EP0479308B1 - Gebäude - Google Patents

Gebäude Download PDF

Info

Publication number
EP0479308B1
EP0479308B1 EP91116962A EP91116962A EP0479308B1 EP 0479308 B1 EP0479308 B1 EP 0479308B1 EP 91116962 A EP91116962 A EP 91116962A EP 91116962 A EP91116962 A EP 91116962A EP 0479308 B1 EP0479308 B1 EP 0479308B1
Authority
EP
European Patent Office
Prior art keywords
building
walls
hollow chambers
floors
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91116962A
Other languages
English (en)
French (fr)
Other versions
EP0479308A2 (de
EP0479308A3 (en
Inventor
Michael Demuth
Wolfgang Dr. Holzapfel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0479308A2 publication Critical patent/EP0479308A2/de
Publication of EP0479308A3 publication Critical patent/EP0479308A3/de
Application granted granted Critical
Publication of EP0479308B1 publication Critical patent/EP0479308B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls

Definitions

  • the invention relates to a building, in particular a residential or commercial building, in the walls, which should also be understood to mean floors, ceilings and the roof, hollow chambers designed for air or gas flow are provided, which extend essentially over the entire wall surface and with the hollow chambers of adjacent walls (or floors and / or ceilings or roof surfaces) are connected to form a closed circulating air chamber system which extends around the building or a part thereof.
  • a building of this type is known from EP-A-150 242. Its walls consist of prefabricated parts, which are penetrated by vertical wall channels, which are also connected to one another in the horizontal direction by connecting channels. These ducts are connected to an air conditioning unit and are used to create a pleasant and uniform climate in the building rooms with the help of the heating or cooling agents flowing in them.
  • this design of the building walls intended for heating or cooling does not adequately take into account the problem of dryness of these walls, since the heating or cooling agent flowing in the channels of the building walls contains moisture which gets into the walls and prevents their drying or keeping dry and thus reduces the insulating effect of the building walls.
  • the invention is therefore based on the problem existing in a building of the type mentioned to solve the drying and keeping the walls dry with simple means and at the same time to allow an arbitrarily adjustable indoor climate in the building with maximum energy savings for heating or cooling.
  • This object is achieved by the formation of at least one inner and one outer hollow chamber in the building walls specified in the characterizing part of claim 1.
  • a heat exchanger or a heat pump which is located in the connection between the inner and the outer hollow chambers, the circulating air flowing in the hollow chambers is continuously extracted, so that they in turn absorb moisture from the walls and above the heat exchangers or the Heat pump can dissipate, in which the moisture is condensed out of the circulating air. This ensures an optimal insulation effect of dry building materials.
  • the heat exchanger or the heat pump which takes the heat from the hot air flowing in one of the interconnected two hollow chambers for other reuse, thereby bringing the circulating air below its dew point and removing the condensed air humidity. This allows maximum energy savings for the air conditioning and heating, cooling or drying of the building.
  • Circulation pumps can be used to change and adjust the speed of air circulation in the hollow chambers, which means that the indoor climate in the building, i.e. the air temperature and humidity can be set in the desired manner.
  • the hollow chambers form a self-contained, air-circulating air chamber which extends continuously around the building, they enable, for example, the air in the room on the south side of the house Hollow chamber is overflowed by convection flow or pumps in neighboring building exterior walls not exposed to the sun or in ceilings, floors or roof surfaces adjoining the sunlit building wall and can thereby ensure heating of these parts of the building.
  • the walls and ceilings consist essentially of their entire thickness homogeneously from a water vapor-permeable mineral material, such as Ceramics, clay, a plaster or cement mixture, sand-lime brick or a sintered material, whereby they are designed without vapor barrier, so that the moisture in the walls can freely enter the hollow chambers and be removed there.
  • a water vapor-permeable mineral material such as Ceramics, clay, a plaster or cement mixture, sand-lime brick or a sintered material
  • the walls containing the hollow chambers can be formed by stone or plate-shaped, statically load-bearing components placed next to one another, each of which has a cavity that is at least partially open on all four end faces of the components with which they are put together to form the wall and with the cavity each of the adjacent components is connected to form a continuous hollow chamber.
  • the building shown in Fig. 1 stands on a concrete foundation 1 with an insulating layer 2.
  • the outer and inner walls, 3, 4, floors 5 and ceilings 6 and the roof structure 7 are formed by load-bearing building blocks 8, 9, 10, which consist of cavities Burnt clay or the like can exist and have one, two or three adjacent cavities, which are open on all four faces of the components with which they are put together to form the wall, floor, ceiling and roof, and with the cavities of the neighboring components are connected.
  • the basement floor 5 lying directly on the foundation 1 is constructed with building blocks 9 which form two cavities 11, 12 extending one above the other in the basement floor.
  • the outer wall 3 of the building and the roof 7 are made of building blocks 8, which each form three hollow chambers 11, 12, 13 which extend alongside one another in these parts of the building.
  • the inner wall 4 of the building is also designed in this way, while the upper half of the building consists of building blocks 9 which, when placed next to one another, form two hollow chambers 11, 12 located next to one another.
  • the basement floor 5 located on the foundation 1 and the basement ceiling 6 located above it like the basement ceiling 6 of the left half of the building, consist of building blocks 10 which only form a cavity 11, 12 in these parts of the building.
  • the outer hollow chambers 11 in the outer walls 3 and the floors 5 are connected to one another, as are the inner hollow chambers 12 of these parts of the building.
  • the sole hollow chambers 13 in the ceilings 6 are also connected to these inner hollow chambers 12.
  • the outer hollow chambers 11 are connected to the inner hollow chambers 12 via the building heater 15, while in the area of the roof ridge the outer and inner hollow chambers 11, 12 are connected to one another via a heat pump 16. This results in a closed chamber system, in which air heated in the heater 15 can be passed up through the inner hollow chambers 12 in the floors, ceilings, walls in the roof of the building, taking with it the moisture that has penetrated into these parts of the building.
  • the remaining heat energy is taken from the warm air carried up in the hollow chambers 12, which may have emitted part of its thermal energy into the interior of the building, whereupon it is cold air in the outer hollow chambers 11 of the roof 7 and the building outer walls 3 downwards and is returned to the building heating 15 via the hollow chambers 11 of the basement floor 5.
  • this air is dried so that it can then absorb moisture from the building parts again when it is returned to the building heating 15 in the outer hollow chambers 11.
  • the condensate resulting from the cooling of the warm air in the heat pump 16 is discharged in line 18, while the heat energy taken from the warm air and the warm flue gases in the heat pump 16 and in the heat exchanger 17 can be returned to the building heating 15 via the line 19.
  • the inner hollow chamber 13 provided in the left outer wall 3 of the building and in the left building roof 7, on the other hand, is self-contained and includes a fixed air mass, which is used for insulation purposes. Such an internal hollow chamber can of course also be provided in the other rows of the building.
  • the inner building wall 4 also has an inner hollow chamber 14, which, however, is not closed in itself but is connected to the flue gas outlet of the building heater 15.
  • This hollow chamber 14 used for flue gas discharge opens into the roof ridge in a heat exchanger 17 in which the residual heat is removed from the flue gas and fed to another reuse in the building. The moisture is frozen out of the flue gas.
  • the pollutants contained in it such as sulfur dioxide, carbonic acid, nitrogen oxides with such metal oxides, e.g. Iron oxide, that water-soluble salts, e.g. Sulphates, nitrates and carbonates are formed, which can be led into the sewer of the building or can be collected in a separate tank.
  • the air pollution from the combustion gases of the building heating can be drastically reduced in this way.
  • the air or gas flow in the hollow chambers 11, 12 cannot only increase or decrease in the vertical direction. Rather, the air flow in these chambers can also be given a horizontal flow component, either by conventional means or by circulation pumps.
  • the flow through the prescribed hollow chamber system of the building can be adjusted, e.g. in the hot season, can be switched so that the circulating air can be used for cooling.
  • the building blocks, floors, ceilings and roof surfaces forming the building blocks 8, 9 10 in the exemplary embodiment shown, as shown in FIG. 2 in more detail, consist of several plates 20 which are connected to one another by rigid spacers 21 to form a rigid building block.
  • the spacers 21 keep the plates 20 at a distance from one another, which results in cavities 22 extending between these plates, which are open at the end edges with which the modules are attached to one another and are attached to the cavities, open and with the cavities neighboring building blocks are connected to form continuous hollow chambers.
  • the building blocks consist both in their plates 20 and in their spacers 21 made of uniform, living-friendly material such as clay or the like.
  • the building blocks shown in FIG. 2 each have four plates 20, which form three cavities 21 between them. They therefore correspond to the building blocks in the building wall 3 and the roof 7 of the left half of the building shown in FIG. 1 and the inner wall 4 thereof.
  • the building blocks in the other parts of this building have only three or two Spacers 21 interconnected building boards 20 with cavities 22 located between them.
  • One or more of these boards can be provided on their inside or outside with a water vapor-tight coating, for example a ceramic layer.
  • a building ceiling 24 of an already completed building is shown, on which hollow components 23 have been subsequently placed, which essentially correspond to the building blocks shown in Fig. 2 with plates 20, spacers 21 and thereby cavities 22 formed between the plates.
  • the constant drying of the building parts by the air circulation system ensures that structural damage caused by wet conditions is avoided. Water vapor can no longer condense in the wall. Fungal growth in the interior of the building is no longer possible. The ventilation times of the building rooms and the resulting heat loss can be reduced. The swelling and shrinkage of components and the associated structural damage can also be reduced or eliminated.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Acoustics & Sound (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Vending Machines For Individual Products (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

  • Die Erfindung betrifft ein Gebäude, insbesondere ein Wohn- oder Betriebsgebäude, in dessen Wänden, worunter auch Böden, Decken sowie das Dach verstanden werden soll, zur Luft- oder Gasdurchströmung ausgebildete Hohlkammern vorgesehen sind, die sich im wesentlichen über die gesamte Wandfläche erstrecken und mit den Hohlkammern benachbarter Wände (bzw. Böden und/oder Decken- oder Dachflächen) zur Bildung eines geschlossenen, sich um das Gebäude oder einen Teil desselben herum erstreckenden Umluftkammersystems verbunden sind.
  • Ein Gebäude dieser Gattung ist durch die EP-A-150 242 bekannt. Seine Wände bestehen aus Fertigteilen, die von senkrechten Wandkanälen durchsetzt sind, die auch in horizontaler Richtung durch Verbindungskanäle miteinander verbunden sind. Diese Kanäle sind an ein Klimatisierungsgerät angeschlossen und dienen dazu, mit Hilfe der in ihnen strömenden Heiz- oder Kühlmittel ein angenehmes und gleichmäßiges Klima in den Gebäuderäumen zu erzeugen. Diese zur Beheizung bzw. Kühlung vorgesehene Ausgestaltung der Gebäudewände trägt jedoch dem Problem der Trockenheit dieser Wände nicht ausreichend Rechnung, da das in den Kanälen der Gebäudewände strömende Heiz- oder Kühlmittel Feuchtigkeit enthält, die in die Wände gelangt und deren Trocknung oder Trockenhaltung verhindert und damit die Isolierwirkung der Gebäudewände herabsetzt.
  • Der Erfindung liegt daher die Aufgabe zugrunde, bei einem Gebäude der eingangs genannten Gattung bestehende Probleme hinsichtlich der Trocknung und Trockenhaltung der Wände mit einfachen Mitteln zu lösen und dabei gleichzeitig ein beliebig einstellbares Raumklima im Gebäude bei maximaler Energieeinsparung für die Beheizung oder Kühlung zu ermöglichen. Diese Aufgabe wird durch die im kennzeichnenden Teil des Anspruches 1 angegebene Ausbildung von mindestens einer inneren und einer äußeren Hohlkammer in den Gebäudewänden gelöst. Über ein Wärmetauscher oder eine Wärmepumpe, der oder die sich in der Verbindung zwischen den inneren und den äußeren Hohlkammern befindet, wird der in den Hohlkammern strömenden Umluft laufend Feuchtigkeit entzogen, so daß sie aus den Wänden heraus wiederum Feuchtigkeit aufnehmen und über den Wärmetauschern oder die Wärmepumpe abführen kann, in dem die Feuchtigkeit aus der Umluft auskondensiert wird. Dadurch wird eine optimale Isolierwirkung trockener Baustoffe erhalten.
  • Der Wärmetauscher oder die Wärmepumpe welcher bzw. welche die Wärme der in einer der miteinander verbundenen beiden Hohlkammern strömenden Warmluft zur anderweitigen Wiederverwendung entnimmt, dabei die Umluft unter ihren Taupunkt bringt und die auskondensierte Luftfeuchtigkeit abführt. Hierdurch kann eine maximale Energieeinsparung für die Klimatisierung und die Beheizung, Kühlung oder Trocknung des Gebäudes erreicht werden. Durch Umwälzpumpen kann die Geschwindigkeit der Luftzirkulation in den Hohlkammern verändert und eingestellt werden, wodurch im Gebäude das Raumklima, d.h. die Lufttemperatur und Luftfeuchtigkeit in der gewünschten Weise eingestellt werden kann.
  • Da die Hohlkammern eine in sich geschlossene, sich ringförmig kontinuierlich um das Gebäude herum erstreckende Umluftkammer bilden, ermöglichen sie, daß z.B. die Luft, die sich in der an der Südseite des Hauses befindlichen Hohlkammer befindet, durch Konvektionsströmung oder Pumpen in benachbarte, nicht von der Sonne beschienene Gebäudeaußenwände oder in an die sonnenbeschienene Gebäudewand anschließenden Decken, Böden oder Dachflächen überströmen und dadurch eine Erwärmung dieser Gebäudeteile gewährleisten kann.
  • Zweckmäßigerweise bestehen die Wände und Decken im wesentlichen über ihre gesamte Dicke materialhomogen aus einem wasserdampfdurchlässigen mineralischen Stoff, wie z.B. Keramik, Ton, einer Gips- oder Zementmischung, Kalksandstein oder aus einem Sintermaterial, wobei sie ohne Dampfdurchgangssperren ausgebildet sind, so daß die in den Wänden befindliche Feuchtigkeit ungehindert in die Hohlkammern eintreten und dort abgeführt werden kann.
  • Die die Hohlkammern enthaltenen Wände können von aneinandergesetzten stein- oder plattenförmigen, statisch tragenden Bauelementen gebildet sein, die jeweils einen Hohlraum aufweisen, der an allen vier Stirnseiten der Bauelemente, mit welchen diese zur Bildung der Wand aneinandergesetzt sind, mindestens teilweise offen und mit dem Hohlraum jeweils der benachbarten Bauelemente zur Bildung einer durchgehenden Hohlkammer verbunden ist.
  • Weitere vorteilhafte Ausgestaltungen des erfindungsgemäßen Gebäudes sind in den Patentansprüchen angeführt.
  • In der Zeichnung sind besonders vorteilhafte Ausführungsbeispiele des erfindungsgemäßen Gebäudes dargestellt, die im folgenden näher beschrieben werden:
  • Fig. 1
    zeigt einen Vertikalschnitt durch das Gebäude dieser Ausführungsform,
    Fig. 2
    zeigt einen Ausschnitt der in Fig. 1 linken Gebäudeaußenwand in Schrägansicht in größerer Darstellung, und
    Fig. 3
    zeigt eine Gebäudedecke, die nachträglich mit aufgelegten Hohlbauelementen mit einer kontinuierlich durchgehenden Hohlkammer versehen worden ist.
  • Das in Fig. 1 dargestellte Gebäude steht auf einem Betonfundament 1 mit Isolierschicht 2. Die Außen- und Innenwände, 3, 4, Böden 5 und Decken 6 sowie die Dachkonstruktion 7 sind von Hohlräume enthaltenden tragenden Bausteinen 8, 9, 10 gebildet, die aus gebranntem Ton oder dergleichen bestehen können und ein, zwei oder drei nebeneinander sich erstreckende Hohlräume haben, die an allen vier Stirnseiten der Bauteile, mit welchen diese zur Bildung der Wand, des Bodens, der Decke und des Daches aneinandergesetzt sind, offen und mit den Hohlräumen der benachbarten Bauteile verbunden sind. Hierdurch ergeben sich in den vorgenannten Gebäudeteilen durchgehende Hohlkammern 11, 12, 13, 14, die mit Luft oder Gasen gefüllt oder von Luft oder Gasen durchströmt werden können.
  • In der linken Hälfte des in Fig. 1 gezeigten Gebäudes ist der aus dem Fundament 1 unmittelbar aufliegende Kellerboden 5 mit Bausteinen 9 ausgeführt, die im Kellerboden zwei übereinander sich erstreckende Hohlräume 11, 12 bilden. Ferner ist die Gebäudeaußenwand 3 und das Dach 7 aus Bausteinen 8 gefertigt, die jeweils drei nebeneinander sich erstreckende Hohlkammern 11, 12, 13 in diesen Gebäudeteilen ausbilden. Auch die Gebäudeinnenwand 4 ist in dieser Weise gestaltet, während die obere Gebäudehälfte aus Bausteinen 9 bestehen, welche in ihrer aneinandergesetzten Lage zwei nebeneinander befindliche Hohlkammern 11, 12 bilden. Der auf dem Fundament 1 befindliche Kellerboden 5 und die darüber befindliche Kellerdecke 6 bestehen wie die Kellerdecke 6 der linken Gebäudehälfte aus Bausteinen 10, die nur einen Hohlraum 11, 12 in diesen Gebäudeteilen ausbilden.
  • Die äußeren Hohlkammern 11 in den Außenwänden 3 und den Böden 5 sind miteinander verbunden, ebenso die inneren Hohlkammern 12 dieser Gebäudeteile. Mit diesen inneren Hohlkammern 12 sind auch die alleinigen Hohlkammern 13 in den Decken 6 verbunden. Im Kellerbereich des Hauses sind die äußeren Hohlkammern 11 mit den inneren Hohlkammern 12 über die Gebäudeheizung 15 verbunden, während im Bereich des Dachfirstes die äußeren und inneren Hohlkammern 11, 12 über eine Wärmepumpe 16 miteinander verbunden sind. Hierdurch ergibt sich ein geschlossenes Kammersystem, in welchem in der Heizung 15 erwärmte Luft durch die inneren Hohlkammern 12 in den Böden, Decken, Wänden im Dach des Gebäudes hindurch nach oben geführt werden kann, wobei sie die in diese Gebäudeteile eingedrungene Feuchtigkeit mitnimmt. In der Wärmepumpe 16 wird der in den Hohlkammern 12 hochgeführten Warmluft, die dabei einen Teil ihrer Wärmeenergie in das Gebäudeinnere abgegeben haben kann, ihre restliche Wärmeenergie entnommen, worauf sie als Kaltluft in den äußeren Hohlkammern 11 des Daches 7 und der Gebäudeaußenwände 3 nach unten und über die Hohlkammern 11 des Kellerbodens 5 wieder zur Gebäudeheizung 15 rückgeführt wird. Durch Unterschreiten des Taupunktes bei der Entnahme der restlichen Wärmeenergie aus der Warmluft wird diese Luft getrocknet, so daß diese dann bei ihrer Rückführung in den äußeren Hohlkammern 11 zur Gebäudeheizung 15 zurück wieder Feuchtigkeit aus den Gebäudeteilen aufnehmen kann.
  • Das bei der Abkühlung der Warmluft in der Wärmepumpe 16 anfallende Kondenswasser wird in der Leitung 18 abgeführt, während die in der Wärmepumpe 16 und im Wärmetauscher 17 aus der Warmluft und den warmen Rauchgasen entnommene Wärmeenergie über die Leitung 19 zur Gebäudeheizung 15 zurückgeführt werden kann. Die in der linken Gebäudeaußenwand 3 und im linken Gebäudedach 7 vorgesehen innere Hohlkammer 13 ist dagegen in sich geschlossen und schließt eine feststehende Luftmasse ein, die zu Isolierzwecken dient. Eine solche innere Hohlkammer kann natürlich auch in den anderen Gebäudezeilen vorgesehen sein.
  • Auch die innere Gebäudewand 4 besitzt eine innere Hohlkammer 14, die jedoch nicht in sich geschlossen sondern an den Rauchgasauslaß der Gebäudeheizung 15 angeschlossen ist. Diese zur Rauchgasabführung dienende Hohlkammer 14 mündet im Dachfirst in einen Wärmetauscher 17 ein, in welchem aus dem Rauchgas dessen Restwärme entnommen und einer anderweitigen Wiederverwendung im Gebäude zugeführt wird. Dabei wird aus dem Rauchgas die Feuchtigkeit ausgefroren. Ferner können die in ihm enthaltenen Schadstoffe, wie Schwefeldioxid, Kohlensäure, Stickoxide mit solchen Metalloxiden, wie z.B. Eisenoxid, in Verbindung gebracht werden, daß wasserlösliche Salze, z.B. Sulfate, Nitrate und Carbonate, gebildet werden, die in den Abwasserkanal des Gebäudes geleitet werden dürfen oder in einem separaten Tank gesammelt werden können. Die Luftverunreinigung durch die Verbrennungsgase der Gebäudeheizung kann auf diese Weise drastisch reduziert werden.
  • Die Luft- oder Gasströmung in den Hohlkammern 11, 12 kann nicht nur in vertikaler Richtung ansteigend oder abfallend erfolgen. Vielmehr kann der Luftströmung in diesen Kammern auch eine horizontale Strömungskomponente verliehen werden, entweder auf konventionellem Wege oder durch Umwälzpumpen.
  • Durch die Verbindung dieser Hohlkammern 11 und 12 in den verschiedenen Gebäudeteilen miteinander kann eine kreisförmige Durchströmung dieser Gebäudeteile in etwa horizontaler oder schräg ansteigender Richtung um das ganze Gebäude herum erfolgen. Diese Strömung mit horizontaler Strömungskomponente kann für den Energiehaushalt des Gebäudes von außerordentlicher Bedeutung sein, insbesondere im Hinblick auf dessen einseitige Sonnenbestrahlung.
  • Die Durchströmung des vorgeschriebenen Hohlkammersystems des Gebäudes kann je nach Bedarf, z.B. in der heißen Jahreszeit, umgeschaltet werden, so daß die Umluft zur Kühlung verwendet werden kann.
  • Zusätzliche Isolierungen sind in den Gebäudeteilen nicht mehr erforderlich, können aber zwischen den Hohlkammern und/oder auf den Außenseiten der Gebäudeteile angebracht werden.
  • Die die Gebäudewände, Böden, Decken und Dachflächen bildenden Bausteine 8, 9 10 bestehen bei dem dargestellten Ausführungsbeispiel, wie Fig. 2 näher zeigt, aus mehreren Platten 20, die durch achsstummelförmige Abstandhalter 21 zu einem starren Baustein miteinander verbunden sind. Die Abstandhalter 21 halten die Platten 20 in gegenseitigem Abstand, wodurch sich zwischen diesen Platten nebeneinander erstreckende Hohlräume 22 ergeben, die an den Stirnrändern, mit welchen die Bausteine aneinandergesetzt sind, offen sind und mit den Hohlräumen aneinandergesetzt sind, offen sind und mit den Hohlräumen der benachbarten Bausteine zur Bildung von durchgehenden Hohlkammern verbunden sind. Die Bausteine bestehen sowohl in ihren Platten 20 als auch in ihren Abstandhaltern 21 aus einheitlichem wohnfreundlichem Material wie Ton oder dergleichen.
  • Die in Fig. 2 gezeigten Bausteine haben jeweils vier Platten 20, die zwischen sich drei Hohlräume 21 bilden. Sie entsprechen daher den Bausteinen in der Gebäudewand 3 und dem Dach 7 der in Fig. 1 linken Hälfte des darin gezeigten Gebäudes sowie dessen Innenwand 4. Die Bausteine in den anderen Teilen dieses Gebäudes besitzen abweichend von denjenigen gemäß Fig. 2 nur drei oder zwei durch Abstandhalter 21 miteinander verbundene Bauplatten 20 mit dazwischen befindlichen Hohlräumen 22. Eine oder mehrere dieser Platten können an ihrer Innen- oder Außenseite mit einer wasserdampfdichten Beschichtung, beispielsweise einer Keramikschicht, versehen sein.
  • Mit den Bausteinen der in Fig. 2 genannten Art mit unterschiedlicher Anzahl von Platten 20 können wie bei dem in Fig. 1 dargestellten Ausführungsbeispiel sämtliche Gebäudeteile erstellt werden. Es ist aber auch möglich, an die Wände, Decken oder Böden eines bereits vorhandenen Gebäudes diese Bausteine anzumauern, um diesen Bauteilen nachträglich die vorerwähnten Hohlkammern zur Klimatisierung und Entfeuchtung des Gebäudes zu verleihen.
  • In Fig. 3 ist eine Gebäudedecke 24 eines bereits fertiggestellten Gebäudes dargestellt, auf welche nachträglich Hohlbauelemente 23 aufgesetzt worden sind, die im wesentlichen den in Fig. 2 dargestellten Bausteinen mit Platten 20, Abstandhaltern 21 und dadurch zwischen den Platten gebildeten Hohlräumen 22 entsprechen.
  • Die durch das Umluftsystem erfolgende stetige Trocknung der Gebäudeteile gewährleistet, daß durch Nässe auftretende Bauschäden vermieden werden. Wasserdampf kann nicht mehr in der Wand kondensieren. Pilzbewuchs in den Innenräumen des Gebäudes ist nicht mehr möglich. Die Lüftungszeiten der Gebäuderäume und der dadurch bedingte Wärmeverlust kann reduziert werden. Das Quellen und Schrumpfen von Bauteilen und die damit verbundenen Bauschäden können ebenfalls reduziert oder ausgeschaltet werden.

Claims (16)

  1. Gebäude, in dessen Wänden (3, 4) und Decken (5, 6, 7) zur Luft-oder Gasdurchströmung ausgebildete Hohlkammern (11, 12) vorgesehen sind, die sich im wesentlichen über die gesamte jeweilige Wand und Deckenfläche erstrecken und mit den Hohlkammern benachbarter Wände und Decken zur Bildung eines geschlossenen, sich um das Gebäude oder einen Teil desselben herum erstreckenden Umluftkammersystems verbunden sind, wobei die Wände (3, 4) und Decken (5, 6, 7) in ihrer gesamten Masse materialhomogen aus einem wasserdampfdurchlässigen Stoff bestehen, dadurch gekennzeichnet, daß in den Gebäudewänden (3, 4), und/oder Gebäude decken (5, 6, 7) mindestens eine innere und eine äußere Hohlkammer (11, 12) ausgebildet sind, die miteinander verbunden sind, wobei in der Verbindung zwischen diesen beiden Hohlkammern (11, 12) ein Wärmetauscher oder eine Wärmepumpe (16 oder 17) vorgesehen ist, an welche eine Kondenswasserableitung (18) angeschlossen ist.
  2. Gebäude nach Anspruch 1, dadurch gekennzeichnet, daß die Wärmepumpe (16) oder der Wärmetauscher (17) so ausgelegt ist, daß die aus den Hohlkammern kommende Warmluft unter deren Taupunkt abgekühlt wird
  3. Gebäude nach Anspruch 1, dadurch gekennzeichnet, daß die innere und die äußere Hohlkammer (11, 12) der Gebäudewände (3, 4) und Gebäudedecken (5, 7) im oberen Bereich des Gebäudes miteinander verbunden sind.
  4. Gebäude nach Anspruch 1, dadurch gekennzeichnet, daß die innere und die äußere Hohlkammer (11, 12) der Gebäudewände (3, 4) und Gebäudedecken (5, 7) über die Gebäudeheizung miteinander verbunden sind.
  5. Gebäude nach Anspruch 1, dadurch gekennzeichnet, daß sich die Hohlkammern (11, 12) sowohl in senkrechter als auch in waagerechter Richtung kontinuierlich um das Gebäude herum erstrecken.
  6. Gebäude nach Anspruch 1, dadurch gekennzeichnet, daß in den Hohlkammern (11, 12) Luft- bzw. Gas-Führungsflächen vorgesehen sind, die so angeordnet und ausgebildet sind, daß sie der Luft- oder Gasströmung im Hohlraum eine waagerechte Richtungskomponente geben.
  7. Gebäude nach Anspruch 1, dadurch gekennzeichnet, daß die Wände (3, 4) und Decke (5, 6, 7) im wesentlichen über ihre gesamte Dicke aus einem wasserdampfdurchlässigen, mineralischen Stoff, wie z.B. Keramik, Ton, einer Gips- oder Zementmischung, Kalksandstein oder aus einem Sintermaterial bestehen.
  8. Gebäude nach Anspruch 1, dadurch gekennzeichnet, daß die die Hohlkammern (11, 12) enthaltenden Wände (3, 4) und Decken (5, 6, 7) in ihrem massiven Teil ohne innere Dampfdurchgangsgrenzflächen ausgebildet sind.
  9. Gebäude nach Anspruch 1, dadurch gekennzeichnet, daß die inneren Hohlkammer (12) in den Gebäudeaußenwänden (3) über Hohlkammern (12) in den Gebäudedecken (6) und/oder im Kellerboden (5) miteinander verbunden sind.
  10. Gebäude nach Anspruch 9, dadurch gekennzeichnet, daß die inneren Hohlkammern (12) in den Gebäudeaußenwänden (3) über Hohlkammern (12) in den Gebäudedecken (6) und/oder im Kellerboden (5) mit Hohlkammern (12) in den Gebäudeinnenwänden (4) verbunden sind.
  11. Gebäude nach Anspruch 1, dadurch gekennzeichnet, daß eine der Hohlkammern (11, 12) der Gebäudewände, vorzugsweise die dem Gebäudeinneren zugewandte Hohlkammer (12), an die Warmluft-Abgabeseite der Gebäudeheizung (15) angeschlossen ist.
  12. Gebäude nach einem oder mehreren der Ansprüche 1 bis 11, dadurch gekennzeichnet, daß - in der Heizperiode - die eine Hohlkammer, in Gebäudeaußenwänden (3) vorzugsweise die dem Gebäudeinneren benachbarte innere Hohlkammer (12) zur Führung von warmer oder über die Gebäudeheizung erhitzter Luft vornehmlich nach oben und die andere Hohlkammer, in Außenwänden vorzugsweise die äußere Hohlkammer (11) zur Führung von kühler oder kälterer Luft vornehmlich nach unten und gegebenenfalls zur Gebäudeheizung zurück oder - in der Kühlperiode - umgekehrt ausgebildet sind.
  13. Gebäude nach Anspruch 1, dadurch gekennzeichnet, daß die Hohlkammern (11, 12, 13, 14) enthaltenden Wände (3, 4) und Decken (5, 6, 7) von aneinandergesetzten stein- oder plattenförmigen, statisch tragenden Bauelementen (8, 9, 10, 23) gebildet sind, die jeweils einen Hohlraum (22) aufweisen, der an allen vier Stirnseiten der Bauelemente, mit welchen diese zur Bildung der Wand und Decke aneinandergesetzt sind, mindestens teilweise offen und mit dem Hohlraum jeweils der benachbarten Bauelemente zur Bildung einer durchgehenden Hohlkammer (11, 12, 13, 14) verbunden ist.
  14. Gebäude nach Anspruch 13, dadurch gekennzeichnet, daß die Bauelemente (8, 9, 10, 23) einstückig ohne innere Dampfdurchgangsgrenzflächen ausgebildet sind.
  15. Gebäude nach Anspruch 13, dadurch gekennzeichnet, daß die Bauelemente (8, 9, 10, 23) jeweils aus mindestens zwei, im gegenseitigen Abstand in den Wänden (3, 4) und Decke (5, 6, 7) neben- bzw. übereinander befindlichen und zwischen sich einen an den Strinseiten der Bauelemente offenen Hohlraum (22) begrenzenden, im wesentlichen starren Platten (20) bestehen, die durch Abdstandhalter (21) miteinander materialschlüssig verbunden sind, welche sich nur über einen Teil der Breite und der Länge des Bausteins erstrecken und zwischen sich einen Luft- oder Gasdurchtritt ermöglichen.
  16. Gebäude nach Anspruch 13, dadurch gekennzeichnet, daß die Bauelemente (23) mit ihren offenen Seitenrändern aneinanderstoßend an eine Gebäudewand angesetzt oder auf eine Gebäudedecke oder einen Gebäudeboden (24) aufgelegt sind.
EP91116962A 1990-10-05 1991-10-04 Gebäude Expired - Lifetime EP0479308B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4031614 1990-10-05
DE4031614A DE4031614A1 (de) 1990-10-05 1990-10-05 Gebaeude

Publications (3)

Publication Number Publication Date
EP0479308A2 EP0479308A2 (de) 1992-04-08
EP0479308A3 EP0479308A3 (en) 1992-10-21
EP0479308B1 true EP0479308B1 (de) 1996-03-13

Family

ID=6415694

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91116962A Expired - Lifetime EP0479308B1 (de) 1990-10-05 1991-10-04 Gebäude

Country Status (3)

Country Link
EP (1) EP0479308B1 (de)
AT (1) ATE135435T1 (de)
DE (2) DE4031614A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19845557C2 (de) * 1998-10-02 2002-07-18 Ehnes Werner Lüftungsdämmsystem
US6843718B2 (en) * 2001-03-26 2005-01-18 Johannes Schmitz Method of guiding external air in a building shell and a building; and a method of temperature control of a building
ES2378859B1 (es) * 2009-07-02 2013-02-25 Consejo Superior De Investigaciones Científicas (Csic) Cerramiento multicapa.
ITMI20111316A1 (it) * 2011-07-15 2013-01-16 Ernesto Fardelli Edificio con impianto di climatizzazione estate/inverno integrato, a ridotto consumo energetico.
EP3354811A1 (de) * 2017-01-26 2018-08-01 Rosasco, Enrico Verfahren für die thermische und akustische isolation des aktiven typs von gebäuden und nach diesem verfahren hergestelltes gebäude
DE202022101887U1 (de) 2022-04-07 2023-07-10 Hans Günther Schwarz Gebäude

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL55714C (de) * 1900-01-01
GB191015796A (en) * 1910-07-01 1911-05-11 John Ferguson Improvements relating to the Construction of Damp-proof and Ventilated Walls.
FR449348A (fr) * 1912-10-12 1913-02-24 William Cargill Mur en béton coulé, en une seule opération, à paroi intérieure perméable et à paroi extérieure imperméable
DE1941401A1 (de) * 1968-05-22 1971-02-25 Dr Becker Otto Alfred Wandelement mit Isolierung
DE2929004A1 (de) * 1979-07-18 1981-02-05 Wolfgang Schlappig Verfahren und anlage zur rueckgewinnung von waerme
DE3244406A1 (de) * 1981-12-04 1984-05-03 Ernst Ing. 1130 Wien Perner Fertigteilhaussystem
EP0150242B1 (de) * 1984-01-28 1987-07-29 Lorenz Kesting Fertigteil zum Aufbau eines über seine Wände klimatisierten Gebäudes
DE3609452A1 (de) * 1985-03-04 1987-01-29 Georg Thesz Aussenwandkonstruktion an einem bauwerk
DE8607689U1 (de) * 1986-03-20 1986-07-03 Roehm Gmbh, 6100 Darmstadt Zu einem Plattenstapel verschweißbare Kunststoffplatte und daraus gefertigter Plattenstapel
FR2651261A1 (fr) * 1989-08-30 1991-03-01 Prevost Jean Sysreme de ventilation interne, continu, statique ou renouvele intercheangeable, pour bloc prefabrique, composite ou non, avec son encolleur special.

Also Published As

Publication number Publication date
EP0479308A2 (de) 1992-04-08
EP0479308A3 (en) 1992-10-21
DE4031614A1 (de) 1992-04-09
ATE135435T1 (de) 1996-03-15
DE59107538D1 (de) 1996-04-18

Similar Documents

Publication Publication Date Title
EP1062463B1 (de) Klimatisierungsverfahren von gebäuden sowie klimatisiertes gebäude
AT505298B1 (de) Plattenförmiges verkleidungselement für eine mauer und mauerverkleidung
DE69217654T2 (de) Temperaturregulierung verschiedener gebäudeteile des hauses
DE3211536A1 (de) Mehrschaliger schornstein
DE102013209257A1 (de) Wärmedämmverbundsystem
EP0479308B1 (de) Gebäude
EP0097361A1 (de) Wandelemente für Fertighäuser
DE4218709C2 (de) Bauelement für Hochbauwerke
EP0150242B1 (de) Fertigteil zum Aufbau eines über seine Wände klimatisierten Gebäudes
DE2915494C2 (de) Einrichtung zur Wärmerückgewinnung für eine mit einer Wärmepumpe betriebene Heizungsanlage
DE3609452C2 (de)
DE4417058C2 (de) Verbund-Außenwand eines Holzhauses
DE19608702A1 (de) Wandkonstruktion
EP3904617A1 (de) Lehmbaustein und lehmbausteinsystem
WO2002036896A1 (de) Niedrigenergiegebäude
DE7717974U1 (de) Klimafassade
DE3013520A1 (de) Gasbetonelement mit aussparungen
AT410956B (de) Bauteil
DE3409232A1 (de) Waermeisoliertes gebaeude, insbesondere wohnhaus
CH688449A5 (de) Zweischaliges Mauerwerk in Waermedaemmbauweise, sowie Ziegel fuer das Vormauerwerk hierfuer.
DE4134931A1 (de) Gebaeude
DE8913493U1 (de) Kaminrohr
DE4124674A1 (de) Solarwaerme-speicherhaus
WO2001086085A1 (de) Gebäudekonstruktion sowie formelemente zum aufbau derselben
WO1988001664A1 (en) Multi-purpose building element

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19930419

17Q First examination report despatched

Effective date: 19940603

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19960313

Ref country code: FR

Effective date: 19960313

Ref country code: GB

Effective date: 19960313

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19960313

REF Corresponds to:

Ref document number: 135435

Country of ref document: AT

Date of ref document: 19960315

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59107538

Country of ref document: DE

Date of ref document: 19960418

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19960313

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19961004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19961031

Ref country code: LI

Effective date: 19961031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19961127

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980701

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

Ref country code: CH

Ref legal event code: EP

Ref country code: CH

Ref legal event code: NV

Representative=s name: BUECHEL & PARTNER AG PATENTBUERO