EP0489124B1 - Brennstoffeinspritzventil - Google Patents

Brennstoffeinspritzventil Download PDF

Info

Publication number
EP0489124B1
EP0489124B1 EP91909756A EP91909756A EP0489124B1 EP 0489124 B1 EP0489124 B1 EP 0489124B1 EP 91909756 A EP91909756 A EP 91909756A EP 91909756 A EP91909756 A EP 91909756A EP 0489124 B1 EP0489124 B1 EP 0489124B1
Authority
EP
European Patent Office
Prior art keywords
protective cap
injection valve
fuel injection
fuel
nozzle body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91909756A
Other languages
English (en)
French (fr)
Other versions
EP0489124A1 (de
Inventor
Waldemar Hans
Christian Preussner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0489124A1 publication Critical patent/EP0489124A1/de
Application granted granted Critical
Publication of EP0489124B1 publication Critical patent/EP0489124B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/168Assembling; Disassembling; Manufacturing; Adjusting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1853Orifice plates

Definitions

  • the invention relates to a fuel injector according to the preamble of the main claim.
  • a fuel injector has already been proposed in DE-A-39 27 390, in which a cup-shaped protective cap is provided which has a through opening downstream of the at least one injection opening in its base.
  • the protective cap is intended to prevent damage in the region of the at least one injection opening and to prevent particles from the surroundings of the fuel injection valve which projects into the intake manifold with its nozzle body from being deposited in the region of the at least one injection opening and to narrow the at least one injection opening, as a result of which the injected one Fuel quantity undesirably reduced.
  • the narrow gap formed between the bottom of the protective cap and an end face of the fuel injection valve by a contact section of the protective cap ensures that fuel deposits due to the successive operating and shutdown phases do not lead to an undesirable reduction in the amount of fuel metered by the fuel injection valve, even when the internal combustion engine is operating for a longer period becomes.
  • the fuel injection valve is closed and any fuel present in the gap and the passage opening is partially evaporated due to the increased heating of the internal combustion engine, whereby only the components of the fuel evaporating at lower temperatures evaporate, while those at Components which evaporate higher temperatures are not sufficiently heated, move radially outward in the gap due to the capillary action of the narrow gap and are deposited there, so that the at least one injection opening and the through opening remain free of deposits.
  • the contact section of the protective cap according to DE-A-39 27 390 does not always guarantee an exact axial adjustment of the narrow gap, as is required for the capillary action.
  • the production of the protective cap for series production is complex.
  • a fuel injector according to EP-A-0 357 498 is known in which a disc with elevations is arranged between the bottom of a protective cap and the end face of the fuel injector, the elevations abutting the end face and thus flow channels for the air with large axial cross sections form.
  • the fuel injector according to the invention with the characterizing features of claim 1 has the advantage of simple and inexpensive manufacture and the possibility of an exact axial adjustment of the narrow gap, which is achieved by the surveys in a simple manner.
  • the narrow gap formed between the bottom of the protective cap and the end face of the fuel injection valve exerts a capillary action on the fuel and reliably prevents fuel deposits from having the free flow cross section of the at least one injection opening and the passage opening and thus the amount of fuel metered by the fuel injection valve when the internal combustion engine is operating for a longer period of time undesirably reduce.
  • the protective cap has a radially outwardly projecting retaining collar at its end facing away from the base, in which at least two bulges are formed. These bulges serve to increase the strength of the retaining collar, which serves as a side surface for a sealing ring.
  • the protective cap is made of a metallic material.
  • the protective cap is formed by sheet metal forming.
  • FIG. 1 shows a first embodiment on the left of the longitudinal valve axis and a second exemplary embodiment of a fuel injector designed according to the invention on the right of the longitudinal valve axis
  • FIG. 2 shows a view of the protective cap according to the first exemplary embodiment in the direction of arrow X in FIG. 1.
  • the fuel injector shown in partial view in FIG. 1 essentially corresponds to a fuel injector described in DE-OS 37 10 467 for a fuel injection system of a mixture-compressing spark-ignition internal combustion engine and is used for fuel injection, for example, into the intake manifold of the internal combustion engine.
  • a nozzle body 1 is connected to a valve housing (not shown), in which a valve needle 3 is guided in a guide opening 2.
  • the guide opening 2 ends in the illustrated nozzle body 1 in a backstitch 5, which is followed by a conically tapering valve seat surface 8 in the flow direction of the fuel.
  • a cylindrical transition opening 11 runs between the valve seat surface 8 and a nozzle body end surface 9 of a nozzle body end 10 .
  • valve needle 3 In the closed state of the fuel injector, the valve needle 3 rests with the sealing seat 12 on the valve seat surface 8, while in the open state of the fuel injector Sealing seat 12 is lifted off the valve seat surface 8 and fuel can flow to the transition opening 11.
  • a thin perforated plate 15 is tightly attached to the nozzle body end face 9, for example by welding or soldering, and has at least one injection opening 16 serving for fuel metering in its area covered by the transition opening 11.
  • the two injection openings 16 shown for example penetrate the perforated plate 15 and in the exemplary embodiment shown are inclined with respect to a longitudinal valve axis 17.
  • the inclinations can run such that the fuel jets emerging from the individual injection openings 16 are directed either in the direction of the valve longitudinal axis 17 inwards or away from the valve longitudinal axis 17.
  • the cross section of the injection openings 16 measures the amount of fuel injected per unit of time when the fuel injector is open.
  • the fuel injector is opened electromagnetically in a manner not shown.
  • The, for example, two injection openings 16 are arranged in the perforated plate 15 in such a way that they start from the annular space formed between the pin 13 of the valve needle 3 and the wall of the transition opening 11, the cylindrical pin 13 projecting almost to the perforated plate 15 when the fuel injection valve is closed.
  • a cup-shaped protective cap 20 is pushed onto the nozzle body end 10 and partially surrounds the nozzle body 1 in the axial direction with a cylinder jacket 21.
  • FIG. 2 which shows a view of the protective cap 20 according to the first exemplary embodiment in the direction of the arrow X in FIG. 1, are shown on the cylinder jacket 21 the protective cap 20, for example Four inwardly directed latching shoulders 22 are formed, which engage in an annular groove 23, for example, of the nozzle body 1 and thus serve to fix the protective cap 20 on the nozzle body 1.
  • the protective cap 20 is connected to the nozzle body 1 by notching the material of the protective cap 20 in the region of the annular groove 23 of the nozzle body 1 such that, for example, a circumferential retaining collar of the protective cap 20 engages in the annular groove 23 of the nozzle body 1.
  • a second exemplary embodiment according to the invention which is shown on the right of the longitudinal valve axis 17 in FIG. 1 and differs from the first exemplary embodiment only in the type of connection of the protective cap 20 to the nozzle body 1, at least two are inward on the cylinder jacket 21 for this purpose projecting retaining tongues 25 are formed, which snap into the circumferential annular groove 23 of the nozzle body 1, for example.
  • a base 28 of the protective cap 20 has a through opening 29 concentric to the longitudinal axis 17 of the valve and extends in the radial direction over the perforated plate 15 to the cylinder jacket 21.
  • At least three elevations 30 are formed from the base 28, which have approximately the same distance from one another and protrude from the bottom 28 at a predetermined axial distance 31 in the direction of the nozzle body end 10 of the nozzle body 1. For example, four elevations 30 are shown in FIG.
  • the protective cap 20 lies with flat or sharp-edged contact surfaces 32 of the elevations 30 on the perforated plate 15 of the fuel injector.
  • an annular gap 36 is formed between the bottom 28 of the protective cap 20 and the end face 35 of the fuel injector formed by the perforated plate 15, which gap, due to the predetermined axial distance 31 with which the protrusions 30 protrude from the bottom 28, has an exactly definable extent in the direction the valve longitudinal axis 17.
  • the axial distance 31 and thus the axial extent of the gap 36 is small compared to the diameter of the through opening 29 of the protective cap 20.
  • the gaps 30 divide the gap 36 by sector.
  • the annular gap 36 exerts such a large capillary action on the fuel regardless of the open state of the fuel injector that the fuel present in the gap 36 does not flow out of the passage opening 29 due to its weight.
  • the narrow gap 36 can taper or widen starting from the through opening 29 with increasing radial extension in the axial direction.
  • the fuel injection valve is closed and any fuel present in the gap 36 and the passage opening 29 is partially evaporated due to the increased heating of the internal combustion engine, only the components of the fuel evaporating at lower temperatures evaporate, while the components evaporating at higher temperatures are not sufficiently heated and move radially outward through the capillary action in the annular gap 36, where they are deposited on the wall 38 of the cylinder jacket 21, so that the through opening 29 and the perforated plate 15 in The area of, for example, two injection openings 16 remain free of fuel deposits.
  • the protective cap 20 has at its end facing away from the bottom 28 a radially outwardly pointing retaining collar 40.
  • a radially outwardly pointing retaining collar 40 For example, four bulges 41 are formed in the retaining collar 40, which serve to increase the strength of the retaining collar 40 and protrude from the retaining collar 40 with an axial distance 42 in the direction of the bottom 28 of the protective cap 20.
  • Both the elevations 30 and the bulges 41 can, in addition to the circular shape shown in the two exemplary embodiments, be configured in any other way, for example oval, rectangular, notch-shaped or annular.
  • the retaining collar 40 with its end face 43 facing away from the bottom 28 and a retaining ring 45 which is arranged on the circumference of the nozzle body 1 facing away from the nozzle body end 10 form the side surfaces of an annular groove 46, the groove base 47 of which is formed by the circumference of the nozzle body 1.
  • a sealing ring 48 is arranged, which enables a reliable and secure seal between the nozzle body 1 of the fuel injector and a valve receptacle, not shown, surrounding the fuel injector.
  • the protective cap 20 is formed, for example, from a metallic material. Due to the generally higher thermal conductivity of metallic materials compared to plastics and the associated improved heat dissipation of a metallic protective cap 20, condensation effects acting on the fuel occur. After the internal combustion engine, and thus also the fuel injection system, has been switched off, the evaporation of the low-boiling components of the fuel and thus the deposits of the higher-boiling components in the annular gap 36 are substantially reduced. The risk of deposits in the region of, for example, two injection openings 16 and the through opening 29 of the protective cap 20 is further reduced.
  • a simple and inexpensive manufacture of a metal protective cap 20 according to the invention is made possible by forming the protective cap 20 together with the elevations 30, the holding collar 40 and the bulges 41 by sheet metal forming.
  • the sheet thickness of the to be formed Sheet is, for example, 0.5 mm. However, it is also possible to form the metal protective cap 20 by machining.
  • the protective cap 20 attached to the nozzle body 1 of the fuel injection valve not only serves to protect the at least one injection opening 16 from damage and the deposition of particles, but also to avoid deposits of higher-boiling components of the fuel in the region of the at least one injection opening 16 and the through opening 29, since the narrow annular gap 36 exerts a capillary action on the fuel and the higher-boiling components of the fuel are deposited therein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

Bei vorgeschlagenen Brennstoffeinspritzventilen weist eine topfförmige Schutzkappe (20) eine sich radial nach aussen erstreckende Ausnehmung auf, die zusammen mit dem Brennstoffeinspritzventil einen so schmalen Spalt (36) ausbildet, daß dieser eine Kapillarwirkung auf den Brennstoff ausübt, so daß bei einem Abstellen der Brennkraftmaschine die hochsiedenden Bestandteile des Brennstoffs sich infolge der Kapillarwirkung am radialen äusseren Rand (38) des Spaltes (36) ablagern und die Einspritzöffnungen (16) frei von Ablagerungen bleiben. Die Schutzkappe (20) der Erfindung weist wenigstens drei aus ihrem Boden (28) herausgeformte und mit einem vorbestimmten axialen Abstand (31) in Richtung zum Brennstoffeinspritzventil herausragende Erhebungen (30) auf, mit denen die Schutzkappe (20) an der Lochplatte (15) des Brennstoffeinspritzventils anliegt. So wird zwischen dem Boden (28) und der Lochplatte (15) ein definierter axialer Spalt (36) auf einfache Art und Weise ausgebildet. Die Schutzkappe kann bei Brennstoffeinspritzventilen verschiedener Art Verwendung finden.

Description

    Stand der Technik
  • Die Erfindung geht aus von einem Brennstoffeinspritzventil nach der Gattung des Hauptanspruchs. In der DE-A-39 27 390 ist schon ein Brennstoffeinspritzventil vorgeschlagen worden, bei dem eine topfförmige Schutzkappe vorgesehen ist, die stromabwärts der wenigstens einen Einspritzöffnung in ihrem Boden eine Durchgangsöffnung aufweist. Die Schutzkappe soll Beschädigungen im Bereich der wenigstens einen Einspritzöffnung verhindern und vermeiden, daß Partikel aus der Umgebung des mit seinem Düsenkörper in das Saugrohr ragenden Brennstoffeinspritzventils sich im Bereich der wenigstens einen Einspritzöffnung ablagern und zu einer Verengung der wenigstens einen Einspritzöffnung führen, wodurch sich die eingespritzte Brennstoffmenge in unerwünschter Weise verringert. Der zwischen dem Boden der Schutzkappe und einer Stirnseite des Brennstoffeinspritzventils durch einen Anlageabschnitt der Schutzkappe ausgebildete enge Spalt gewährleistet, daß auch bei längerer Betriebsdauer der Brennkraftmaschine Brennstoffablagerungen infolge der aufeinanderfolgenden Betriebs- und Abstellphasen nicht dazu führen, daß die vom Brennstoffeinspritzventil zugemessene Brennstoffmenge in unerwünschter Weise verringert wird.
  • Wird die Brennkraftmaschine und damit auch die Brennstoffeinspritzanlage abgestellt, so wird das Brennstoffeinspritzventil geschlossen und eventuell in dem Spalt und der Durchgangsöffnung vorhandener Brennstoff aufgrund der stärkeren Erwärmung der Brennkraftmaschine teilweise verdampft, wobei sich lediglich die bei niedrigeren Temperaturen verdampfenden Bestandteile des Brennstoffs verflüchtigen, während die bei höheren Temperaturen verdampfenden Bestandteile nicht ausreichend erwärmt werden, sich durch die Kapillarwirkung des engen Spaltes in radialer Richtung in dem Spalt nach außen bewegen und sich dort ablagern, so daß die wenigstens eine Einspritzöffnung und die Durchgangsöffnung frei von Ablagerungen bleiben.
  • Durch den Anlageabschnitt der Schutzkappe gemäß der DE-A- 39 27 390 ist jedoch nicht immer eine exakte axiale Einstellung des engen Spaltes gewährleistet, wie sie für die Kapillarwirkung erforderlich ist. Außerdem ist die Herstellung der Schutzkappe für eine Serienfertigung aufwendig.
  • Bekannt ist ein Brennstoffeinspritzventil gemäß der EP-A-0 357 498, bei dem zwischen dem Boden einer Schutzkappe und der Stirnseite des Brennstoffeinspritzventiles eine Scheibe mit Erhebungen angeordnet ist, wobei die Erhebungen an der Stirnseite anliegen und so Strömungskanäle für die Luft mit großen axialen Querschnitten bilden.
  • Vorteile der Erfindung
  • Das erfindungsgemäße Brennstoffeinspritzventil mit den kennzeichnenden Merkmalen des Patentanspruchs 1 hat demgegenüber den Vorteil einer einfachen und kostengünstigen Herstellung und der Möglichkeit einer exakten axialen Einstellung des engen Spaltes, die durch die Erhebungen auf einfache Art und Weise erzielt wird. Der zwischen dem Boden der Schutzkappe und der Stirnseite des Brennstoffeinspritzventils ausgebildete enge Spalt übt eine Kapillarwirkung auf den Brennstoff aus und verhindert zuverlässig, daß bei längerer Betriebsdauer der Brennkraftmaschine Brennstoffablagerungen den freien Durchflußquerschnitt der wenigstens einen Einspritzöffnung und der Durchgangsöffnung und damit die vom Brennstoffeinspritzventil zugemessene Brennstoffmenge in unerwünschter Weise verringern.
  • Durch die in den abhängigen Ansprüchen aufgeführten Maßnahmen sind vorteilhafte Weiterbildungen und Verbesserungen des im Patentanspruch 1 angegebenen Brennstoffeinspritzventils möglich.
  • Es ist von Vorteil, wenn die Schutzkappe an ihrem dem Boden abgewandten Ende einen radial nach außen ragenden Haltebund aufweist, in dem wenigstens zwei Auswölbungen ausgebildet sind. Diese Auswölbungen dienen zur Erhöhung der Festigkeit des Haltebundes, der als Seitenfläche für einen Dichtring dient.
  • Besonders vorteilhaft ist es, wenn die Schutzkappe aus einem metallischen Werkstoff ausgebildet ist. Die nach dem Abstellen der Brennkraftmaschine auftretende Verdampfung der niedrig siedenden Bestandteile des Brennstoffs und damit die Ablagerung der höher siedenden Bestandteile wird durch die Ausnutzung von Kondensationseffekten des Brennstoffs an der metallenen Schutzkappe wesentlich reduziert.
  • Für eine besonders einfache und kostengünstige Herstellung des erfindungsgemäßen Brennstoffeinspritzventils ist es vorteilhaft, wenn die Schutzkappe durch Blechumformung ausgebildet ist.
  • Vorteilhaft für eine auf einfache Art und Weise herstellbare und sichere Verbindung von Schutzkappe und Düsenkörper ist es, wenn die Schutzkappe durch Verkerben mit dem Düsenkörper verbunden ist.
  • Aus dem gleichen Grund ist es auch vorteilhaft, wenn an dem Umfang der Schutzkappe wenigstens zwei nach innen ragende Rastabsätze oder wenigstens zwei nach innen ragende Haltezungen ausgebildet sind, die in eine Ringnut des Düsenkörpers einrasten.
  • Zeichnung
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen Figur 1 links der Ventillängsachse ein erstes und rechts der Ventillängsachse ein zweites Ausführungsbeispiel eines erfindungsgemäß ausgestalteten Brennstoffeinspritzventils in Teilansicht und Figur 2 eine Ansicht der Schutzkappe gemäß des ersten Ausführungsbeispiels in Richtung des Pfeiles X in Figur 1.
  • Beschreibung der Ausführungsbeispiele
  • Das in der Figur 1 in Teilansicht dargestellte Brennstoffeinspritzventil stimmt im wesentlichen mit einem in der DE-OS 37 10 467 beschriebenen Brennstoffeinspritzventil für eine Brennstoffeinspritzanlage einer gemischverdichtenden fremdgezündeten Brennkraftmaschine überein und dient zur Brennstoffeinspritzung beispielsweise in das Saugrohr der Brennkraftmaschine. Mit einem nicht dargestellten Ventilgehäuse ist ein Düsenkörper 1 verbunden, in dem in einer Führungsöffnung 2 eine Ventilnadel 3 geführt ist. Die Führungsöffnung 2 endet bei dem dargestellen Düsenkörper 1 in einem Hinterstich 5, an den sich in Strömungsrichtung des Brennstoffes eine konisch sich verjüngende Ventilsitzfläche 8 anschließt. Zwischen der Ventilsitzfläche 8 und einer Düsenkörperstirnfläche 9 eines Düsenkörperendes 10 verläuft eine zylindrische Übergangsöffnung 11. Die Ventilnadel 3 geht im Bereich der Ventilsitzfläche 8 des Düsenkörpers 1 in einen sich in Richtung der Düsenkörperstirnfläche 9 konisch verjüngenden Dichtsitz 12 über, der in einem zylindrischen Zapfen 13 ausläuft.
  • Im geschlossenen Zustand des Brennstoffeinspritzventils liegt die Ventilnadel 3 mit dem Dichtsitz 12 an der Ventilsitzfläche 8 an, während im geöffneten Zustand des Brennstoffeinspritzventils der Dichtsitz 12 von der Ventilsitzfläche 8 abgehoben ist und Brennstoff zur Übergangsöffnung 11 strömen kann. An der Düsenkörperstirnfläche 9 ist eine dünne Lochplatte 15 beispielsweise durch Schweißen oder Löten dicht befestigt, die in ihrem durch die Übergangsöffnung 11 überdeckten Bereich wenigstens eine der Brennstoffzumessung dienende Einspritzöffnung 16 hat. Die beispielsweise dargestellten zwei Einspritzöffnungen 16 durchdringen die Lochplatte 15 und verlaufen im dargestellten Ausführungsbeispiel gegenüber einer Ventillängsachse 17 geneigt. Je nach Verwendungsart können die Neigungen so verlaufen, daß die aus den einzelnen Einspritzöffnungen 16 austretenden Brennstoffstrahlen entweder in Richtung der Ventillängsachse 17 nach innen oder von der Ventillängsachse 17 weg nach außen gerichtet sind. Durch den Querschnitt der Einspritzöffnungen 16 wird die bei geöffnetem Brennstoffeinspritzventil pro Zeiteinheit eingespritzte Brennstoffmenge zugemessen. Die Öffnung des Brennstoffeinspritzventils erfolgt in nicht dargestellter Weise elektromagnetisch.
  • Die beispielsweise zwei Einspritzöffnungen 16 sind so in der Lochplatte 15 angeordnet, daß sie von dem zwischen dem Zapfen 13 der Ventilnadel 3 und der Wandung der Übergangsöffnung 11 gebildeten Ringraum ausgehen, wobei bei geschlossenem Brennstoffeinspritzventil der zylindrische Zapfen 13 bis nahezu an die Lochplatte 15 ragt.
  • Auf das Düsenkörperende 10 ist eine topfförmig ausgebildete Schutzkappe 20 aufgeschoben, die mit einem Zylindermantel 21 den Düsenkörper 1 in axialer Richtung teilweise umgreift.
  • Wie in dem links der Ventillängsachse 17 in der Figur 1 dargestellten ersten erfindungsgemäßen Ausführungsbeispiel, aber auch in der Figur 2, die eine Ansicht der Schutzkappe 20 gemäß des ersten Ausführungsbeispiels in Richtung des Pfeiles X in Figur 1 darstellt, gezeigt, sind an dem Zylindermantel 21 der Schutzkappe 20 beispielsweise vier nach innen gerichtete Rastabsätze 22 ausgebildet, die in eine beispielsweise umlaufende Ringnut 23 des Düsenkörpers 1 eingreifen und so der Lagefixierung der Schutzkappe 20 an dem Düsenkörper 1 dienen. Es ist aber auch möglich, daß die Schutzkappe 20 mit dem Düsenkörper 1 durch Verkerben des Materials der Schutzkappe 20 im Bereich der Ringnut 23 des Düsenkörpers 1 derart verbunden ist, daß ein beispielsweise umlaufender Haltebund der Schutzkappe 20 in die Ringnut 23 des Düsenkörpers 1 greift.
  • Bei einem zweiten erfindungsgemäßen Ausführungsbeispiel, das rechts der Ventillängsachse 17 in der Figur 1 dargestellt ist und sich nur durch die Art der Verbindung der Schutzkappe 20 mit dem Düsenkörper 1 von dem ersten Ausführungsbeispiel unterscheidet, sind zu diesem Zweck an dem Zylindermantel 21 wenigstens zwei nach innen ragende Haltezungen 25 ausgebildet, die in die beispielsweise umlaufende Ringnut 23 des Düsenkörpers 1 einrasten.
  • Ein Boden 28 der Schutzkappe 20 weist konzentrisch zu der Ventillängsachse 17 eine Durchgangsöffnung 29 auf und erstreckt sich in radialer Richtung über die Lochplatte 15 hin zu dem Zylindermantel 21. Aus dem Boden 28 sind wenigstens drei Erhebungen 30 herausgeformt, die zueinander etwa gleichen Abstand haben und mit einer vorbestimmten axialen Abstand 31 in Richtung zum Düsenkörperende 10 des Düsenkörpers 1 aus dem Boden 28 herausragen. In der Figur 2 sind beispielsweise vier Erhebungen 30 dargestellt. Die Schutzkappe 20 liegt mit ebenen oder scharfkantigen Anlageflächen 32 der Erhebungen 30 an der Lochplatte 15 des Brennstoffeinspritzventils an. Auf diese Weise wird zwischen dem Boden 28 der Schutzkappe 20 und der durch die Lochplatte 15 gebildeten Stirnseite 35 des Brennstoffeinspritzventils ein ringförmiger Spalt 36 gebildet der aufgrund des vorbestimmten axialen Abstandes 31, mit dem die Erhebungen 30 aus dem Boden 28 herausragen, eine exakt definierbare Erstreckung in Richtung der Ventillängsachse 17 hat. Der axiale Abstand 31 und damit die axiale Erstreckung des Spaltes 36 ist klein gegenüber dem Durchmesser der Durchgangsöffnung 29 der Schutzkappe 20. Durch die Erhebungen 30 wird der Spalt 36 sektoriell unterteilt.
  • Aufgrund des kleinen axialen Abstandes 31 übt der ringförmige Spalt 36 unabhängig von dem Öffnungszustand des Brennstoffeinspritzventils eine so große Kapillarwirkung auf den Brennstoff aus, daß der in der Spalt 36 vorhandene Brennstoff nicht aufgrund seines Gewichtes aus der Durchgangsöffnung 29 abströmt. Dabei kann sich der enge Spalt 36 ausgehend von der Durchgangsöffnung 29 mit zunehmender radialer Erstreckung in axialer Richtung verjüngen oder verbreitern. Wird nun die Brennkraftmaschine und damit auch die Brennstoffeinspritzanlage abgestellt, so wird das Brennstoffeinspritzventil geschlossen und eventuell in dem Spalt 36 und der Durchgangsöffnung 29 vorhandener Brennstoff aufgrund der stärkeren Erwärmung der Brennkraftmaschine teilweise verdampft, wobei lediglich die bei niedrigeren Temperaturen verdampfenden Bestandteile des Brennstoffs sich verflüchtigen, während die bei höheren Temperaturen verdampfenden Bestandteile nicht ausreichend erwärmt werden und sich durch die Kapillarwirkung in radialer Richtung in dem ringförmigen Spalt 36 nach außen bewegen, wo sie sich an der Wandung 38 des Zylindermantels 21 ablagern, so daß die Durchgangsöffnung 29 und die Lochplatte 15 im Bereich der beispielsweise zwei Einspritzöffnungen 16 frei von Brennstoffablagerungen bleiben.
  • Die Schutzkappe 20 weist an ihrem dem Boden 28 abgewandten Ende einen radial nach außen weisenden Haltebund 40 auf. In dem Haltebund 40 sind beispielsweise vier Auswölbungen 41 ausgebildet, die zur Erhöhung der Festigkeit des Haltebundes 40 dienen und in Richtung zum Boden 28 der Schutzkappe 20 mit einem axialen Abstand 42 aus dem Haltebund 40 herausragen.
  • Sowohl die Erhebungen 30 als auch die Auswölbungen 41 können neben der in den beiden Ausführungsbeispielen gezeigten kreisrunden Form beliebig anders, beispielsweise oval, rechteckförmig, kerbenförmig oder kreisringförmig ausgebildet sein.
  • Der Haltebund 40 mit seiner dem Boden 28 abgewandten Stirnseite 43 sowie ein Haltering 45, der am Umfang des Düsenkörpers 1 dem Düsenkörperende 10 abgewandt angeordnet ist, bilden die Seitenflächen einer Ringnut 46, deren Nutgrund 47 durch den Umfang des Düsenkörpers 1 gebildet ist. In der Ringnut 46 ist ein Dichtring 48 angeordnet, der eine zuverlässige und sichere Abdichtung zwischen dem Düsenkörper 1 des Brennstoffeinspritzventils und einer nicht dargestellten, das Brennstoffeinspritzventil umgebenden Ventilaufnahme ermöglicht.
  • Die Schutzkappe 20 ist beispielsweise aus einem metallischen Werkstoff ausgebildet. Durch die im Vergleich zu Kunststoffen im allgemeinen höhere Wärmeleitzahl metallischer Werkstoffe und die damit verbundene verbesserte Wärmeabfuhr einer metallischen Schutzkappe 20 treten auf den Brennstoff wirkende Kondensationseffekte auf. So werden nach dem Abstellen der Brennkraftmaschine und damit auch der Brennstoffeinspritzanlage die Verdampfung der niedrig siedenden Bestandteile des Brennstoffs und damit die Ablagerungen der höher siedenden Bestandteile in dem ringförmigen Spalt 36 wesentlich reduziert. Die Gefahr von Ablagerungen im Bereich der beispielsweise zwei Einspritzöffnungen 16 und der Durchgangsöffnung 29 der Schutzkappe 20 wird zusätzlich weiter verringert.
  • Eine einfache und kostengünstige Herstellung einer erfindungsgemäßen metallenen Schutzkappe 20 wird ermöglicht, indem die Schutzkappe 20 samt den Erhebungen 30, dem Haltebund 40 und den Auswölbungen 41 durch Blechumformung ausgebildet wird. Die Blechstärke des umzuformenden Bleches beträgt beispielsweise 0,5 mm. Es ist aber auch möglich, die metallene Schutzkappe 20 durch spanende Bearbeitung auszubilden.
  • Die an dem Düsenkörper 1 des Brennstoffeinspritzventils befestigte Schutzkappe 20 dient nicht nur dem Schutz der wenigstens einen Einspritzöffnung 16 vor Beschädigungen und der Ablagerung von Partikeln, sondern auch zur Vermeidung von Ablagerungen von höher siedenden Bestandteilen des Brennstoffs im Bereich der wenigstens einen Einspritzöffnung 16 und der Durchgangsöffnung 29, da der enge ringförmige Spalt 36 eine Kapillarwirkung auf den Brennstoff ausübt und sich darin die höher siedenden Bestandteile des Brennstoffs ablagern.

Claims (9)

  1. Brennstoffeinspritzventil mit einem Düsenkörper (1), an dem eine topfförmige Schutzkappe (20) mit einem Boden (28) befestigt ist, der eine zu wenigstens einer Einspritzöffnung (16) hin offene, etwa konzentrisch zu einer Ventillängsachse (17) verlaufende Durchgangsöffnung (29) hat, sowie mit wenigstens einem stromaufwärts des Bodens (28) der Schutzkappe (20) ausgebildeten und zu der Durchgangsöffnung (29) hin offenen Raum, dadurch gekennzeichnet, daß die Schutzkappe (20) mit wenigstens drei, aus dem Boden (28) herausgeformten und mit einem vorbestimmten kleinen axialen Abstand (31) in Richtung zum Brennstoffeinspritzventil herausragenden Erhebungen (30) an einer Stirnseite (35) des Brennstoffeinspritzventils anliegt, so daß der zwischen der Stirnseite (35) des Brennstoffeinspritzventiles und dem Boden (28) liegende Raum als Spalt (36) mit Kapillarwirkung ausgebildet ist.
  2. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß der Spalt (36) durch die Erhebungen (30) sektoriell unterteilt ist.
  3. Brennstoffeinspritzventil nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Schutzkappe (20) an ihrem dem Boden (28) abgewandten Ende einen radial nach außen ragenden Haltebund (40) aufweist, in dem wenigstens zwei Auswölbungen (41) ausgebildet sind.
  4. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Schutzkappe (20) aus einem metallischen Werkstoff ausgebildet ist.
  5. Brennstoffeinspritzventil nach Anspruch 4, dadurch gekennzeichnet, daß die Schutzkappe (20) durch Blechumformung gebildet ist.
  6. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Schutzkappe (20) durch Verkerben mit dem Düsenkörper (1) verbunden ist.
  7. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß an dem Umfang der Schutzkappe (20) wenigstens zwei nach innen ragende Haltezungen (25) ausgebildet sind, die in einer Ringnut (23) des Düsenkörpers (1) einrasten.
  8. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß an dem Umfang der Schutzkappe (20) wenigstens zwei nach innen ragende Rastabsätze (22) ausgebildet sind, die in einer Ringnut (23) des Düsenkörpers (1) einrasten.
  9. Brennstoffeinspritzventil nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß der axiale Abstand (31) klein gegenüber dem Durchmesser der Durchgangsöffnung (29) der Schutzkappe (20) ist.
EP91909756A 1990-06-21 1991-06-04 Brennstoffeinspritzventil Expired - Lifetime EP0489124B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4019752 1990-06-21
DE4019752A DE4019752A1 (de) 1990-06-21 1990-06-21 Brennstoffeinspritzventil
PCT/DE1991/000469 WO1991019900A1 (de) 1990-06-21 1991-06-04 Brennstoffeinspritzventil

Publications (2)

Publication Number Publication Date
EP0489124A1 EP0489124A1 (de) 1992-06-10
EP0489124B1 true EP0489124B1 (de) 1995-01-11

Family

ID=6408780

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91909756A Expired - Lifetime EP0489124B1 (de) 1990-06-21 1991-06-04 Brennstoffeinspritzventil

Country Status (7)

Country Link
US (1) US5273215A (de)
EP (1) EP0489124B1 (de)
JP (1) JP3193042B2 (de)
AU (1) AU627979B2 (de)
DE (2) DE4019752A1 (de)
ES (1) ES2067232T3 (de)
WO (1) WO1991019900A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3440534B2 (ja) * 1994-03-03 2003-08-25 株式会社デンソー 流体噴射ノズル
DE4446241A1 (de) * 1994-12-23 1996-06-27 Bosch Gmbh Robert Brennstoffeinspritzventil
JP3183156B2 (ja) * 1995-04-27 2001-07-03 株式会社デンソー 流体噴射ノズル
US5625946A (en) * 1995-05-19 1997-05-06 Siemens Automotive Corporation Armature guide for an electromechanical fuel injector and method of assembly
DE19522284B4 (de) * 1995-06-20 2007-05-10 Robert Bosch Gmbh Brennstoffeinspritzventil
JP3750126B2 (ja) * 1996-03-26 2006-03-01 株式会社デンソー 燃料噴射弁
DE19736548A1 (de) * 1997-08-22 1999-02-25 Bosch Gmbh Robert Brennstoffeinspritzventil
US6161649A (en) * 1998-09-18 2000-12-19 Uniwave, Inc. Oil lubricator apparatus with improved low flow rate characteristics
US6360960B1 (en) * 2000-05-17 2002-03-26 Siemens Automotive Corporation Fuel injector sac volume reducer
US6334576B1 (en) 2000-06-30 2002-01-01 Siemens Automotive Corporation Fuel injector having a ball seat with multiple tip geometry
DE10059420A1 (de) * 2000-11-30 2002-06-06 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10130685A1 (de) 2001-06-26 2003-01-02 Bosch Gmbh Robert Brennstoffeinspritzventil
DE10130684A1 (de) * 2001-06-26 2003-02-06 Bosch Gmbh Robert Brennstoffeinspritzventil
JP3969247B2 (ja) * 2001-11-06 2007-09-05 株式会社デンソー 燃料噴射弁
US6820598B2 (en) * 2002-03-22 2004-11-23 Chrysalis Technologies Incorporated Capillary fuel injector with metering valve for an internal combustion engine
US7357124B2 (en) * 2002-05-10 2008-04-15 Philip Morris Usa Inc. Multiple capillary fuel injector for an internal combustion engine
US7021570B2 (en) * 2002-07-29 2006-04-04 Denso Corporation Fuel injection device having injection hole plate
US7337768B2 (en) * 2004-05-07 2008-03-04 Philip Morris Usa Inc. Multiple capillary fuel injector for an internal combustion engine
US20060010886A1 (en) * 2004-07-14 2006-01-19 Clamage Eric D Liquid cryogen dosing system with nozzle for pressurizing and inerting containers
DE102005019837A1 (de) * 2005-04-28 2006-11-02 Robert Bosch Gmbh Brennstoffeinspritzventil und Verfahren zu dessen Montage
JP4669852B2 (ja) * 2007-03-09 2011-04-13 株式会社ケーヒン 電磁式燃料噴射弁
CN105593512B (zh) * 2013-10-01 2018-12-04 恩普乐斯股份有限公司 燃料喷射装置用喷嘴板的安装构造
CN107842453B (zh) * 2016-09-20 2022-04-12 罗伯特·博世有限公司 用于进气口燃料喷射器的燃料喷射模块
US11959446B2 (en) 2021-08-20 2024-04-16 Delphi Technologies Ip Limited Fluid injector having a director plate and a director plate retainer

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057190A (en) * 1976-06-17 1977-11-08 Bendix Corporation Fuel break-up disc for injection valve
DE3113466A1 (de) * 1981-04-03 1982-10-14 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren zum befestigen einer kappe an einem duesenkoerper
DE8802464U1 (de) * 1988-02-25 1989-06-22 Robert Bosch Gmbh, 7000 Stuttgart Kraftstoffeinspritzventil
FR2635827B1 (fr) * 1988-08-30 1993-11-26 Solex Dispositif d'injection de combustible a chambre d'aeration
DE3836413A1 (de) * 1988-10-26 1990-05-03 Bosch Gmbh Robert Kraftstoff-einspritzduese fuer brennkraftmaschinen

Also Published As

Publication number Publication date
AU627979B2 (en) 1992-09-03
JP3193042B2 (ja) 2001-07-30
AU7890691A (en) 1992-01-07
WO1991019900A1 (de) 1991-12-26
DE59104245D1 (de) 1995-02-23
ES2067232T3 (es) 1995-03-16
EP0489124A1 (de) 1992-06-10
JPH05500407A (ja) 1993-01-28
US5273215A (en) 1993-12-28
DE4019752A1 (de) 1992-01-02

Similar Documents

Publication Publication Date Title
EP0489124B1 (de) Brennstoffeinspritzventil
EP0538247B1 (de) Kraftstoffeinspritzventil
DE4111988C2 (de) Brennstoffverteiler
EP1379773B1 (de) Brennstoffeinspritzventil
EP0485545B1 (de) Brennstoffeinspritzeinrichtung für brennkraftmaschinen
EP0774069A1 (de) Brennstoffeinspritzventil für brennkraftmaschinen
EP0515810B1 (de) Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches
DE19527049A1 (de) Brennstoffeinspritzventil
EP0484681B1 (de) Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches
DE4413914A1 (de) Brennstoffeinspritzeinrichtung
DE4325842A1 (de) Brennstoffeinspritzventil
DE3638692A1 (de) Einspritzventil fuer die kraftstoffeinspritzung direkt in den zylinder eines verbrennungsmotors
EP2521853B1 (de) Brennstoffeinspritzventil
DE4421881A1 (de) Ventilnadel
EP0525377B1 (de) Ventil
DE4304804A1 (de) Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches
EP1474604B1 (de) Brennstoffeinspritzventil
DE10049033A1 (de) Brennstoffeinspritzventil
WO1999066195A1 (de) Brennstoffeinspritzventil
EP1312796B1 (de) Brennstoffeinspritzventil
DE4229730A1 (de) Elektromagnetisch betätigbares Brennstoffeinspritzventil
DE19505886A1 (de) Vorrichtung zur Einspritzung eines Brennstoff-Gas-Gemisches
DE102017218224A1 (de) Ventil zum Zumessen eines Fluids, insbesondere Brennstoffeinspritzventil
DE10050751A1 (de) Brennstoffeinspritzventil
EP0934461B1 (de) Brennstoffeinspritzventil

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920114

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19931018

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59104245

Country of ref document: DE

Date of ref document: 19950223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2067232

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950317

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050525

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20060621

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20060628

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060604

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20080229

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20070605

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070605

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20090825

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110101