactor R2 is in the heating phase.
  • the R3 reactor is in the absorption phase.
  • the R1 reactor is in the absorption phase.
  • the reactor R2 is in the heating phase.
  • the R3 reactor is in the cooling phase.
  • the thermal energy received by the exchanger 31 can be provided either by a gas or oil burner or by any other source of heat at a sufficient temperature.
  • the cooling circuit of the reactors R1, R2, R3 is independent of the refrigeration circuit.
  • the installation includes a second condenser 42.
  • the pipes 9 1 , 9 2 , 9 3 leaving the exchangers 4 1 , 4 2 , 4 3 are connected to a collector 40 which is connected to the upper part of the condenser 42 by the pipe 41.
  • the liquid formed in the condenser 42 is poured into another tank 44 by the pipe 43.
  • the pipe 26 is in this case, connected to this tank 44 and allows the supply of liquid to the evaporator exchangers 41, 42 , 43 by the manifold 13 and the magnetic valves 5 1 , 5 2 , 5 3 .
  • the source of thermal energy comes from a heat recovery exchanger 46 supplied with 49 by a hot fluid, such as exhaust gases from a heat engine. After cooling in the exchanger 48, this fluid leaves the exchanger through the discharge 50.
  • the exchange surface is represented by 47. The heat has the effect of vaporizing the liquid coming from the reservoir 29 by gravity in the exchanger 46 by through the magnetic inlet valve 55 and the piping 45.
  • the steam formed in the exchanger 46 returns to the upper part of the tank 29 via the piping 48.
  • the pipes 45 and 48 connecting the tank 29 to the exchanger 46 can be fitted with automatic fittings 51, 52, 53, 54 to facilitate the installation of the system.
  • the exchanger 46 can also be a solar collector.
  • valves 5 1 , 5 2 , 5 3 , ..., 6 1 , 6 2 , 6 3 and 55 can be replaced by thermal emulsifiers preventing during their operation the return of the liquid to the corresponding evaporator.
  • the invention is applicable in particular to the cooling of refrigerated trucks, to the air conditioning of all types of motor vehicles, to heating, to the production of hot water.
  • the condensers instead of being cooled by air, can be cooled by a water cooling circuit.
  • the invention also applies to the production of cold by adsorption between a solid and a fluid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Sorption Type Refrigeration Machines (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Description

  • La présente invention concerne une installation pour produire du froid mettant en oeuvre un solide et un gaz (ou fluide).
  • L'installation connue met en oeuvre par exemple une réaction entre un sel tel que du Mncl2 et un gaz tel que de l'ammoniac (NH3), comme décrit par exemple dans le brevet français 2 615 601.
  • Cette installation comprend un ou plusieurs réacteurs renfermant le solide, qui sont reliés à un évaporateur et un condenseur par des tubulures dans lesquelles circule le gaz.
  • L'intérêt de ce type d'installation réside dans le fait que la source de chaleur nécessaire à son fonctionnement peut etre fournie par de l'énergie thermique, contrairement aux installations frigorifiques classiques à compresseur.
  • Les installations à réaction solide/gaz du type précité comportent des réacteurs à ailettes coopérant avec des ventilateurs pour les refroidir.
  • Ce mode de refroidissement présente notamment les inconvénients suivants :
    • il augmente l'inertie thermique du réacteur ainsi que les pertes thermiques lors de la phase de chauffage des réacteurs,
    • il augmente l'encombrement de l'installation, notamment du fait que chaque réacteur doit être associé à un ventilateur,
    • il ne permet pas d'obtenir une installation compacte pouvant être disposée n'importe où, du fait de la présence des ventilateurs.
  • L'invention peut s'appliquer également aux installations de production de froid mettant en oeuvre une adsorption entre un solide tel qu'un zéolithe et un fluide tel que de l'eau.
  • Le document US 2 587 996 décrit une installation pour produire du froid par absorption comprenant deux absorbeurs, un condenseur et un évaporateur pour le gaz de réaction, ainsi qu'un condenseur secondaire destiné à traiter le fluide de refroidissement des absorbeurs.
  • Le but de la présente invention est de remédier aux inconvénients des installations frigorifiques connues ci-dessus.
  • L'invention vise ainsi une installation pour produire du froid, mettant en oeuvre une réaction entre un solide (s) et un gaz (G), comprenant au moins deux enceintes (R1, R2) renfermant un solide (S1, S2) et comprenant chacune des moyens de refroidissement, reliés par des tubulures à un condenseur dont le rôle est d'évacuer à l'extérieur les chaleurs de réaction ou de condensation, les transferts de chaleur entre le condenseur et les enceintes(Rl, R2) s'effectuant par un fluide en changement de phase, les moyens de refroidissement comprenant chacun un échangeur de chaleur ayant comme fluide de refroidisement le gaz (G) utilisé dans la réaction avec le solide (S).
  • Suivant l'invention les échangeurs de chaleur et les enceintes (R1, R2) sont reliés directement au condenseur unique de l'installation qui forme le seul élément servant à condenser le fluide de refroidissement, ainsi que le gaz de la réaction.
  • L'installation selon l'invention présente ainsi les avantages suivants :
  • L'inertie thermique du réacteur est beaucoup plus faible que dans les réacteurs à ailettes refroidis par un ventilateur.
  • Lors de la phase de chauffage du réacteur, les pertes thermiques sont diminuées.
  • Un échangeur condenseur unique peut refroidir plusieurs réacteurs, ce qui permet de réduire l'encombrement de l'installation.
  • De plus, l'évacuation de la chaleur peut être localisée n'importe où, ce qui facilite l'implantation de l'installation, par exemple dans un véhicule routier.
  • L'enveloppe définissant une enceinte autour du réacteur assure une isolation thermique qui, outre la réduction des pertes thermiques, évite qu'en cas de très basse température extérieure, le sel contenu dans le réacteur ne se trouve à une température insuffisante par rapport à l'équilibre thermique.
  • Par ailleurs, la suppression des ventilateurs associés à chaque réacteur, réduit les dépenses d'énergie ainsi que le bruit de fonctionnement.
  • Selon une version avantageuse de l'invention, ledit condenseur est relié à l'enceinte par une première tubulure communiquant avec la partie inférieure de l'enceinte et munie d'une vanne, une seconde tubulure étant reliée à la partie supérieure de l'enceinte.
  • Le fluide frigorigène peut être l'ammoniac, lorsqu'il s'agit d'une réaction entre un sel tel que le MnCL2 et NH3 L'installation selon l'invention est ainsi une conception très simple. De plus, elle ne comporte qu'un seul fluide à savoir l'ammoniac, ce qui facilite les remplissages.
    De plus, l'ammoniac présente l'avantage de présenter une forte chaleur latente de vaporisation et ne présente aucun risque de gel ou de décomposition dans une très large gamme de températures.
  • D'autres particularités et avantages de l'invention apparaîtront encore dans la description ci après.
  • Aux dessins annexés donnés à titre d'exemples non limitatifs :
    • La figure 1 est le schéma d'une version d'une installation frigorifique, qui ne fait pas partie de l'invention.
    • La figure 2 est le schéma d'une version d'une installation frigorifique selon l'invention.
    • La figure 3 est le schéma d'une autre version d'une installation frigorifique, ces différentes versions étant décrites pour la bonne compréhension de l'invention,
    • La figure 4 est le schéma d'une installation frigorifique à trois réacteurs selon l'invention, et
    • La figure 5 est le schéma d'une autre installation frigorifique à trois réacteurs, également décrite pour la bonne compréhension de l'invention, mais ne faisant pas partie de l'invention.
  • Dans la réalisation de la figure 1, l'installation pour produire du froid mettant en oeuvre une réaction entre un solide et un gaz, comprend un réacteur R renfermant le solide S et relié à un évaporateur E et un condenseur C par des tubulures 100, 200 dans lesquelles circule un fluide G.
  • Les moyens pour assurer le refroidissement du réacteur R comprennent une enveloppe 300 entourant la paroi 400 du réacteur R et définissant avec celle-ci une enceinte 500 remplie d'un fluide frigorigène reliée par des tubulures 600, 700 à un condenseur 900 qui est en condition d'échange thermique avec un ventilateur 110. Un ventilateur 110 est également associé à l'évaporateur E et au condenseur C.
  • L'enceinte 500 constitue ainsi un évaporateur. Le condenseur 900 est relié à l'enceinte 500 par une première tubulure 600 communiquant avec la partie inférieure de l'enceinte 500 et munie d'une vanne 111, une seconde tubulure 700 étant reliée à la partie supérieure de l'enceinte 500.
  • Dans l'exemple de la figure 1, le condenseur 900 relié à l'enceinte 500 est distinct du condenseur C qui est relié au réacteur R et à l'évaporateur E. L'enceinte 500 et le condenseur 900 remplacent ainsi les ailettes de refroidissement des réacteurs connus.
  • Dans la version représentée sur la figure 2, le fluide frigorigène G qui circule dans l'enceinte 500 est le même que celui utilisé pour la mise en oeuvre dans le réacteur R de la réaction solide/gaz.
  • Dans cet exemple, l'enceinte 500 du réacteur R est reliée par une tubulure 120 au réservoir 130 de stockage dudit fluide G situé entre l'évaporateur E et le condenseur C1. Cette tubulure 120 est munie d'une vanne 140 et communique avec la partie inférieure de l'enceinte 500.
  • Dans l'exemple de la figure 2, l'installation ne comporte qu'un seul condenseur C1. L'enceinte 500 de refroidissement du réacteur R est reliée à un condenseur C1 par une tubulure 150 qui communique avec la partie supérieure de cette enceinte.
  • Le condenseur unique C1 a un pouvoir d'échange thermique supérieur à celui (condenseur C de la figure 1) utilisé lorsque le refroidissement du réacteur R est assuré au moyen d'un condenseur distinct.
  • Dans l'exemple de la figure 2, le fluide frigorigène utilisé pour refroidir le réacteur R est de l'ammoniac.
  • Dans la réalisation représentée à la figure 3, l'installation comprend une source d'énergie extérieure 160 pour chauffer le réacteur R. Dans cet exemple, le réacteur R comporte des ailettes 170 de refroidissement auxquelles est associé un ventilateur 18.
  • A l'intérieur du réacteur R sont prévus des moyens d'échange thermique 19 qui communiquent par des tubulures 200, 210 avec un réservoir 220 rempli d'un fluide caloporteur 230 qui est chauffé par la source d'énergie extérieure 160.
  • Dans cet exemple, les moyens d'échange thermique 190 sont constitués par une tubulure 190a formant un serpentin à l'intérieur du réacteur R.
  • Le fluide caloporteur 230 est chauffé de façon à former un équilibre entre les phases liquide et vapeur, la circulation du fluide dans les moyens d'échange thermique 190 se faisant par thermosiphon.
  • De préférence, le fluide est de l'eau portée à environ 200°C sous une pression égale à environ 15.105 Pascals.
  • Lorsque l'installation est prévue sur un véhicule à moteur thermique, la source d'énergie 160 peut être fournie par récupération de chaleur sur l'échappement du moteur thermique. Cette source d'énergie peut cependant être constituée par un brûleur à gaz ou fioul, par une résistance électrique ou par un capteur solaire.
  • Dans la réalisation de la figure 4, l'installation frigorifique selon l'invention comporte trois réacteurs solide/gaz R1, R2, R3 renfermant chacun un sel S1, S2, S3, tel que du chlorure de manganèse. Chaque réacteur comporte une entrée/sortie de gaz ammoniac 21, 22, 23.
  • Le fonctionnement de l'installation comporte les trois phases suivantes :
  • - Phase 1 :
  • Le réacteur R1 reçoit de l'énergie thermique par l'échangeur 31 qui entoure le réacteur. Cette énergie thermique provient de la source de chauffage 31. Celle-ci fait entrer en ébullition un liquide (de l'eau par exemple) contenu dans un réservoir sous pression 29. La vapeur d'eau formée passe par la tuyauterie 28 et se dirige vers le collecteur 12. Cette vapeur à une température de l'ordre de 180°C pénètre par la tuyauterie 27 dans l'échangeur 31 du réacteur R1, où elle se condense en chauffant le réacteur. L'eau condensée passe ensuite à la sortie de l'échangeur par la vanne magnétique 61 qui se trouve en position ouverte et se dirige gravitairement vers le collecteur 14 qui renvoie l'eau dans le réservoir 29 par la tuyauterie 30 pour former un nouveau cycle. Pendant cette phase de chauffage du réacteur R1, la vanne magnétique 71 est ouverte permettant la désorption du réacteur R1 en ammoniac. Le gaz ammoniac se dirige vers le condenseur 16 par l'intermédiaire du collecteur 11 et de la tuyauterie 15. Là, le gaz se condense sous l'effet du refroidissement de l'air extérieur, à l'aide du ventilateur 17. Le liquide formé est envoyé dans la réserve 19 par la tuyauterie 18.
  • Le réacteur R2 en phase d'absorption, la vanne magnétique 82 est ouverte, ce qui crée une aspiration d'ammoniac à la basse température de l'évaporateur 22 vers l'entrée 22 du réacteur R2. L'évaporateur 22 est alimenté en ammoniac liquide par l'intermédiaire d'un dispositif d'expansion 21. La vanne 25 est une vanne de régulation permettant de contrôler la température d'évaporation dans l'évaporateur 22 et par suite la production du froid. La phase d'absorption de l'ammoniac par le sel dans le réacteur R2 est exothermique, ce qui nécessite d'évacuer la chaleur produite par l'intermédiaire de l'échangeur 42 du réacteur, la vanne magnétique 52 étant alors en position ouverte. L'échangeur 42 est alimenté en partie basse par du liquide ammoniac provenant gravitairement de la bouteille 19 grâce à la tuyauterie 26 et le collecteur 13. Le liquide se vaporise dans l'échangeur 42 et la vapeur formée est récupérée à la sortie de l'échangeur par la tuyauterie 92 qui la dirige vers le condenseur 16 par l'intermédiaire du collecteur 11 et de la tuyauterie 15. Dans le condenseur 16, l'ammoniac gazeux se condense grâce au refroidissement de l'air extérieur qui y circule à l'aide du ventilateur 17. Le liquide formé retourne dans le réservoir 19 pour former un nouveau cycle.
  • Le réacteur R3 est en phase de refroidissement.
  • La vanne 53 est ouverte et l'échangeur 43 reçoit de l'ammoniac liquide provenant du réservoir 19. Le liquide s'y vaporise refroidissant ainsi le réacteur de 180°C jusqu'à la température de condensation du condenseur 16. La vapeur passe par la tuyauterie 93 et se dirige donc dans le condenseur 16 par l'intermédiaire du collecteur 11 et de la tuyauterie 15.
  • - Phase 2 :
  • Le réacteur R1 est en phase de refroidissement.
  • Le réacteur R2 est en phase de chauffage.
  • Le réacteur R3 est en phase d'absorption.
  • - Phase 3 :
  • Le réacteur R1 est en phase d'absorption.
  • Le réacteur R2 est en phase de chauffage.
  • Le réacteur R3 est en phase de refroidissement.
  • Au cours des phases 2 et 3, les vannes respectives des réacteurs sont ouvertes comme déjà indiqué dans la phase 1.
  • L'énergie thermique reçue par l'échangeur 31 peut être apportée soit par un brûleur à gaz ou à fioul ou par toute autre source de chaleur à température suffisante.
  • Dans la variante représentée sur la figure 5, le circuit de refroidissement des réacteurs R1, R2, R3 est indépendant du circuit frigorifique. L'installation comporte dans ce cas un second condenseur 42. Les tuyauteries 91, 92, 93 de sortie des échangeurs 41, 42, 43 sont reliées à un collecteur 40 qui est relié à la partie haute du condenseur 42 par la tuyauterie 41. Le liquide formé dans le condenseur 42 se déverse dans un autre réservoir 44 par la tuyauterie 43. La tuyauterie 26 est dans ce cas, raccordée à ce réservoir 44 et permet l'alimentation en liquide des échangeurs évaporateurs 41, 42, 43 par le collecteur 13 et les vannes magnétiques 51, 52, 53.
  • Dans une variante également représentée sur la figure 5, la source d'énergie thermique provient d'un échangeur de récupération de chaleur 46 alimenté en 49 par un fluide chaud, tel que des gaz d'échappement d'un moteur thermique. Après refroidissement dans l'échangeur 48, ce fluide ressort de l'échangeur par le rejet 50. La surface d'échange est représentée par 47. La chaleur a pour effet de vaporiser le liquide provenant gravitairement du réservoir 29 dans l'échangeur 46 par l'intermédiaire de la vanne magnétique d'admission 55 et la tuyauterie 45.
  • La vapeur formée dans l'échangeur 46 retourne en partie haute du réservoir 29 par l'intermédiaire de la tuyauterie 48. Les tuyauteries 45 et 48 reliant le réservoir 29 à l'échangeur 46 peuvent être équipées de raccords automatiques 51, 52, 53, 54 afin de faciliter l'installation du système. L'échangeur 46 peut également être un capteur solaire.
  • Selon une autre variante de l'invention, les vannes 51, 52, 53, ..., 61, 62, 63 et 55 peuvent être remplacées par des thermo-émulseurs interdisant lors de leur fonctionnement le retour du liquide vers l'évaporateur correspondant.
  • L'invention est applicable notamment au refroidissement des camions frigorifiques, à la climatisation de tous types de véhicules automobiles, au chauffage, à la production d'eau chaude.
  • Par ailleurs, les condenseurs, au lieu d'être refroidis par de l'air peuvent l'être par un circuit de refroidissement à eau.
  • D'autre part, l'invention s'applique également à la production de froid par adsorption entre un solide et un fluide.

Claims (7)

  1. Installation pour produire du froid, mettant en oeuvre une réaction entre un solide (s) et un gaz (G), comprenant au moins deux enceintes (R1, R2) renfermant un solide (S1, S2) et comprenant chacune des moyens de refroidissement (41,42) reliés par des tubulures (15, 26) à un condenseur (16) dont le rôle est d'évacuer à l'extérieur les chaleurs de réaction ou de condensation, les transferts de chaleur entre le condenseur et les enceintes(R1, R2) s'effectuant par un fluide en changement de phase, les moyens de refroidissement comprenant chacun un échangeur de chaleur ayant comme fluide de refroidissement le gaz (G) utilisé dans la réaction avec le solide (S) caractérisée en ce que les échangeurs de chaleur et les enceintes (R1, R2) sont reliés directement au condenseur unique de l'installation qui forme le seul élément servant à condenser le fluide de refroidissement, ainsi que le gaz de la réaction.
  2. Installation conforme à la revendication 1, caractérisée en ce que le condenseur (16) est en condition d'échange thermique avec un ventilateur (17).
  3. Installation conforme à la revendication 1, caractérisée en ce qu'elle est munie d'un réservoir (19) relié par une tuyauterie (26) à la partie basse d'un desdits échangeurs (41,42) des réacteurs.
  4. Installation conforme à la revendication 1, comprenant une source d'énergie extérieure (31) pour chauffer les réacteurs (R1, R2) caractérisée en ce qu'elle comprend des moyens d'échange thermique (31,32) disposés à l'intérieur des réacteurs qui communiquent par des tubulures (28, 30) avec la dite source (31).
  5. Installation conforme à la revendication 4, caractérisée en ce que le moyen de chauffage (31) des réacteurs est unique et est relié aux réacteurs (R1, R2, R3) par des vannes (61, 62, 63) permettant de sélectionner le réacteur à chauffer.
  6. Installation conforme à la revendication 1, caractérisée en ce que des vannes (51, 52, 53) sont placées sur la conduite liquide des échangeurs (41, 42, 43) permettant de sélectionner le ou les réacteurs à refroidir.
  7. Installation conforme à l'une des revendications précédentes, caractérisée en ce que le fluide de transfert est de l'ammoniac.
EP92917729A 1991-07-26 1992-07-24 Installation pour produire du froid par reaction solide/gaz, le reacteur comportant des moyens de refroidissement Expired - Lifetime EP0550748B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9109498A FR2679633B1 (fr) 1991-07-26 1991-07-26 Installation pour produire du froid par reaction solide/gaz, le reacteur comportant des moyens de refroidissement.
FR9109498 1991-07-26
PCT/FR1992/000736 WO1993003314A1 (fr) 1991-07-26 1992-07-24 Installation pour produire du froid par reaction solide/gaz, le reacteur comportant des moyens de refroidissement

Publications (2)

Publication Number Publication Date
EP0550748A1 EP0550748A1 (fr) 1993-07-14
EP0550748B1 true EP0550748B1 (fr) 1996-09-11

Family

ID=9415586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92917729A Expired - Lifetime EP0550748B1 (fr) 1991-07-26 1992-07-24 Installation pour produire du froid par reaction solide/gaz, le reacteur comportant des moyens de refroidissement

Country Status (8)

Country Link
US (1) US5335519A (fr)
EP (1) EP0550748B1 (fr)
AT (1) ATE142770T1 (fr)
AU (1) AU2444292A (fr)
DE (1) DE69213699T2 (fr)
ES (1) ES2094366T3 (fr)
FR (1) FR2679633B1 (fr)
WO (1) WO1993003314A1 (fr)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5477706A (en) * 1991-11-19 1995-12-26 Rocky Research Heat transfer apparatus and methods for solid-vapor sorption systems
US5628205A (en) * 1989-03-08 1997-05-13 Rocky Research Refrigerators/freezers incorporating solid-vapor sorption reactors capable of high reaction rates
US5598721A (en) * 1989-03-08 1997-02-04 Rocky Research Heating and air conditioning systems incorporating solid-vapor sorption reactors capable of high reaction rates
WO1994027098A1 (fr) * 1993-05-11 1994-11-24 Rocky Research Appareil et procedes de transfert thermique perfectionnes pour des systemes de sorption de solide-vapeur
DE59408290D1 (de) * 1994-10-06 1999-06-24 Electrolux Leisure Appliances Kühlvorrichtung mit einer intermittierend arbeitenden kühleinheit
JP3348336B2 (ja) * 1995-10-26 2002-11-20 株式会社豊田中央研究所 吸着ヒートポンプ
GB9613211D0 (en) * 1996-06-24 1996-08-28 Johnson Matthey Plc Improvements in heat transfer materials
DE19901094A1 (de) * 1999-01-14 2000-07-20 Zeolith Tech Sorberanordnung mit einer Sorptionsmittelfüllung
FR2816698B1 (fr) 2000-11-13 2004-05-28 Pierre Jeuch Dispositif de refrigeration par adsorption
CA2412945A1 (fr) 2000-07-06 2002-01-10 Thermagen Sa Appareil refrigerant d'adsorption
US6867064B2 (en) 2002-02-15 2005-03-15 Micron Technology, Inc. Method to alter chalcogenide glass for improved switching characteristics
FR2879727B1 (fr) * 2004-12-20 2012-12-14 Centre Nat Rech Scient Dispositif pour la production de froid pour la climatisation d'un batiment
FR2965904B1 (fr) * 2010-10-07 2014-10-24 Gaztransp Et Technigaz Procede thermique mettant en oeuvre une pluralite de reacteurs de sorption
JP5770608B2 (ja) * 2011-11-30 2015-08-26 株式会社豊田中央研究所 車両用化学蓄熱システム、及びこれを備える車両用空調システム
EP2944489B1 (fr) 2014-05-16 2020-05-06 Perkins Engines Company Limited Système de chauffage et de refroidissement pour véhicule
JP6647223B2 (ja) * 2015-01-27 2020-02-14 古河電気工業株式会社 蓄熱容器及び蓄熱容器を備えた蓄熱装置
FR3034179B1 (fr) * 2015-03-23 2018-11-02 Centre National De La Recherche Scientifique Dispositif solaire de production autonome de froid par sorption solide-gaz.

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1954056A (en) * 1930-11-18 1934-04-10 Chester F Hockley Adsorber system
US1943968A (en) * 1930-12-22 1934-01-16 Safety Car Heating & Lighting Refrigeration system
DE569786C (de) * 1931-02-08 1933-02-08 Thore Martin Elfving Intermittierend arbeitende Absorptionskaeltemaschine
DE630064C (de) * 1933-12-31 1936-05-19 Siemens Schuckertwerke Akt Ges Periodischer Absorptionsapparat
US2269099A (en) * 1935-10-26 1942-01-06 Servel Inc Heat transfer system
US2276947A (en) * 1938-10-01 1942-03-17 Kleen Nils Erland Af Refrigerating apparatus
US2287172A (en) * 1939-01-10 1942-06-23 Laurence S Harrison Method of and apparatus for refrigeration and air conditioning
US2293556A (en) * 1939-04-17 1942-08-18 Honeywell Regulator Co Adsorption refrigeration system
US2236575A (en) * 1939-09-12 1941-04-01 Servel Inc Refrigeration
US2340887A (en) * 1940-12-12 1944-02-08 Kleen Refrigerator Inc Control mechanism for absorption refrigerating apparatus
US2370643A (en) * 1942-05-11 1945-03-06 Kleen Refrigerator Inc Refrigeration apparatus of the intermittent absorption or adsorption type
US2587996A (en) * 1943-07-05 1952-03-04 Hoover Co Absorption refrigeration
US2452635A (en) * 1943-09-27 1948-11-02 Hoover Co Absorption refrigerating system
US2528004A (en) * 1944-12-26 1950-10-31 Kleen Refrigerator Inc Refrigeration
US2461262A (en) * 1945-06-02 1949-02-08 Kleen Refrigerator Inc Refrigeration
FR2539854A1 (fr) * 1983-04-22 1984-07-27 Cetiat Installation de refrigeration par adsorption sur un adsorbant solide et procede pour sa mise en oeuvre
EP0131270B1 (fr) * 1983-07-08 1988-10-26 Schiedel GmbH & Co. Absorbeur utilisant une matière solide pour un cycle d'absorption
US4694659A (en) * 1985-05-03 1987-09-22 Shelton Samuel V Dual bed heat pump
FR2615601B1 (fr) * 1987-05-22 1989-11-10 Faiveley Ets Dispositif et procede pour produire du froid et/ou de la chaleur par reaction solide-gaz

Also Published As

Publication number Publication date
WO1993003314A1 (fr) 1993-02-18
US5335519A (en) 1994-08-09
FR2679633A1 (fr) 1993-01-29
ES2094366T3 (es) 1997-01-16
DE69213699T2 (de) 1997-04-10
FR2679633B1 (fr) 1997-12-12
DE69213699D1 (de) 1996-10-17
ATE142770T1 (de) 1996-09-15
EP0550748A1 (fr) 1993-07-14
AU2444292A (en) 1993-03-02

Similar Documents

Publication Publication Date Title
EP0550748B1 (fr) Installation pour produire du froid par reaction solide/gaz, le reacteur comportant des moyens de refroidissement
EP0124455B1 (fr) Installation thermodynamique pour réfrigérer ou chauffer par adsorption sur un adsorbant solide et procédé pour la mise en oeuvre
JP2866203B2 (ja) 収着冷蔵ユニット
FR3020130A1 (fr) Circuit de fluide frigorigene
WO2003085345A1 (fr) Thermosiphon du type a boucle et refrigerateur a cycle de stirling
US5586441A (en) Heat pipe defrost of evaporator drain
US6260370B1 (en) Solar refrigeration and heating system usable with alternative heat sources
CA2028327C (fr) Dispositifs et procede pour produire du froid et/ou de la chaleur par reaction solide-gaz geres par caloducs gravitationnels
FR2694077A1 (fr) Dispositif de production de froid indirecte pour machine frigorifique.
EP0320379B1 (fr) Installation de climatisation par absorption
FR2679632A1 (fr) Installation pour produire du froid par reaction solide/gaz, le reacteur comportant des moyens de chauffage.
JP2751337B2 (ja) 内燃機関の冷却装置
JPH1163728A (ja) 冷却用ヒートポンプ構造
EP0110763A1 (fr) Perfectionnements à une installation de chauffage équipée d'une pompe à chaleur à absorption
FR2693542A1 (fr) Réacteur de machine frigorifique chimique ou à adsorption solide/gaz.
EP0767081B1 (fr) Dispositif de récupération de la chaleur des gaz d'échappement d'un véhicule
KR101540667B1 (ko) 냉온정수기
JP3279468B2 (ja) 吸収式冷凍装置
FR2558578A1 (fr) Evaporateur pour installation solaire de refrigeration et procede de refrigeration utilisant cet evaporateur
FR2481429A1 (fr) Installation de refrigeration instantanee d'un liquide
JP3492590B2 (ja) 吸収冷凍機・冷温水機
JPS645732Y2 (fr)
FR2683301A1 (fr) Dispositif de refrigeration mixte compression-absorption.
JP2994253B2 (ja) 吸収式空調装置
DK176347B1 (da) Varmeveksler med kuldeakkumuleringsdel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19930406

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SOCIETE NATIONALE ELF AQUITAINE

17Q First examination report despatched

Effective date: 19940209

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ELF AQUITAINE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960911

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960911

Ref country code: DK

Effective date: 19960911

Ref country code: AT

Effective date: 19960911

REF Corresponds to:

Ref document number: 142770

Country of ref document: AT

Date of ref document: 19960915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69213699

Country of ref document: DE

Date of ref document: 19961017

ITF It: translation for a ep patent filed

Owner name: ING. A. GIAMBROCONO & C. S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19961211

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961216

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2094366

Country of ref document: ES

Kind code of ref document: T3

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970625

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970702

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970718

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19970731

26N No opposition filed
BERE Be: lapsed

Owner name: ELF AQUITAINE

Effective date: 19970731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19980725

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050724