EP0480261B1 - Leiteinrichtung - Google Patents

Leiteinrichtung Download PDF

Info

Publication number
EP0480261B1
EP0480261B1 EP91116503A EP91116503A EP0480261B1 EP 0480261 B1 EP0480261 B1 EP 0480261B1 EP 91116503 A EP91116503 A EP 91116503A EP 91116503 A EP91116503 A EP 91116503A EP 0480261 B1 EP0480261 B1 EP 0480261B1
Authority
EP
European Patent Office
Prior art keywords
fitting
insert
guide device
larger diameter
fitting position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91116503A
Other languages
English (en)
French (fr)
Other versions
EP0480261A1 (de
Inventor
Jörg Urban
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KSB AG
Original Assignee
KSB AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KSB AG filed Critical KSB AG
Publication of EP0480261A1 publication Critical patent/EP0480261A1/de
Application granted granted Critical
Publication of EP0480261B1 publication Critical patent/EP0480261B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D7/00Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04D7/02Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type
    • F04D7/06Pumps adapted for handling specific fluids, e.g. by selection of specific materials for pumps or pump parts of centrifugal type the fluids being hot or corrosive, e.g. liquid metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D1/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D1/06Multi-stage pumps
    • F04D1/063Multi-stage pumps of the vertically split casing type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/426Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for liquid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/60Assembly methods
    • F05D2230/64Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins
    • F05D2230/642Assembly methods using positioning or alignment devices for aligning or centring, e.g. pins using maintaining alignment while permitting differential dilatation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S277/00Seal for a joint or juncture
    • Y10S277/931Seal including temperature responsive feature

Definitions

  • the invention relates to a stator for centrifugal pumps according to the preamble of claim 1.
  • the invention has for its object to develop a heavy-duty guide device for centrifugal pumps that are exposed to temperature changes, wherein starting of the pump shaft and impermissible material stresses prevented as well as the tightness is guaranteed. This object is achieved in accordance with the characterizing part of the main claim.
  • the use of two different materials within the guide device may appear to be disadvantageous, especially since the flow-guiding insert made of austenitic material has a greater coefficient of thermal expansion than the pressure-loaded housing part made of ferritic material.
  • the supposed disadvantage a rapidly warming flow-carrying insert, which additionally has a larger coefficient of thermal expansion, is reversed in the opposite in the design according to the invention.
  • a precisely definable behavior of the guide device is possible. Due to the fact that the inner insert is only at one fit point depending on the temperature, tension between the components and thus material overloads are effectively avoided.
  • an austenitic material has higher toughness and wear resistance, which is why its use for flow-guiding applications ensures a long service life.
  • the flow-carrying insert lies only within one fit location within the flow-carrying housing or between the flow-carrying housings. In the cold operating state it is the fitting point arranged on a small diameter, while in the warm or hot operating state it is the fitting point located on a larger diameter. This measure prevents During the start-up phase, that is to say during the transition from the cold operating state to the warm or hot operating state and vice versa, the pump shaft starts up at the bearing points or the sealing bushes due to tension in the pump housing.
  • the unfavorable thermal expansions mean that the flow-guiding insert is without a guide within the pressure-loaded housing part and thus fails to a certain extent, and thus contact between the stationary and rotating part takes place again. At the same time, this prevents eccentricity between the impeller and stator, which prevents the creation of increased hydraulic radial forces on the impeller.
  • a further embodiment provides that in the warm operating state the mating surfaces of the fitting location located on a larger diameter center the flow-carrying insert within the pressure-loaded part. Depending on the operating temperature in each case, only one fit point is used to center the flow-carrying insert within the pressure-loaded housing part.
  • the mating surfaces located on a larger diameter are designed as conical outer surfaces. It is thus achieved in a system of the mating surfaces that forces are transmitted both in the radial and in the axial direction depending on the cone angle.
  • a thin coating is applied to a conical surface (preferably on the austenitic part) to prevent adhesive wear and to minimize friction.
  • another embodiment of the invention provides that the larger-diameter fitting surface of the flow-guiding insert is attached to an elastically resilient component. This ensures that the mating surface part, the component of the resilient, flow-guiding and austenitic insert is resiliently resilient when heated on the cooperating opposite mating surface of the ferritic pressure-loaded housing part.
  • the elastically resiliently arranged fitting surface can slide resiliently along the opposite fitting surface.
  • the operation of the invention can be illustrated as follows.
  • the fit points which usually consist of two circular ring surfaces pushed over one another, have a very specific configuration.
  • the flow-carrying insert In the cold operating state, under which you can usually see a room and unit temperature of around 20 ° C, the flow-carrying insert is only guided at one fitting point, and that is because it lies against the fitting point on the smaller diameter of the pressure-loaded housing part.
  • the fit has a tolerance field, according to which the dimensions result in a transition fit.
  • transition fits lie between the game fits and press fits. In practice, this means that there is no radial gap between the mating surfaces during assembly and in the cold operating state.
  • the fitting location which has a larger diameter, has a radial gap in the cold operating state.
  • the parts coming into contact with the medium expand.
  • the flow-carrying insert that is completely exposed to the medium will expand faster and more than that made of ferritic material Material existing pressure-loaded housing.
  • the radial gaps thus grow at the fitting points.
  • the mating surfaces located on a smaller diameter grow apart and form a radial gap, while the mating surfaces located on a larger diameter grow to a certain extent and close the existing gap. Since the thermal expansion coefficients of the materials are known, the appropriate gap dimensioning and gap configuration can be used to determine exactly at which temperature the radial gap of the fit point, which is located on a larger diameter, approaches zero or when elastic deformation takes place in this area.
  • Impellers (3, 4) are attached to a shaft (1) by means of a tongue and groove connection (2).
  • the pumped medium emerging from the impeller (3) flows into the flow-carrying insert (5), first into the guide channels (6), then reaches an annular space (7) which is delimited from the outside by the pressure-loaded housing (8) and flows from there through the return section (9) downstream impeller (4).
  • the flow-guiding insert (5) is formed here in two parts, the return section (9) and the guide channels (6) forming one part and a cover part (10) closing the guide channels (6) in the axial direction.
  • the cover part (10) and the flow-guiding insert (5) are made of the same austenitic material, so that a fit point possibly located between these parts remains without influence in the event of temperature fluctuations. If necessary, the cover part (10) and the flow-carrying insert can be soldered or welded together.
  • the flow-guiding insert (5) which is formed here in two parts, can also be designed as a one-part component. Within the pressure-loaded housing (8), the flow-guiding insert (5) is centered on the fitting point (11) or (12) which is on a smaller diameter and on a fitting point (13) which is on a larger diameter.
  • the fit points are marked here with dash-dotted lines as details X to Z.
  • the fitting points which consist of two cooperating fitting surfaces, are part of FIGS. 2 and 3 in an enlarged view.
  • a bolt (14) is used here to prevent the cover part (10) or the flow-guiding insert (5) from rotating.
  • Fig. 2 shows the behavior of the fitting point (13) under the influence of temperature.
  • the detail Y encircled in FIG. 1 is shown here in an enlarged representation and at three different operating temperatures above a coordinate diagram.
  • the system temperature from 0 to 200 ° C is shown on the abscissa and the gap size in millimeters on the ordinate.
  • the representation of the fit point (13) shows an elastically resilient component (15) of the cover part (10).
  • Its mating surface (16) like the mating surface (17) attached to and cooperating with the pressure-loaded housing (8), is designed as a conical surface.
  • the insert (5) and the cover part (10) expand further, as a result of which - due to the mating surfaces arranged on the conical surfaces and the resilient component (15) - the mating surface (16) on the mating surface (17) according to graphic representation can slide diagonally upwards along the right.
  • the fitting surface (16) is provided with a thin coating to reduce friction and prevent adhesive wear. In the right-hand illustration of FIG. 2, this is represented by a dash-dotted contour of the elastically flexible component (15).
  • the resilient component (15) is subjected to bending.
  • the 200 ° C given here as the final temperature in the abscissa does not represent a limit for the subject matter of the invention. According to the selected dimensions and gap sizes and the materials used, the subject matter of the invention can readily be used at system temperatures well above 200 ° C. It then represents an optimization task at which temperatures and which gap widths the most favorable load values are determined.
  • the cover part (10) made of austenitic material expands further in the radial direction than the pressure-loaded housing (8) made of ferritic material.
  • the straight line beginning at 20 ° on the abscissa and rising to the top right shows the gap size as a function of the temperature.
  • a radial gap of 0.1728 mm is created.
  • the 200 ° C do not represent an absolute limit, but are only to be understood as an example. Higher temperatures can readily be used in the subject matter of the invention. Due to the fact that the guide device is almost always guided by only one fit point, tension can be effectively prevented.
  • the fit point (12) encircled as detail Z in FIG. 1 largely corresponds in its behavior to the fit point (11). It can be used as an alternative to the fit point (11).
  • Essential to the invention is the fact that within of the stage housing, only two fitting points with different diameters are used. In the example shown here, this can be the fitting points (12) and (13) or the fitting points (11) and (13).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Massaging Devices (AREA)
  • Valve Device For Special Equipments (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

  • Die Erfindung betrifft ein Leitrad für Kreiselpumpen gemäß dem Oberbegriff des Anspruches 1.
  • Aus der DE-PS 689 618 ist eine Vorrichtung zum Ausgleich von axialen Wärmeausdehnungen zwischen gegeneinander unbeweglichen und verschieden stark erwärmten Maschinenteilen bekannt. Insbesondere bei mehrstufigen Kreiselpumpen kann bei der Förderung heißer Medien die axiale Wärmeausdehnung der Leiträder zu einem Problem werden. Bedingt durch die unterschiedliche Temperatur der einzelnen Pumpenteile können durch eine ungleiche Erwärmung in den Bauteilen zusätzliche Spannungen entstehen. Zum Ausgleich der axialen Wärmeausdehnungen werden nicht federnde formänderungsfähige Vorsprünge vorgesehen, mit denen sich ausdehnende Pumpenteile in axialer Richtung an ihren Nachbarteilen anliegen. Durch eine Formänderung der Vorsprünge wird die Wärmedehnung kompensiert. Durch die plastische Veränderung der formänderungsfähigen Vorsprünge und bei zu erwartenden starken Formänderungen sind zusätzliche Bauteile - als Federn ausgebildete Zwischenkörper - vorgesehen. Dadurch soll auch bei starken Temperaturschwankungen die Anlage der Vorsprünge und ein Entstehen von Spaltverlusten vermieden werden.
  • Der Erfindung liegt die Aufgabe zugrunde, für Kreiselpumpen, die Temperaturwechseln ausgesetzt sind, eine hoch belastbare Leiteinrichtung zu entwickeln, wobei ein Anlaufen der Pumpenwelle und unzulässige Materialspannungen verhindert sowie die Dichtheit gewährleistet wird. Die Lösung dieser Aufgabe erfolgt gemäß dem kennzeichnenden Teil des Hauptanspruches.
  • Die Verwendung von zwei verschiedenen Materialien innerhalb der Leiteinrichtung mag auf den ersten Anschein nachteilig erscheinen, zumal der aus austenitischem Material bestehende strömungsführende Einsatz einen größeren Wärmeausdehnungskoeffizienten aufweist als der druckbelastete, aus ferritischem Material bestehende Gehäuseteil. Der vermeintliche Nachteil, ein sich schnell erwärmender strömungsführender Einsatz, welcher noch zusätzlich einen größeren Wärmeausdehnungskoeffizienten aufweist, kehrt sich bei erfindungsgemäßer Gestaltung in das Gegenteil um. Infolge der Anordnung der Passungsstellen zwischen innerem Einsatz und äußerem Gehäuseteil auf unterschiedlichen Durchmessern und der Bedingung, daß der innere Einsatz in Abhängigkeit von der Temperatur immer nur an einer Passungsstelle anliegt, ist ein genau definierbares Verhalten der Leiteinrichtung möglich. Dadurch, daß der innere Einsatz in Abhängigkeit von der Temperatur immer nur an einer Passungsstelle anliegt, werden Verspannungen zwischen den Bauteilen und damit Materialüberlastungen wirkungsvoll vermieden. Zudem weist ein austenitischer Werkstoff eine höhere Zähigkeit und Verschleißbeständigkeit auf, weshalb dessen Verwendung für den strömungsführenden Einsatz eine hohe Lebensdauer sicherstellt.
  • Die in den Ansprüchen 2 und 3 beschriebenen Ausgestaltungen beschreiben das Verhalten des Einsatzes bei unterschiedlichen Temperaturen. Prinzipiell liegt der strömungsführende Einsatz innerhalb des strömungsführenden Gehäuses bzw. zwischen den strömungsführenden Gehäusen immer nur an einer Passungsstelle an. Im kalten Betriebszustand ist es die auf kleinem Durchmesser angeordnete Passungsstelle, während es im warmen bzw. heißen Betriebszustand die auf größerem Durchmesser befindliche Passungsstelle ist. Diese Maßnahme verhindert während der Anfahrphase, d. h. also beim Übergang vom kalten Betriebszustand in den warmen bzw. heißen Betriebszustand und umgekehrt, ein Anlaufen der Pumpenwelle an den Lagerstellen bzw. den Dichtbuchsen durch Verspannungen des Pumpengehäuses. Des weiteren wird vermieden, daß durch ungünstige Wärmeausdehnungen der strömungsführende Einsatz ohne Führung innerhalb des druckbelasteten Gehäuseteiles ist und somit gewissermaßen durchfällt und damit wieder eine Berührung zwischen stillstehendem und drehendem Teil erfolgt. Dies verhindert gleichzeitig eine Exzentrizität zwischen Laufrad und Leitrad, wodurch das Entstehen von erhöhten hydraulischen Radialkräften auf das Laufrad unterbunden wird.
  • Eine weitere Ausgestaltung sieht vor, daß im warmen Betriebszustand die Paßflächen der auf größerem Durchmesser befindlichen Passungsstelle den strömungsführenden Einsatz innerhalb des druckbelasteten Teiles zentrieren. Entsprechend der jeweils vorhandenen Betriebstemperatur übernimmt immer nur eine Passungsstelle die Zentrierung des strömungsführenden Einsatzes innerhalb des druckbelasteten Gehäuseteiles. Gemäß einer weiteren Ausgestaltung der Erfindung sind die auf größerem Durchmesser befindlichen Paßflächen als Kegelmantelflächen ausgebildet. Damit wird bei einer Anlage der Paßflächen erreicht, daß in Abhängigkeit von dem Kegelwinkel Kräfte sowohl in radialer als auch in axialer Richtung weitergeleitet werden. Eine dünne Beschichtung ist auf einer Kegelfläche (möglichst am austenitischen Teil) zur Verhinderung von Haftverschleiß und zur Minimierung der Reibung aufgebracht.
  • Zur Vermeidung unbeeinflußbarer Spannungen innerhalb der Bauteile sieht eine andere Ausgestaltung der Erfindung vor, daß die auf größerem Durchmesser befindliche Paßfläche des strömungsführenden Einsatzes an einem elastisch nachgiebigen Bestandteil angebracht ist. Damit wird gewährleistet, daß der Paßflächenteil, der Bestandteil des elastisch nachgiebigen, strömungsführenden und austenitischen Einsatzes ist, bei Erwärmung an der damit zusammenwirkenden gegenüberliegenden Paßfläche des ferritischen druckbelasteten Gehäuseteiles elastisch nachgiebig anliegt. In Verbindung mit der als Kegelmantelfläche ausgebildeten Passungsstelle kann die elastisch nachgiebig angeordnete Paßfläche auf der gegenüberliegenden Paßfläche federnd nachgiebig entlanggleiten. Während einer gewissen Übergangsphase bis zum Erreichen der Betriebstemperatur der Bauteile wird somit eine sichere Führung des strömungsführenden Einsatzes gewährleistet und eine durch Wärmespannung hervorgerufene Überbelastung des Gehäuseteiles vermieden.
  • Die Wirkungsweise der Erfindung läßt sich wie folgt darstellen. Die Passungsstellen, die gewöhnlich aus zwei übereinander geschobenen Kreisringflächen bestehen, weisen hierbei eine ganz bestimmte Konfiguration auf. Im kalten Betriebszustand, unter dem man gewöhnlich eine Raum- und Aggregattemperatur von ungefähr 20 °C ansieht, ist der strömungsführende Einsatz nur an einer Passungsstelle geführt, und zwar liegt er dann an der auf dem kleineren Durchmesser befindlichen Passungsstelle am druckbelasteten Gehäuseteil an. Die Passung weist hierbei ein Toleranzfeld auf, demzufolge die Abmaße eine Übergangspassung ergeben. Übergangspassungen liegen bekanntlich zwischen den Spielpassungen und Preßpassungen. In praxi bedeutet dies, daß bei der Montage und im kalten Betriebszustand kein Radialspalt zwischen den Paßflächen besteht. Die auf größerem Durchmesser befindliche Passungsstelle weist im kalten Betriebszustand einen Radialspalt auf. Bei zunehmender Erwärmung der Kreiselpumpe, welche durch entsprechend temperiertes sowie durchströmendes Fördermedium bedingt sein kann, dehnen sich die mit dem Fördermedium in Berührung kommenden Teile aus. Durch die Verwendung eines austenitischen Werkstoffes wird sich der dem Fördermedium vollständig ausgesetzte strömungsführende Einsatz schneller und stärker ausdehnen als das aus ferritischem Werkstoff bestehende druckbelastete Gehäuse. Gewissermaßen erfolgt somit ein Wachsen der Radialspalte an den Passungsstellen. Die auf kleinerem Durchmesser befindlichen Paßflächen wachsen auseinander und bilden einen Radialspalt, während die auf größerem Durchmesser befindlichen Paßflächen gewissermaßen zuwachsen und den bestehenden Spalt schließen. Da die Wärmeausdehnungskoeffizienten der Materialien bekannt sind, kann durch entsprechende Spaltbemessung sowie Spaltkonfiguration genau bestimmt werden, bei welcher Temperatur der auf größerem Durchmesser befindliche Radialspalt der Passungsstelle gegen Null geht bzw. wann in diesem Bereich eine elastische Verformung stattfindet.
  • Ein Ausführungsbeispiel der Erfindung ist in den Zeichnungen dargestellt und wird im folgenden näher beschrieben. Es zeigt die
  • Fig. 1
    einen Ausschnitt aus einer mehrstufigen Kreiselpumpe, die
    Fig. 2
    einen Verlauf der Radialspaltentwicklung in Bezug auf die jeweilige Temperatur am Beispiel der auf größerem Durchmesser befindlichen Passungsstelle und die
    Fig. 3
    entsprechend zur Fig. 2 den Verlauf des Radialspaltes der auf kleinerem Durchmesser befindlichen Passungsstelle.
  • Die Fig. 1 zeigt einen Ausschnitt aus einem Längsschnitt durch eine mehrstufige Kreiselpumpe. Auf einer Welle (1) sind mit Hilfe einer Nut-Feder-Verbindung (2) Laufräder (3, 4) befestigt. Das aus dem Laufrad (3) austretende Fördermedium strömt in den strömungsführenden Einsatz (5), und zwar zuerst in die Leitkanäle (6), gelangt danach in einen Ringraum (7), der nach außen von dem druckbelasteten Gehäuse (8) begrenzt wird und strömt von dort durch die Rückführpartie (9) einem nachgeschalteten Laufrad (4) zu. Der strömungsführende Einsatz (5) ist hier zweiteilig ausgebildet, wobei die Rückführpartie (9) und die Leitkanäle (6) ein Teil bilden und ein Deckelteil (10) die Leitkanäle (6) in axialer Richtung verschließen. Der Deckelteil (10) und der strömungsführende Einsatz (5) bestehen aus dem gleichen austenitischen Werkstoff, so daß eine evtl. zwischen diesen Teilen befindliche Passungsstelle bei Temperaturschwankungen ohne Einfluß bleibt. Bei Bedarf können der Deckelteil (10) und der strömungsführende Einsatz miteinander verlötet oder verschweißt werden. Der hier zweiteilig ausgebildete strömungsführende Einsatz (5) kann auch als einteiliges Bauteil gestaltet sein. Innerhalb des druckbelasteten Gehäuses (8) ist der strömungsführende Einsatz (5) an der auf kleinerem Durchmesser befindlichen Passungsstelle (11) oder (12) zentriert sowie an einer auf größerem Durchmesser befindlichen Passungsstelle (13). Die Passungsstellen sind hier durch strichpunktierte Linien als Einzelheiten X bis Z markiert. Die Passungsstellen, welche aus zwei zusammenwirkenden Paßflächen bestehen, sind in vergrößerter Darstellung Bestandteil der Fig. 2 und 3. Ein Bolzen (14) dient hier zur Verdrehsicherung des Deckelteiles (10) bzw. des strömungsführenden Einsatzes (5).
  • Die Fig. 2 zeigt das Verhalten der Passungsstelle (13) unter Temperatureinfluß. Die in Fig. 1 eingekreiste Einzelheit Y ist hier in vergrößerter Darstellung und bei drei verschiedenen Betriebstemperaturen oberhalb eines Koordinatendiagramms eingezeichnet. Bei diesem Beispiel ist auf der Abszisse die Systemtemperatur von 0 bis 200 °C und auf der Ordinate die Spaltgröße in Millimetern angegeben. Die Darstellung der Passungsstelle (13) ziegt einen elastisch nachgiebigen Bestandteil (15) des Deckelteiles (10). Dessen Paßfläche (16) ist ebenso wie die an dem druckbelasteten Gehäuse (8) angebrachte und damit zusammenwirkende Paßfläche (17) als Kegelmantelfläche ausgebildet. Im Montagezustand bzw. im kalten Betriebszustand, welcher im allgemeinen bei ungefähr 20 °C angenommen wird, besteht zwischen den Paßflächen (16,17) ein in radialer Richtung meßbarer Spalt, der im Beispiel 0,1 mn beträgt. Der radiale Abstand zwischen einer zylindrischen Umfangsfläche (20) des strömungsführenden Einsatzes (5) sowie der gegenüberliegenden Wandfläche (21) des druckbelasteten Gehäuses (8) beträgt hier 0,25 mm. Mit steigender Temperatur dehnt sich der aus einem austenitischen Werkstoff bestehende elastisch nachgiebige Bestandteil (15) in radialer Richtung aus, wodurch der Spalt zwischen den Paßflächen (16, 17) kleiner wird. Bei einer Systemtemperatur von ungefähr 100 °C ist der Spalt gegen Null gegangen und die Paßflächen liegen aneinander (vgl. mittlere Darstellung von Fig. 2). Mit steigender Temperatur erzolgt eine weitere Ausdehnung des Einsatzes (5) und des Deckelteiles (10), wodurch - bedingt durch die auf Kegelmantelflächen angeordneten Paßflächen sowie des elastisch nachgiebigen Bestandteiles (15) - die Paßfläche (16) auf der paßfläche (17) gemäß der zeichnerischen Darstellung schräg nach oben rechts entlang gleiten kann. Die Paßfläche (16) ist zur Verminderung von Reibung und Verhinderung von Haftverschleiß mit einer dünnen Beschichtung versehen. In der rechten Darstellung der Fig. 2 ist dies durch eine strichpunktierte Kontur des elastisch nachgiebigen Bestandteiles (15) dargestellt. Zwischen den Temperaturen von 100 bis 200 °C wird der elastisch nachgiebige Bestandteil (15) auf Biegung belastet. Die hier als Endtemperatur in der Abszisse angegebenen 200 °C stellen keinen Grenzwert für den Erfindungsgegenstand dar. Entsprechend den gewählten Abmessungen und Spaltgrößen sowie der Verwendung findenden Werkstoffe kann der Erfindungsgegenstand ohne weiteres bei Systemtemperaturen erheblich über 200 °C Anwendung finden. Es stellt dann eine Optimierungsaufgabe dar, bei welchen Temperaturen und welchen Spaltweiten die günstigsten Belastungswerte ermittelt werden.
  • In der Fig. 3, welche einer vergrößerten Darstellung der Passungsstelle (11), Einzelheit X von Fig. 1 entspricht, ist das Wachstum der auf kleinerem Durchmesser befindlichen Passungsstelle (11) gezeigt. Der hier beschriebene Ablauf muß im zeitlichen Zusammenhang mit dem in Fig. 2 gezeigten und beschriebenen Ablauf gesehen werden. Das Vergrößern und Verkleinern der Spalte läuft zeitlich gleichzeitig ab. Wird die Passungsstelle (12), entsprechend Einzelheit Z, anstelle der Passungsstelle (11) gewählt, dann gilt das nachstehend Beschriebene in gleicher Weise. Im kalten Zustand liegt die Paßfläche (18) des Deckelteiles (10) und die Paßfläche (19) des zur vorhergehenden Pumpenstufe gehörenden druckbelasteten Gehäuses (8) ohne Radialspalt aneinander. Dies wird erreicht, indem bei der Bearbeitung der Paßflächen Toleranzfelder gewählt werden, die eine Übergangspassung ergeben, welche bekanntlich zwischen den Spiel- und den Preßpassungen liegen. Mit steigender Systemtemperatur dehnt sich das hier aus austenitischem Material bestehende Deckelteil (10) in radialer Richtung weiter aus als das aus ferritischem Material bestehende druckbelastete Gehäuse (8). Die auf der Abszisse bei 20° beginnende, nach rechts oben ansteigende Gerade zeigt die Spaltgröße in Abhängigkeit von der Temperatur auf. Bei der für dieses Beispiel gewählten Grenztemperatur von 200 °C entsteht dann ein Radialspalt von 0,1728 mm. Die 200 °C stellen keinen absoluten Grenzwert dar, sondern sind nur als Beispiel zu verstehen. Höhere Temperaturen können ohne weiteres bei dem Erfindungsgegenstand Anwendung finden. Dadurch, daß die Leiteinrichtung quasi immer nur von einer Passungsstelle geführt wird, können Verspannungen wirkungsvoll verhindert werden.
  • Wie bereits vorstehend erwähnt, entspricht die in der Fig. 1 als Einzelheit Z eingekreiste Passungsstelle (12) in ihrem Verhalten weitgehend der Passungsstelle (11). Sie kann alternativ zur Passungsstelle (11) Anwendung finden. Wesentlich für die Erfindung ist die Tatsache, daß innerhalb des Stufengehäuses nur zwei auf unterschiedlichen Durchmessern befindliche Passungsstellen Anwendung finden. Bei dem hier gezeigten Beispiel können dies also die Passungsstellen (12) und (13) oder aber die Passungsstellen (11) und (13) sein.

Claims (9)

  1. Leiteinrichtung für Wärmebelastungen ausgesetzten Kreiselpumpen ein- oder mehrstufiger Bauart, wobei jede Leiteinrichtung aus einem druckbelasteten äußeren Gehäuseteil (8) und einem strömungsführenden inneren Einsatz (5) besteht, wobei der Einsatz (5) an auf unterschiedlichen Durchmessern angeordneten Passungsstellen (11, 12, 13) im und/oder am äußeren Gehäuseteil (8) anlegbar ist, dadurch gekennzeichnet, daß
    - das äußere Gehäuseteil (8) aus einem ferritischen Werkstoff und der strömungsführende Einsatz (5) aus einem austenitischen Werkstoff besteht und daß
    - der innere Einsatz (5) temperaturabhängig wechselnd an einer Passungsstelle anliegt.
  2. Leiteinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß im kalten Betriebszustand die Paßflächen (18, 19) von der auf kleinerem Durchmesser angeordneten Passungsstelle (11 oder 12) aneinanderliegen und zwischen den Paßflächen (16, 17) der auf größerem Durchmesser angeordneten Passungsstelle (13) ein Spalt ausgebildet ist.
  3. Leiteinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß im warmen Betriebszustand die Paßflächen (18, 19) von der auf kleinerem Durchmesser angeordneten Passungsstelle (11 oder 12) einen mit steigender Temperatur größer werdenden Spalt bilden und die Paßflächen (16, 17) der auf größerem Durchmesser befindlichen Passungsstelle (13) einen mit steigender Temperatur bis zu einer Anlage kleiner werdenden Spalt aufweisen.
  4. Leiteinrichtung nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß im warmen Betriebszustand die Paßflächen (16, 17) der auf größerem Durchmesser befindlichen Passungsstelle (13) den Einsatz (5) innerhalb des druckbelasteten Gehäuses (8) zentrieren.
  5. Leiteinrichtung nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß die auf größerem Durchmesser befindlichen Paßflächen (16, 17) als Kegelmantelflächen ausgebildet sind.
  6. Leiteinrichtung nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß die auf größerem Durchmesser befindliche Paßflächen (16) an einem elastisch nachgiebigen Bestandteil (15) des strömungsführenden Einsatzes (5) angebracht ist.
  7. Leiteinrichtung nach den Ansprüchen 1 bis 6, dadurch gekennzeichnet, daß der Einsatz (5) als ein- oder mehrteiliges austenitisches Bauteil ausgebildet ist.
  8. Leiteinrichtung nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß der strömungsführende Einsatz (5) mit einem Leitkanäle in axialer Richtung seitlich begrenzenden Deckelteil (10) und daran angebrachter, auf größtem Durchmesser befindlicher Passungsstelle (16, 17) versehen ist.
  9. Leiteinrichtung nach einem oder mehreren der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß eine der Kegelmantelflächen (16, 17) mit einer dünnen Beschichtung versehen ist.
EP91116503A 1990-10-09 1991-09-27 Leiteinrichtung Expired - Lifetime EP0480261B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4031936A DE4031936A1 (de) 1990-10-09 1990-10-09 Leiteinrichtung
DE4031936 1990-10-09

Publications (2)

Publication Number Publication Date
EP0480261A1 EP0480261A1 (de) 1992-04-15
EP0480261B1 true EP0480261B1 (de) 1996-03-27

Family

ID=6415886

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91116503A Expired - Lifetime EP0480261B1 (de) 1990-10-09 1991-09-27 Leiteinrichtung

Country Status (4)

Country Link
US (1) US5207560A (de)
EP (1) EP0480261B1 (de)
AT (1) ATE136098T1 (de)
DE (2) DE4031936A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2466148A1 (de) 2010-12-15 2012-06-20 KSB Aktiengesellschaft Dichtungsanordnung für Kreiselpumpen

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4241406C2 (de) * 1992-12-09 2001-10-18 Bosch Gmbh Robert Gebläsegehäuse
JP3299638B2 (ja) * 1994-09-20 2002-07-08 株式会社日立製作所 ターボ流体機械
FR2831637B1 (fr) * 2001-10-25 2004-01-30 Snecma Moteurs Joint d'etancheite a deux levres concentriques
US8579603B2 (en) * 2004-07-13 2013-11-12 Energy Recovery, Inc. Centrifugal pump
WO2006018591A1 (en) 2004-08-19 2006-02-23 Honeywell International, Inc. Compressor wheel housing
US8371811B2 (en) * 2007-10-03 2013-02-12 Schlumberger Technology Corporation System and method for improving flow in pumping systems
WO2013120549A1 (de) * 2012-02-14 2013-08-22 Sulzer Pumpen Ag Dichtungsanordnung und pumpe mit einer dichtungsanordnung
EP3055514B1 (de) 2013-10-07 2020-04-08 United Technologies Corporation Wärmesteuerungssystem für aussenluftdichtung einer gasturbinenmotorschaufel
US9945248B2 (en) 2014-04-01 2018-04-17 United Technologies Corporation Vented tangential on-board injector for a gas turbine engine
DE102015202417A1 (de) 2015-02-11 2016-08-11 Ksb Aktiengesellschaft Stömungsführendes Bauteil
EP3173587B1 (de) * 2015-11-30 2021-03-31 MTU Aero Engines GmbH Gehäuse für eine strömungsmaschine, einbausicherung und strömungsmaschine
US9816519B2 (en) * 2015-12-03 2017-11-14 Summit Esp, Llc Press-fit bearing locking system, apparatus and method
EP3228837B1 (de) * 2016-04-08 2019-08-28 Ansaldo Energia Switzerland AG Anordnung von turboantrieben
US10683868B2 (en) 2016-07-18 2020-06-16 Halliburton Energy Services, Inc. Bushing anti-rotation system and apparatus
SG10201707225UA (en) * 2016-09-23 2018-04-27 Sulzer Management Ag Centrifugal pump for conveying a fluid
US10359045B2 (en) 2017-04-05 2019-07-23 Halliburton Energy Services, Inc. Press-fit thrust bearing system and apparatus
US11118594B2 (en) * 2017-05-16 2021-09-14 Dresser-Rand Company Seal apparatus for a turbomachine casing
US11286950B2 (en) * 2019-11-27 2022-03-29 Sulzer Management Ag Bridged stage piece
DE102020119914A1 (de) * 2020-07-28 2022-02-03 KSB SE & Co. KGaA Gehäuse für strömungsführende Bauteile

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB190627093A (en) * 1906-11-28 1907-08-22 William Stanley North Improvements in Sewing Machines.
CH107451A (de) * 1924-02-02 1925-03-02 Escher Wyss Maschf Ag Dampf- oder Gasturbine mit scheibenförmigen Leitvorrichtungen.
DE465067C (de) * 1927-03-08 1928-09-04 C H Jaeger & Co Pumpen Und Geb Kreiselpumpe zur Foerderung heisser Fluessigkeiten
CH145515A (de) * 1929-10-17 1931-02-28 Kobi Robert Kreiselpumpe zur Förderung heisser Flüssigkeiten.
DE577754C (de) * 1932-06-12 1933-06-03 Wesselinger Gusswerk Rheinguss Zentrifugalpumpe mit Entlastungsrad zur Abdichtung des Gehaeuses an der Wellendurchtrittsoeffnung
DE689618C (de) * 1936-11-07 1940-03-28 Karl Plischke tark erwaermten Maschinenteilen
DE964020C (de) * 1950-02-28 1957-05-16 Klein Schanzlin & Becker Ag Gehaeuse von Kreiselmaschinen fuer heisse Arbeitsmittel
GB1314147A (en) * 1971-07-22 1973-04-18 Carrier Corp High pressure centrifugal compressor
NZ194764A (en) * 1979-09-07 1984-11-09 Warman Int Ltd Centrifugal pump with inner liner capable of radial expansion
US4579509A (en) * 1983-09-22 1986-04-01 Dresser Industries, Inc. Diffuser construction for a centrifugal compressor
CH669979A5 (de) * 1986-04-30 1989-04-28 Sulzer Ag
GB8903000D0 (en) * 1989-02-10 1989-03-30 Rolls Royce Plc A blade tip clearance control arrangement for a gas turbine engine
US5004402A (en) * 1989-09-05 1991-04-02 United Technologies Corporation Axial compressor stator construction
US5080557A (en) * 1991-01-14 1992-01-14 General Motors Corporation Turbine blade shroud assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2466148A1 (de) 2010-12-15 2012-06-20 KSB Aktiengesellschaft Dichtungsanordnung für Kreiselpumpen
DE102010063108A1 (de) 2010-12-15 2012-06-21 Ksb Aktiengesellschaft Dichtungsanordnung für Kreiselpumpen

Also Published As

Publication number Publication date
US5207560A (en) 1993-05-04
ATE136098T1 (de) 1996-04-15
DE59107613D1 (de) 1996-05-02
DE4031936A1 (de) 1992-04-16
EP0480261A1 (de) 1992-04-15

Similar Documents

Publication Publication Date Title
EP0480261B1 (de) Leiteinrichtung
DE3620539C2 (de)
DE69328309T2 (de) Berührungslose gleitringdichtung
DE3050514C2 (de) Mehrstufige Wellendichtung
WO1987006991A1 (en) Seal arrangement
DE3404816C2 (de) Dichtungseinrichtung
DE3217118C1 (de) Dichtungsanordnung für Wellen
DE3712489C2 (de) Sitzanordnung für einen Kugelhahn
DE1475601A1 (de) Mechanische Druckstufendichtung
DE1924192A1 (de) Dichtungsanordnung zur Stroemungsbegrenzung laengs umlaufender Wellen
EP1019637B1 (de) Radialer schwenkmotor
DE2847252C3 (de) Anordnung zur Abdichtung der Stoßstelle zwischen zwei Statorteilen einer. Turbomaschine
DE3539100C2 (de)
DE2029873A1 (de) Dichtungsring für Kolbenmaschinen
DE60300051T2 (de) Wellendichtung
DE3425431C1 (de) Wellendichtung
DE2436992A1 (de) Federnde dichtung
DE2558678C2 (de) Hydrostatisches Radiallager
EP3862599B1 (de) Lamellendichtring mit x-förmiger querschnittsgeometrie
DE19722870C2 (de) Gasgeschmierte Gleitringdichtung
EP0412997B1 (de) Dichtungsanordnung
DE102017108744A1 (de) Dichtungseinheit
DE3930147C2 (de)
EP0663549A1 (de) Metallische Lamellendichtung für Klappenventile
DE2260080C3 (de) Gleitlager mit magnetisierbarem Schmiermittel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19920304

17Q First examination report despatched

Effective date: 19930705

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960327

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960327

Ref country code: FR

Effective date: 19960327

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19960327

Ref country code: DK

Effective date: 19960327

Ref country code: GB

Effective date: 19960327

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960327

Ref country code: BE

Effective date: 19960327

REF Corresponds to:

Ref document number: 136098

Country of ref document: AT

Date of ref document: 19960415

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59107613

Country of ref document: DE

Date of ref document: 19960502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960627

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19960927

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960930

Ref country code: LI

Effective date: 19960930

Ref country code: CH

Effective date: 19960930

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970603