EP0481844B1 - Acier à soudabilité améliorée - Google Patents

Acier à soudabilité améliorée Download PDF

Info

Publication number
EP0481844B1
EP0481844B1 EP91402670A EP91402670A EP0481844B1 EP 0481844 B1 EP0481844 B1 EP 0481844B1 EP 91402670 A EP91402670 A EP 91402670A EP 91402670 A EP91402670 A EP 91402670A EP 0481844 B1 EP0481844 B1 EP 0481844B1
Authority
EP
European Patent Office
Prior art keywords
steel
nickel
improved weldability
silicon
manganese
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP91402670A
Other languages
German (de)
English (en)
Other versions
EP0481844A1 (fr
Inventor
Thierry Maurickx
Pascal Verrier
Roland Taillard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sollac SA
Original Assignee
Sollac SA
Lorraine de Laminage Continu SA SOLLAC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=9401369&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0481844(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Sollac SA, Lorraine de Laminage Continu SA SOLLAC filed Critical Sollac SA
Publication of EP0481844A1 publication Critical patent/EP0481844A1/fr
Application granted granted Critical
Publication of EP0481844B1 publication Critical patent/EP0481844B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel

Definitions

  • the present invention relates to a structural steel with improved weldability.
  • the grades of steel for welded constructions must satisfy a high level of brittle tensile strength at low temperature, this temperature being a function of the stress conditions and the service temperature of the structure.
  • CTOD Chip Tip Opening Displacement
  • Fig. 1 represents the transition temperature for a resilience energy of 28 joules as a function of the cooling time from 700 ° to 300 ° C, for a steel of type 355 EMZ.
  • the resistance to cold cracking of such steel can be assessed from the hardness-cooling criterion shown in FIG. 2.
  • the Vickers hardness is greater than 350Hv5. This is explained by the fact that the structure has 80 to 100% martensite.
  • EP-A-168.038 discloses steel plates with high tensile strength and usable in welded constructions.
  • the weight composition areas of steel are: from 0.03 to 0.20% carbon, from 0.01 to 0.70% of silicon, from 0.50 to 1.80% manganese, from 0.005 to 0.05% of titanium or zirconium, from 0.005 to 0.10% niobium, with, among the optional elements, not more than 0.0030% nitrogen, not more than 4.00% of Nickel, not more than 1.00% copper, the rest being iron.
  • FR-A-2,500,482 is a steel for welding whose weight composition is as follows: from 0.03 to 0.16% carbon, from 0.01 to 0.7% of silicon, from 0.7 to 1.7% of manganese, from 0.04 to 0.10% aluminum, not more than 0.004% nitrogen, not more than 0.50% copper, not more than 1.5% nickel, the rest being iron.
  • the subject of the present invention is a steel with improved weldability having good resilience for high welding energies and not requiring preheating before welding.
  • Such a steel therefore has good resilience even at high welding energy.
  • the hardness-cooling criteria curve shown in Fig. 2 shows that the steel with improved weldability has a lower hardness than that of conventional steel 355 EMZ.
  • the Vickers hardness for cooling the area affected by heat from 700 ° to 300 ° C in 10s is only 280 HV5, against at least 350 HV5 for common steel.
  • the improved weldability steel according to the invention now has very little martensite, less than 20%.
  • Such a steel therefore makes it possible either to guarantee the same characteristics as the usual 355 EMZ steel but to weld with higher welding energies, or by retaining the same welding energy, to guarantee the mechanical characteristics of toughness at a service temperature. weaker allowing then to consider applications in a harsher environment.
  • the transition temperature at 28 Joules is of the order of -70 ° C.
  • this temperature below which an energy necessary for rupture at least equal to 28 Joules is guaranteed is no more than -50 ° C.
  • the improvement in the toughness of the welded joint involves the reduction of the volume fraction of austenite retained which is ensured by the reduction of the silicon content of the steel.
  • Steel with improved weldability can be obtained for example by ladle casting, continuous casting, production in an oven, production in an oxygen steelworks or aluminum quenching.
  • the description below relates to an example of a method for obtaining sheets 50mm thick with steel according to the present invention.
  • the steel with improved weldability according to the invention is obtained by continuous casting of a known type, taking the necessary precautions to combat segregation.
  • the steel undergoes heating at low temperature between the ferrite-austenite transformation temperature AC3 and 1100 ° C., followed by rolling.
  • the temperature at the end of rolling is between 850 ° and 720 ° C.
  • the steel then undergoes accelerated cooling from the end of rolling temperature to 450 ° C at a speed of 3 to 10 ° C per second.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Laminated Bodies (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Arc Welding In General (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

  • La présente invention concerne un acier de construction à soudabilité améliorée.
  • L'utilisation d'acier dans des environnements sévères tels que les aciers pour application navale utilisés sur des navires, des méthaniers ou des brise-glaces par exemple, circulant en mer du nord ou dans l'océan arctique, des plates-formes de forage pétrolifère ou les aciers utilisés pour des réservoirs de stockage de gaz liquéfiés, impose le respect de cahiers des charges très restrictifs.
  • Outre leurs caractéristiques de traction, les nuances d'aciers pour constructions soudées doivent satisfaire un niveau élevé de résistance à la rupture fragile à basse température, cette température étant fonction des conditions de sollicitation et de la température de service de la structure.
  • Il est connu d'utiliser un acier référencé 355 EMZ dans la classification européenne et dont la composition pondérale est la suivante :
    • 0,11 % de carbone,
    • 1,45 % de manganèse,
    • 0,45 % de nickel,
    • 0,40 % de silicium,
    • 0,03 % de niobium,
    • 0,05 % d'azote, le reste étant du fer.
  • Les caractéristiques mécaniques garanties par un tel acier sur une tôle de 50mm d'épaisseur sont les suivantes :
    limite d'élasticité Re mini = 340 MPa
    charge à la rupture Rm mini = 460 MPa
    allongement (5,65 √S) A = 20%
    résilience à -40°C Kv = 50J (valeur minimale)
    CTOD à - 10°C = 0,25 mm
  • Le CTOD (Crack Tip Opening Displacement) correspond à un essai normalisé de rupture (Norme BS 5762).
  • La Fig. 1 représente la température de transition pour une énergie de résilience de 28 joules en fonction du temps de refroidissement de 700° à 300°C, pour un acier du type 355 EMZ.
  • On constate que pour avoir une énergie de rupture supérieure à 28 J à - 40°C, il est nécessaire de souder avec une vitesse de refroidissement de 700° à 300°C inférieur à 50s. Il faut donc souder lentement ce qui signifie qu'il est nécessaire de faire plusieurs passes avec une faible énergie de soudage.
  • La résistance à la fissuration à froid d'un tel acier peut être appréciée à partir de la courbe dureté-critère de refroidissement représentée à la Fig. 2.
  • On constate que dans le cas d'un soudage manuel par électrode, correspondant à un temps de refroidissement entre 700° et 300°C d'environ 10s, la dureté Vickers est supérieure à 350Hv5. Ceci s'explique par le fait que la structure présente de 80 à 100% de martensite.
  • Or, la martensite étant sensible à l'hydrogène, une telle soudure présente une faible résistance à la fissuration à froid.
  • Par conséquent, un tel acier connu, du type 355 EMZ présente une mauvaise résilience pour de fortes énergies de soudage, et nécessite un préchauffage avant soudage pour éviter la fissuration à froid.
  • On connait dans le EP-A-168.038 des plaques d'acier à haute résistance à la traction et utilisables dans les constructions soudées. Les domaines de composition pondérale de l'acier sont :
       de 0,03 à 0,20% de carbone,
       de 0,01 à 0,70% de silicium,
       de 0,50 à 1,80% de manganèse,
       de 0,005 à 0,05% de titane ou de zirconium,
       de 0,005 à 0,10% de niobium,
    avec, parmi les éléments optionnels,
       au plus 0,0030% d'azote,
       au plus 4,00% de Nickel,
       au plus 1,00% de cuivre,
    le reste étant du fer.
  • On connait également dans le FR-A-2.500.482 un acier pour soudage dont la composition pondérale est la suivante :
       de 0,03 à 0,16% de carbone,
       de 0,01 à 0,7 % de silicium,
       de 0,7 à 1,7 % de manganèse,
       de 0,04 à 0,10% d'aluminium,
       pas plus de 0,004% d'azote,
       pas plus de 0,50% de cuivre,
       pas plus de 1,5% de nickel,
    le reste étant du fer.
  • La présente invention a pour objet un acier à soudabilité améliorée présentant une bonne résilience pour les fortes énergies de soudage et ne nécessitant pas de préchauffage avant soudage.
  • La présente invention a donc pour objet un acier à soudabilité améliorée, ayant la composition pondérale suivante :
    • de 0,07 à 0,11% de carbone,
    • de 1,40 à 1,70% de manganèse,
    • de 0,20 à 0,55% de nickel,
    • de 0 à 0,30% de cuivre,
    • de 0 à 0,02% de niobium,
    • de 0,005 à 0,020% de titane,
    • de 0,002 à 0,006% d'azote,
    • de 0 à 0,15% de silicium,
       le reste étant du fer.
  • De préférence, la composition pondérale de l'acier à soudabilité améliorée selon l'invention est la suivante :
    • 0,08% de carbone,
    • 1,50% de manganèse,
    • 0,45% de nickel,
    • 0,20% de cuivre,
    • 0,01% de titane,
    • 0,004% d'azote,
    • 0,09% de silicium,
       le reste étant du fer.
  • Un tel acier peut être obtenu par exemple par :
    • un réchauffage à basse température entre la température de transformation ferrite-austénite AC3 et 1100°C,
    • un laminage entre 850° et 720°C,
    • un refroidissement accéléré de 750° à 450°C entre 3 et 10° par seconde.
  • D'autres caractéristiques et avantages apparaîtront au cours de la description qui va suivre, donnée uniquement à titre d'exemple, faite en référence aux dessins annexés, dans lesquels :
    • la Fig. 1 représente l'évolution de la température de transition pour une énergie de rupture de 28 joules (TK 28J) en fonction de la vitesse de refroidissement de la soudure pour un acier usuel 355 EMZ et pour l'acier à soudabilité améliorée selon l'invention,
    • la Fig. 2 représente la courbe dureté-critère de refroidissement pour un acier usuel 355 EMZ et pour l'acier à soudabilité améliorée selon l'invention.
    • la Fig. 3 représente l'influence de la teneur en silicium, d'une part sur la température de transition à 28 Joules (TK 28J) et, d'autre part, sur la fraction volumique d'austénite retenue ( γ r),
    • la Fig. 4 représente l'évolution de la fraction volumique d'austénite retenue ( γ r) en fonction du critère de refroidissement et de la teneur en silicium de l'acier.
  • La composition pondérale de l'acier à soudabilité améliorée selon l'invention est :
    • de 0,07 à 0,11% de carbone,
    • de 1,40 à 1,70% de manganèse,
    • de 0,20 à 0,55% de nickel,
    • de 0 à 0,30% de cuivre,
    • de 0 à 0,02% de niobium
    • de 0,005 à 0,020% de titane,
    • de 0,002 à 0,006% d'azote,
    • de 0 à 0,15% de silicium,
       le reste étant du fer.
  • De préférence, la composition pondérale de l'acier à soudabilité améliorée selon l'invention comprend :
    • 0,08% de carbone,
    • 1,50% de manganèse,
    • 0,45% de nickel,
    • 0,20% de cuivre,
    • 0,01% de titane,
    • 0,004% d'azote,
    • 0,09% de silicium
       le reste étant de fer.
  • Lorsqu'on compare la courbe température de transition à 28J en fonction de la vitesse de refroidissement de la soudure de l'acier usuel 355 EMZ et de l'acier à soudabilité améliorée selon l'invention (Fig. 1), on constate que quelle soit l'énergie de soudage, c'est à dire quelle que soit la vitesse de refroidissement de la soudure, la résilience de l'acier selon l'invention est toujours garantie jusqu'à -60°C.
  • Un tel acier a donc une bonne résilience même à forte énergie de soudage.
  • La courbe dureté-critère de refroidissement représentée Fig. 2 montre que l'acier à soudabilité améliorée présente une dureté inférieure à celle de l'acier usuel 355 EMZ.
  • En effet, la dureté Vickers pour un refroidissement de la zone affectée par la chaleur de 700° à 300°C en 10s n'est que de 280 HV5, contre au moins 350 HV5 pour l'acier usuel.
  • L'acier à soudabilité améliorée selon l'invention ne présente plus que très peu de martensite, moins de 20%.
  • La résilience est donc fortement améliorée à froid et un tel acier ne nécessite pas de préchauffage avant soudage.
  • L'acier à soudabilité améliorée selon l'invention permet de garantir les caractéristiques mécaniques sur une tôle de 50mm d'épaisseur suivantes :
    limite d'élasticité Re mini = 325 MPa
    charge à la rupture Rm mini = 460 MPa
    allongement (5,65 √S) A = 22%
    Résilience à - 60°C KV = 80 J
    CTOD à - 50°C = 0,10 mm
  • Un tel acier permet donc, soit de garantir les mêmes caractéristiques que l'acier usuel 355 EMZ mais souder avec de plus fortes énergies de soudage, soit en conservant la même énergie de soudage, de garantir les caractéristiques mécaniques de tenacité à une température de service plus faible laissant envisager alors des applications dans un environnement plus sévère.
  • Code on le voit à la Fig. 3, la teneur en silicium a une influence sur la température de transition à 28 Joules (TK 28J), donc sur la ténacité de la zone affectée par la chaleur.
  • En effet, on constate que pour une teneur en silicium de 0,05% la température de transition à 28 Joules est de l'ordre de -70°C. Or, pour une teneur en silicium de 0,5%, cette température en deça de laquelle on garantit une énergie nécessaire à la rupture au moins égale à 28 Joules n'est plus que de -50°C.
  • On constate également sur les Figs. 3 et 4 que la fraction d'austénite retenue en zone affectée par la chaleur est fonction de la teneur en silicium de l'acier. Ce phénomène est à associer à une décomposition favorisée de l'austénite en ferrite et carbures pendant le refroidissement après soudage.
  • Ainsi, sur la Fig. 4, on voit que pour une teneur en silicium de 0,05% le taux d'austénite retenue lors de fortes énergies de soudage est d'environ 1% alors que pour ces mêmes énergies avec une teneur en silicium de 0,5%, il est de 5%.
  • Par conséquent, l'amélioration de la ténacité du joint soudé passe par la réduction de la fraction volumique d'austénite retenue qui est assurée par la diminution de la teneur en silicium de l'acier.
  • L'acier à soudabilité améliorée peut être obtenu par exemple par coulée en poche, coulée continue, élaboration en four, élaboration en aciérie à oxygène ou calmage aluminium.
  • La description ci-après concerne un exemple de procédé d'obtention de tôles de 50mm d'épaisseur avec un acier selon la présente invention.
  • L'acier à soudabilité améliorée selon l'invention est obtenu par coulée continue de type connue en prenant les précautions nécessaires pour lutter contre la ségrégation.
  • A la sortie de la coulée, l'acier subit un réchauffage à basse température entre la température de transformation ferrite-austénite AC3 et 1100°C, suivi par un laminage.
  • La température en fin de laminage se situe entre 850° et 720°C.
  • L'acier subit alors un refroidissement accéléré depuis la température de fin de laminage jusqu'à 450°C à une vitesse de 3 à 10°C par seconde.
  • L'acier à soudabilité améliorée utilisé pour établir les courbes représentées aux Figs. 1 et 2 est un acier dont la composition est celle donnée préférentiellement dans la description et obtenu selon le procédé suivant :
    • réchauffage homogène à 950°C pendant 3 heures,
    • laminage entre 760° et 740°C,
    • refroidissement jusqu'à 550°C à une vitesse de 6°C par seconde.

Claims (4)

  1. Acier à soudabilité améliorée ayant la composition pondérale suivante :
    - de 0,07 à 0,11% de carbone,
    - de 1,40 à 1,70% de manganèse,
    - de 0,20 à 0,55% de nickel,
    - de 0 à 0,30% de cuivre,
    - de 0 à 0,02% de niobium,
    - de 0,005 à 0,020% de titane,
    - de 0,002 à 0,006% d'azote,
    - de 0 à 0,15% de silicium,
       le reste étant du fer.
  2. Acier selon la revendication 1, ayant de préférence la composition pondérale suivante :
    - 0,08% de carbone,
    - 1,50% de manganèse,
    - 0,45% de nickel,
    - 0,20% de cuivre,
    - 0,01% de titane,
    - 0,004% d'azote,
    - 0,09% de silicium,
       le reste étant de fer.
  3. Procédé d'obtention d'un acier selon les revendications 1 et 2 comprenant les étapes suivantes :
    - on réchauffe à basse température entre la température de transformation ferrite-authénite AC3 et 1100°C,
    - on lamine entre 850° et 720°C,
    - on pratique un refroidissement accéléré de 750° à 450°C à une vitesse de 3 à 10° par seconde.
  4. Procédé selon la revendication 3, caractérisé en ce que :
    - on réchauffe à 950°C pendant 3 heures,
    - on lamine entre 760° et 740°C,
    - on refroidit jusqu'à 550°C à une vitesse de 6° par seconde.
EP91402670A 1990-10-18 1991-10-07 Acier à soudabilité améliorée Revoked EP0481844B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9012916A FR2668169B1 (fr) 1990-10-18 1990-10-18 Acier a soudabilite amelioree.
FR9012916 1990-10-18

Publications (2)

Publication Number Publication Date
EP0481844A1 EP0481844A1 (fr) 1992-04-22
EP0481844B1 true EP0481844B1 (fr) 1995-08-02

Family

ID=9401369

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91402670A Revoked EP0481844B1 (fr) 1990-10-18 1991-10-07 Acier à soudabilité améliorée

Country Status (11)

Country Link
US (1) US5183633A (fr)
EP (1) EP0481844B1 (fr)
JP (1) JPH04297549A (fr)
KR (1) KR940004033B1 (fr)
AT (1) ATE125878T1 (fr)
CA (1) CA2053197C (fr)
DE (1) DE69111744T2 (fr)
ES (1) ES2076490T3 (fr)
FI (1) FI100340B (fr)
FR (1) FR2668169B1 (fr)
NO (1) NO178796C (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728591B1 (fr) * 1994-12-27 1997-01-24 Lorraine Laminage Acier a soudabilite amelioree
TW444109B (en) * 1997-06-20 2001-07-01 Exxon Production Research Co LNG fuel storage and delivery systems for natural gas powered vehicles
DZ2527A1 (fr) * 1997-12-19 2003-02-01 Exxon Production Research Co Pièces conteneurs et canalisations de traitement aptes à contenir et transporter des fluides à des températures cryogéniques.
JP3524790B2 (ja) 1998-09-30 2004-05-10 株式会社神戸製鋼所 塗膜耐久性に優れた塗装用鋼材およびその製造方法
JP2003124783A (ja) * 2001-10-10 2003-04-25 Mitsubishi Electric Corp Gm−Cフィルタ
AU2002365596B2 (en) 2001-11-27 2007-08-02 Exxonmobil Upstream Research Company CNG fuel storage and delivery systems for natural gas powered vehicles
US6852175B2 (en) * 2001-11-27 2005-02-08 Exxonmobil Upstream Research Company High strength marine structures

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0168038A2 (fr) * 1984-07-10 1986-01-15 Nippon Steel Corporation Acier à haute ténacité et résistance à la rupture élevée

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4861316A (fr) * 1971-12-04 1973-08-28
IT1002387B (it) * 1972-12-31 1976-05-20 Nippon Steel Corp Procedimento per fabbricare lamina ti di acciaio da costruzione ad alto carico di rottura
JPS5526164B2 (fr) * 1973-07-31 1980-07-11
DE2517164A1 (de) * 1975-04-18 1976-10-21 Rheinstahl Giesserei Ag Verwendung einer schweissbaren, hoeherfesten stahllegierung fuer dickwandige stahlgusserzeugnisse
GB2099016B (en) * 1981-02-26 1985-04-17 Nippon Kokan Kk Steel for welding with high heat input
JPS5877528A (ja) * 1981-10-31 1983-05-10 Nippon Steel Corp 低温靭性の優れた高張力鋼の製造法
JPS59110725A (ja) * 1982-12-16 1984-06-26 Kawasaki Steel Corp 溶接性と低温靭性の優れた高張力鋼の製造方法
JPS6089550A (ja) * 1983-10-21 1985-05-20 Sumitomo Metal Ind Ltd 溶接性に優れた耐候性鋼
JPS60174820A (ja) * 1984-02-17 1985-09-09 Kawasaki Steel Corp 低温じん性及び大入熱溶接性が優れた調質高張力鋼の製造方法
JPS6293346A (ja) * 1985-10-18 1987-04-28 Nippon Steel Corp 溶接部のcod特性の優れた高張力鋼
JPS63103051A (ja) * 1986-10-20 1988-05-07 Kawasaki Steel Corp 高靭性溶接用鋼

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0168038A2 (fr) * 1984-07-10 1986-01-15 Nippon Steel Corporation Acier à haute ténacité et résistance à la rupture élevée

Also Published As

Publication number Publication date
DE69111744T2 (de) 1996-01-18
NO914055L (no) 1992-04-21
FI914907A0 (fi) 1991-10-17
DE69111744D1 (de) 1995-09-07
ES2076490T3 (es) 1995-11-01
NO914055D0 (no) 1991-10-16
NO178796B (no) 1996-02-26
FI100340B (fi) 1997-11-14
KR920008204A (ko) 1992-05-27
EP0481844A1 (fr) 1992-04-22
FI914907A (fi) 1992-04-19
NO178796C (no) 1996-06-05
ATE125878T1 (de) 1995-08-15
JPH04297549A (ja) 1992-10-21
KR940004033B1 (ko) 1994-05-11
FR2668169B1 (fr) 1993-01-22
CA2053197A1 (fr) 1992-04-19
US5183633A (en) 1993-02-02
FR2668169A1 (fr) 1992-04-24
CA2053197C (fr) 1997-09-09

Similar Documents

Publication Publication Date Title
JP4502012B2 (ja) ラインパイプ用継目無鋼管およびその製造方法
RU2623562C2 (ru) Высокопрочная листовая сталь, имеющая низкое отношение предела текучести к пределу прочности, превосходная с точки зрения устойчивости к последеформационному старению, способ ее производства и изготавливаемая из нее высокопрочная сварная стальная труба
EP0867520B1 (fr) Structures soudées en acier à haute résistance mécanique et leurs procédés de fabrication
US6220306B1 (en) Low carbon martensite stainless steel plate
JP6616006B2 (ja) 低温歪み時効衝撃特性及び溶接熱影響部衝撃特性に優れた高強度鋼材及びその製造方法
EP0974678B1 (fr) Procédé pour la fabrication d'une enceinte chaudronnée, travaillant en présence d'hydrogène sulfuré
RU2393262C1 (ru) Стальной лист для дуговой сварки под флюсом
EP2020451A1 (fr) Procédé de fabrication de tôles d'acier à hautes caractéristiques de résistance et de ductilité, et tôles ainsi produites
EP0481844B1 (fr) Acier à soudabilité améliorée
FR2516942A1 (fr)
Asahi et al. Development of plate and seam welding technology for X120 linepipe
JP3941211B2 (ja) 耐hic性に優れた高強度ラインパイプ用鋼板の製造方法
JP2001240936A (ja) 表層に粗粒フェライト層を有する鋼材およびその製造方法
JP3726721B2 (ja) 耐低温割れ性に優れた高強度溶接金属部とその形成方法
JP3526722B2 (ja) 低温靭性に優れた超高強度鋼管
JP4964480B2 (ja) 溶接部の靱性に優れた高強度鋼管及びその製造方法
EP0748877B1 (fr) Procédé de réalisation d'une bande de tôle d'acier laminée à chaud à très haute limite d'élasticité et tôle d'acier obtenue
JP3526723B2 (ja) 耐低温割れ性に優れた超高強度鋼管
JP2002224835A (ja) 溶接熱影響部靭性に優れた高靱性高張力鋼の溶接方法
JP3244987B2 (ja) 低降伏比を有する高強度ラインパイプ用鋼
RU2136775C1 (ru) Высокопрочная свариваемая сталь и ее варианты
JPH10204584A (ja) 耐溶融亜鉛メッキ割れ性に優れた調質型耐震鋼材
JP3569499B2 (ja) 溶接性に優れた高張力鋼およびその製造方法
JPH07323392A (ja) 低水素系被覆アーク溶接棒および溶接方法
JPH1136043A (ja) 耐クリープ脆性及び耐再熱割れ性に優れた高温高圧容器用鋼

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19920213

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17Q First examination report despatched

Effective date: 19940729

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19950802

REF Corresponds to:

Ref document number: 125878

Country of ref document: AT

Date of ref document: 19950815

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

REF Corresponds to:

Ref document number: 69111744

Country of ref document: DE

Date of ref document: 19950907

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2076490

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19951102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19951103

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19951107

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: THYSSEN STAHL AG

Effective date: 19960430

NLR1 Nl: opposition has been filed with the epo

Opponent name: THYSSEN STAHL AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970919

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970923

Year of fee payment: 7

Ref country code: AT

Payment date: 19970923

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19970924

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970925

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970930

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19971008

Year of fee payment: 7

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19971030

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971118

Year of fee payment: 7

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

27W Patent revoked

Effective date: 19971026

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 971026

NLR2 Nl: decision of opposition