EP0471171A2 - Device for regulating and limiting the power of a heating plate of ceramic or similar material - Google Patents

Device for regulating and limiting the power of a heating plate of ceramic or similar material Download PDF

Info

Publication number
EP0471171A2
EP0471171A2 EP91110463A EP91110463A EP0471171A2 EP 0471171 A2 EP0471171 A2 EP 0471171A2 EP 91110463 A EP91110463 A EP 91110463A EP 91110463 A EP91110463 A EP 91110463A EP 0471171 A2 EP0471171 A2 EP 0471171A2
Authority
EP
European Patent Office
Prior art keywords
heating
temperature
glass ceramic
zone
heating elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP91110463A
Other languages
German (de)
French (fr)
Other versions
EP0471171A3 (en
EP0471171B1 (en
Inventor
Bernd Schultheis
Klaus Kristen
Martin Taplan
Herwig Scheidler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schott AG
Carl Zeiss AG
Original Assignee
Carl Zeiss AG
Schott Glaswerke AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carl Zeiss AG, Schott Glaswerke AG filed Critical Carl Zeiss AG
Publication of EP0471171A2 publication Critical patent/EP0471171A2/en
Publication of EP0471171A3 publication Critical patent/EP0471171A3/en
Application granted granted Critical
Publication of EP0471171B1 publication Critical patent/EP0471171B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/68Heating arrangements specially adapted for cooking plates or analogous hot-plates
    • H05B3/74Non-metallic plates, e.g. vitroceramic, ceramic or glassceramic hobs, also including power or control circuits
    • H05B3/746Protection, e.g. overheat cutoff, hot plate indicator
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/04Heating plates with overheat protection means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/05Heating plates with pan detection means
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2213/00Aspects relating both to resistive heating and to induction heating, covered by H05B3/00 and H05B6/00
    • H05B2213/07Heating plates with temperature control means

Definitions

  • the invention relates to a method for power control and limitation in a heating surface made of glass ceramic or a comparable material, in particular a glass ceramic cooking surface, the individual heating zones of the heating surface being heated in a manner known per se with heating devices with a plurality of independently switchable and controllable heating elements.
  • the invention further relates to a preferred device for carrying out the method in a hob with a glass ceramic hob.
  • Heating surfaces made of glass ceramic or a comparable material are also used, for example, as wall or ceiling radiators, heat exchangers or other large-area heating devices which can be heated in any way.
  • the heating power for the heating devices is set permanently by the user or electronically, electromechanically or, in the case of gas stoves, by means of a selectable time program via valves, purely mechanically controlled.
  • Corresponding controls are described for example in the patent specification DE-PS 3 639 186 A1.
  • DE-OS 33 14 501 A 1 describes a heating plate with two concentric heating circuits, in which the outer heating circuit is designed as an auxiliary heating circuit.
  • DE-PS 34 06 604 relates to a heating device in which the heating zone is heated by means of several high and normal temperature radiation heating elements.
  • the heating elements are arranged in such a way that the heating point is divided into two concentric zones, the inner zone being heated only by the high-temperature radiation heating elements which can preferably be used as auxiliary heating elements in the boiling phase and the outer zone by the normal-temperature radiation heating elements.
  • a comparable arrangement of several radiant heating elements in the area of a cooking zone can also be found in US Pat. No. 4,639,579.
  • a heating device with a gas burner which has two burner chambers which can be acted upon independently of one another and which, for example, Can limit concentric zones in the cooking zone area is described in US Pat. No. 4,083,355.
  • Protective temperature limiter for example between the heating elements and the glass ceramic surface mostly along a diameter arranged rod expansion switches, which usually switch off the heating device completely or reduce its performance when a certain limit temperature is exceeded. After running through a hysteresis, the full heating output is switched on again. From DE-OS 3 314 501, for example, a rod expansion switch with two different switching points is known, which switches accordingly at two different temperatures.
  • the abnormal loading conditions described above can lead to damage to the glass ceramic cooktop on the one hand and on the other hand considerably impair the efficiency of the cooking system.
  • the object of the invention is to provide an improved method for power control and limitation in the case of a heating surface made of glass ceramic or a comparable material, in particular in the case of a glass ceramic cooking surface, which enables the cooking system to be used optimally even when poor cookware is used, but also the thermal load to keep the heating surface small.
  • Another object of the invention is to provide a suitable device for carrying out the method in a hob with a glass ceramic hob.
  • the temperature distribution in the heating zone is recorded with a plurality of independent temperature sensors arranged in the area of a heating zone, which can be integrated into the cooking zone area, for example, and the temperature signals obtained therefrom are used to detect the temperature distribution in the heating zone Switching and controlling the heating elements or heating circuits assigned to the heating zone independently of one another in such a way that the power distribution and thus the surface load of the heating zone is adapted to the locally different heat flow, which, for example, depends on the geometry of the support surface of the pots placed on the hob.
  • heating takes place, for example, even when the pot quality is poor, with optimal heating output, while in places where there is little heat extraction, the heating output is prevented by overheating by reducing the number of cycles, for example.
  • the conversion of the temperature measurement signals into control signals for the power supply of the heating elements is carried out with the help of control devices known per se.
  • the power supply for the heating elements is interrupted until the temperature in the assigned overheated cooking zone area is again below the threshold temperature.
  • the full heating output is then switched on again.
  • the power supply for the heating elements is reduced continuously or stepwise at intervals, for example to a level which is reduced by at least 10%, until the heating power of the heating elements is optimally matched to the maximum possible heat removal in the assigned area of the heating zone is adapted.
  • the gradual power reduction at different switching temperatures can take place in a manner known per se in such a way that for each switching temperature there is a separate temperature sensor in the area of the heating zone assigned to the respective heating element.
  • Mutually independent temperature sensors in the sense of this invention can be, for example, electromechanical temperature sensors with a plurality of mutually independent switching contacts, such as the known rod expansion switches, for example in the form of capillaries filled with molten salt, with several, but at least two, mutually independent switching contacts.
  • the switching contact which limits the maximum surface temperature, should advantageously respond at a temperature which is at least 10 K above the switching temperatures of the other switching contacts, with the aid of which the power is reduced.
  • Thermally conductive rods or sheets or the like can also be used as temperature sensors, to which the actual temperature sensor is coupled outside the radiator or the heated zone.
  • thermocouples or other suitable temperature sensors arranged in the form of a grid in the area of the heating zone. In order to ensure sufficient thermal contact with the heating surface, these must be pressed onto the heating surface. Such temperature sensors can also be integrated into the heating surface. For example, thermocouples can be embedded or rolled into the heating surface.
  • the temperature sensors known from DE-PS 21 39 828 and integrated into the heating surfaces are preferably used.
  • two parallel conductor tracks are applied to the heating surface in the area of the heating zones in a manner known per se, for example by means of screen printing or vapor deposition or other methods, and then baked.
  • the very strong temperature-dependent electrical resistance of the glass ceramic delimited between the conductor tracks represents the actual temperature sensor.
  • large-scale temperature sensors of any shape can be implemented in a simple manner, which permit area-wide temperature monitoring.
  • This can also be used, for example Monitor and control large-area heat radiators and heat exchangers with heating surfaces made of glass ceramic, glass or similar materials.
  • the geometrical arrangement of the conductor tracks in the region of a heating zone is expediently adapted to the geometrical arrangement of the heating elements and to the expected temperature distribution in the case of known anomalous thermal load cases.
  • the temperature sensors advantageously detect all essential parts of the heated areas of the heating zone assigned to the heating elements, so that local overheating is also detected. For example, heating coil loops or in the area of flame tips, e.g. with gas heating, higher temperatures occur at these points than neighboring points. These temperature peaks must be recorded, otherwise the heating surface can be damaged at these points.
  • FIGS. 1 and 2 show an example of a device which is particularly suitable for carrying out the method according to the invention in a hob with a glass ceramic hob.
  • gold conductor tracks (2) are arranged within the cooking zone (1) of a glass ceramic hob on the glass ceramic underside.
  • the conductor track is selected such that the outer circle (3a) and the inner circle (3b) of a two-circuit heating element (4) are each covered with ring-shaped conductor tracks.
  • the connection areas (5) lie outside the cooking zone (1) for protection against thermal loads.
  • Figure 2 shows the arrangement consisting of the glass ceramic plate (6), the two-circuit heating element (4) with the heating coils (4a) and the printed conductors (2) printed on the underside of the glass ceramic and the connection areas (5) in section.
  • the invention is in no way limited to the use of the two-circuit heating elements shown in FIGS. 1 and 2.
  • any heating device can be used that is composed of several heating elements that can be switched and controlled independently of one another in the area of a cooking zone.
  • the invention can e.g. can also be used with gas burners, e.g. also in the gas burner known from US Pat. No. 4,083,355 with two burner chambers which can be acted upon independently of one another by fuel.
  • the heating elements can e.g. be arranged in a grid below the cooking zone.
  • the geometric arrangement of the heating elements is advantageously adapted to the geometry of the cookware or to the temperature distribution in the cooking zone area in the case of known anomalous thermal loads, so that effective control of the power distribution to the locally different heat extraction is possible.
  • the conductor tracks (2) cover only a small part of the cooking zone. Track widths of ⁇ 3 mm are preferred. In the present case, the conductor tracks are 1-2 mm wide, so that the total area of the conductor tracks is small in relation to the area of the heated zone. Influencing the This minimizes the total heat flow.
  • the surface resistance of these interconnect layers is ⁇ 50 m ⁇ / ⁇ with layer thicknesses below 1 ⁇ m.
  • FIGS. 3a and 3b show corresponding arrangements for square and oval multi-circuit heating elements.
  • the parallel conductor tracks (2) within the cooking zone (1) delimit narrow circular or linear temperature measuring zones in which the glass ceramic volume delimited by the conductor tracks serves as a temperature-dependent resistor.
  • the temperature coefficient of these measuring resistors is negative. It is strongly temperature-dependent and is e.g. for glass ceramics of the SiO2-Al2O3-Li2O system at 300 ° C 3.3% / ° C.
  • the constants a and b are constants dependent on the geometry of the conductor tracks and on the glass ceramic (a in Ohm * cm and b in Kelvin).
  • T i is the absolute temperature of each differential resistor in Kelvin.
  • the total electrical resistance is determined by the smallest resistance at the point of the highest temperature of the sensor zones, which results in an automatic display of the maximum temperature in the respective sensor zone. Locally occurring high temperatures cause one or more differential resistors to become low-ohmic in relation to the other differential resistors that are in colder zones, so that the total resistance of a sensor according to Eq. 2 becomes very small.
  • FIG. 4 schematically shows a section of the opposite conductor tracks (2) for clarification.
  • the glass ceramic defined between them can be understood as a parallel connection of many temperature-dependent differential resistors.
  • the conversion of the temperature-dependent change in conductivity of the glass ceramic into a measurement signal can be implemented in a voltage divider supplied with AC voltage, in which a resistance is formed by the temperature-dependent resistance of the sensor surfaces.
  • the fixed resistors of the voltage divider must be selected so that at temperatures that exceed the permissible temperature / time load, sufficient signal changes can be picked up on the voltage divider for further processing.
  • the temperature range in which the largest signal swing occurs can be changed by adjusting the fixed resistors.
  • the fixed resistors also serve to limit the current.
  • the AC voltage is necessary to avoid polarization effects of the glass ceramic and the associated electrochemical decomposition due to the ion migration. Frequencies in the range between 50 Hz and 1000 Hz are preferred for the applied AC voltage.
  • FIG. 5a schematically shows the circuit arrangement according to the invention, a voltage divider (7) for each temperature sensor being shown in each case.
  • Both voltage dividers are supplied by an AC voltage source (8), shown here as a transformer. This ensures that the glass ceramic, shown here as a temperature-dependent resistor (9), is not flowed through by direct current.
  • the two fixed resistors (10a) and (10b) were chosen so that a large signal change in the range from 500 to 600 ° C occurs. This temperature range is characteristic of the surface temperatures that occur in practice within the cooking zones (1) of glass ceramic hobs.
  • the AC voltage signal present at the voltage divider is rectified via a rectifier circuit and fed to a suitable electronic circuit.
  • a rectifier circuit can be operational amplifiers, which are connected as comparators, or other circuits and components known from electronics, such as ⁇ -processors or the like.
  • the signals supplied by the sensors are processed in these circuits in such a way that a signal is available at their output with which the individual heating circuits can be controlled via relays or power semiconductor components such as triac's or MOS-FET's.
  • the power control can take place, for example, by means of phase control, half or full wave packet control with different duty cycles, so that constant temperature controls are also possible.
  • the output signal of the control electronics can also be supplied to the semiconductor components described above via optocouplers or other circuits which serve for the electrical isolation between control electronics and power section. So-called zero voltage switches can also be implemented, which only switch the individual heating circuits of the heating elements at zero voltage crossing.
  • the signal tapped at the voltage divider (7) is fed via a rectifier circuit (11) to the one input of an operational amplifier (12) connected as a comparator.
  • the comparator has the task of comparing the temperature-dependent signal originating from the sensor arrangement with a fixed voltage value, the threshold voltage Us in FIG. 5b. If the voltage from the sensor is above the threshold voltage, which would be the case in the present arrangement at relatively low temperatures, e.g. when using good dishes, the output of the comparator is switched through.
  • This signal is fed via a diode (13) and an optocoupler (14) to a semiconductor AC switch (triac) with an integrated zero voltage switch (15) which controls the heating coil (4a) of a heating circuit. It is particularly important that the present arrangement provides galvanic isolation between the electronic measuring circuit and the power section.
  • the output of the comparator (12) switches to negative potential.
  • the diode (13) blocks, so that the triac (15) also blocks.
  • the corresponding heating circuit is switched off.
  • the temperature of the glass ceramic decreases again, as a result of which the electrical resistance of the sensors increases again.
  • This increases the voltage at the output of the voltage divider back to.
  • the output of the comparator (12) switches back to positive potential, as a result of which the triac (15), which is now conductive again, ignites at zero crossing and thus the corresponding one Heating coil is switched on. With this arrangement, regulation is thus possible, separately for each heating circuit.
  • FIG. 6a shows the voltage curve over time for U i (inner circle) and U a (outer circle).
  • pots of good quality are provided with the full nominal output, which, based on the area of the cooking zone, can be considerably higher than that of the heating elements previously used in glass ceramic cooktops. This significantly increases the performance of the cooking system.
  • the power distribution is changed so that the temperature / time load on the glass ceramic is reduced under the pan base. In the areas of the cooking zone in which the pot stands up and good heat extraction takes place, an increased power density compared to conventional heating systems is maintained, while in areas with poor thermal contact the power is reduced accordingly. Overall, the cooking time is reduced due to the higher average power offered for parboiling with poor dishes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Control Of Resistance Heating (AREA)
  • Electric Stoves And Ranges (AREA)
  • Resistance Heating (AREA)
  • Control Of Temperature (AREA)
  • Glass Compositions (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

A method is described for regulating and limiting the power of a heating plate made of ceramic or similar material, in particular a glass-ceramic cooking plate. In a heating plate in which the individual heating zones are in each case heated by a plurality of heating elements which can be switched and controlled independently of one another, it is provided according to the invention that the individual heating elements are switched and regulated independently of one another, by means of a plurality of temperature sensors which are independent of one another and are arranged in the region of the heating zone such that all the points of the regions which are significant for one load case, particularly local hotspots, are detected, in such a manner that the power distribution in the heating zone region is largely matched to the locally different heat extraction. This has the advantage that the heating system can be used optimally, while the thermal stress of the heating plate material is, however, reduced. <IMAGE>

Description

Die Erfindung betrifft ein Verfahren zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material, insbesondere einer Glaskeramikkochfläche, wobei die einzelnen Heizzonen der Heizfläche in an sich bekannter Weise mit Heizeinrichtungen mit mehreren unabhängig voneinander schalt- und steuerbaren Heizelementen beheizt werden. Die Erfindung betrifft des weiteren eine bevorzugte Vorrichtung zur Durchführung des Verfahrens bei einem Kochfeld mit Glaskeramikkochfläche.The invention relates to a method for power control and limitation in a heating surface made of glass ceramic or a comparable material, in particular a glass ceramic cooking surface, the individual heating zones of the heating surface being heated in a manner known per se with heating devices with a plurality of independently switchable and controllable heating elements. The invention further relates to a preferred device for carrying out the method in a hob with a glass ceramic hob.

Heizflächen aus Glaskeramik oder einem vergleichbaren Material finden beispielsweise auch Verwendung als Wand- oder Deckenstrahler, Wärmetauscher oder andere großflächige Beheizungseinrichtungen, die in beliebiger Weise beheizt werden können.Heating surfaces made of glass ceramic or a comparable material are also used, for example, as wall or ceiling radiators, heat exchangers or other large-area heating devices which can be heated in any way.

Von besonderem Interesse sind heutzutage elektrisch oder gasbeheizte Kochfelder oder Einzelkochstellen, deren Heizfläche aus Glaskeramik besteht. Kochfelder dieser Art sind allgemein bekannt und schon vielfach in der Patentliteratur beschrieben worden. Die Beheizung der Heizzonen dieser Kochfelder (ohne Beschränkung der Allgemeinheit werden die Heizzonen bei Kochfeldern im folgenden auch Kochzonen genannt) erfolgt mittels unterhalb der Glaskeramikkochfläche angeordneter Heizeinrichtungen, z.B. elektrisch betriebene Kontaktheizelemente, Strahlungsheizelemente oder Gasbrenner. Weiterhin sind noch Induktionskochfelder bekannt.Of particular interest nowadays are electric or gas-heated hobs or individual hobs, the heating surface of which is made of glass ceramic. Hobs of this type are generally known and have been described many times in the patent literature. The heating zones of these cooktops are heated (without limitation of generality, the heating zones for cooktops are also referred to below as cooking zones) by means of heating devices arranged underneath the glass ceramic cooktop, e.g. electrically operated contact heating elements, radiant heating elements or gas burners. Induction hobs are also known.

Bei den bekannten Haushaltskochfeldern wird die Heizleistung für die Heizeinrichtungen durch Vorgabe vom Benutzer fest eingestellt oder durch ein wählbares Zeitprogramm elektronisch, elektromechanisch oder, bei Gasherden über Ventile, rein mechanisch gesteuert. Entsprechende Steuerungen sind beispielsweise in der Patentschrift DE-PS 3 639 186 A1 beschrieben.In the known domestic cooktops, the heating power for the heating devices is set permanently by the user or electronically, electromechanically or, in the case of gas stoves, by means of a selectable time program via valves, purely mechanically controlled. Corresponding controls are described for example in the patent specification DE-PS 3 639 186 A1.

Es ist bekannt, Heizzonen eines Glaskeramikkochfeldes, die einen größeren Durchmesser aufweisen, zum Beispiel um Töpfe mit größerem Durchmesser und/oder unrunder, beispielsweise ovaler, Bodenfläche zu erhitzen, mit Heizelementen mit mehreren Heizkreisen zu beheizen. Es ist auch bekannt, neben den ständig in Betrieb befindlichen Dauerheizelementen sog. Zuschaltheizelemente einzusetzen, die nur in der Ankochphase mit Leistung beaufschlagt werden, um eine beschleunigte Aufheizung der Kochzone zu erzielen. Die geometrische Anordnung der Heizelemente bzw. Heizkreise unterhalb einer Heizzone ist dabei üblicherweise an die Geometrie des Kochgeschirrs angepaßt.It is known to heat heating zones of a glass ceramic cooktop which have a larger diameter, for example in order to heat pots with a larger diameter and / or non-circular, for example oval, bottom surface, with heating elements with a plurality of heating circuits. It is also known to use so-called add-on heating elements in addition to the permanent heating elements which are in operation and which are only subjected to power in the heating phase in order to achieve accelerated heating of the cooking zone. The geometric arrangement of the heating elements or heating circuits below a heating zone is usually adapted to the geometry of the cookware.

So wird zum Beispiel in der DE-OS 33 14 501 A 1 eine Heizplatte mit zwei zueinander konzentrischen Heizkreisen beschrieben, bei welcher der äußere Heizkreis als Zuschaltheizkreis ausgelegt ist.For example, DE-OS 33 14 501 A 1 describes a heating plate with two concentric heating circuits, in which the outer heating circuit is designed as an auxiliary heating circuit.

Die DE-PS 34 06 604 betrifft eine Heizeinrichtung, bei der die Heizzone mittels mehrerer Hoch- und Normaltemperaturstrahlungsheizelemente beheizt wird. Die Heizelemente sind dabei so angeordnet, daß die Heizstelle in zwei zueinander konzentrische Zonen aufgeteilt ist, wobei die innere Zone ausschließlich durch die vorzugsweise als Zuschaltheizelemente in der Ankochphase einsetzbaren Hochtemperaturstrahlungsheizelemente beheizbar ist und die äußere Zone durch die Normaltemperaturstrahlungsheizelemente. Eine vergleichbare Anordnung von mehreren Strahlungsheizelementen im Bereich einer Kochzone ist auch in der US-PS 4 639 579 zu finden.DE-PS 34 06 604 relates to a heating device in which the heating zone is heated by means of several high and normal temperature radiation heating elements. The heating elements are arranged in such a way that the heating point is divided into two concentric zones, the inner zone being heated only by the high-temperature radiation heating elements which can preferably be used as auxiliary heating elements in the boiling phase and the outer zone by the normal-temperature radiation heating elements. A comparable arrangement of several radiant heating elements in the area of a cooking zone can also be found in US Pat. No. 4,639,579.

Eine Heizeinrichtung mit einem Gasbrenner, der zwei unabhängig voneinander mit Gas beaufschlagbare Brennerkammern aufweist, die z.B. zueinander konzentrische Zonen im Kochzonenbereich begrenzen können, wird in der US-PS 4 083 355 beschrieben.A heating device with a gas burner which has two burner chambers which can be acted upon independently of one another and which, for example, Can limit concentric zones in the cooking zone area is described in US Pat. No. 4,083,355.

Bei den üblicherweise eingesetzten Glaskeramiken sind die maximalen Betriebstemperaturen auf 700°C zu begrenzen. Um Überhitzungen der Glaskeramikheizfläche zu vermeiden, werden daher in der Regel sogenannte Schutztemperaturbegrenzer, z.B. zwischen den Heizelementen und der Glaskeramikfläche meist längs eines Durchmessers angeordnete Stabausdehnungsschalter, eingesetzt, die üblicherweise bei Überschreiten einer bestimmten Grenztemperatur die Heizeinrichtung ganz abschalten oder in ihrer Leistung vermindern. Nach Durchlaufen einer Hysteresis wird die volle Heizleistung wieder eingeschaltet. Aus der DE-OS 3 314 501 ist beispielsweise ein Stabausdehnungsschalter mit zwei unterschiedlichen Schaltpunkten bekannt, der entsprechend bei zwei unterschiedlichen Temperaturen schaltet.With the commonly used glass ceramics, the maximum operating temperatures must be limited to 700 ° C. To avoid overheating of the glass ceramic heating surface, so-called Protective temperature limiter, for example between the heating elements and the glass ceramic surface mostly along a diameter arranged rod expansion switches, which usually switch off the heating device completely or reduce its performance when a certain limit temperature is exceeded. After running through a hysteresis, the full heating output is switched on again. From DE-OS 3 314 501, for example, a rod expansion switch with two different switching points is known, which switches accordingly at two different temperatures.

Aus der deutschen Patentschrift DE-PS 21 39 828 ist bekannt, daß Glas, Glaskeramik oder ähnliche Materialien einen von der Temperatur abhängigen elektrischen Widerstand besitzen, so daß daraus durch Aufbringen von Leiterbahnen, z.B. aus Edelmetallen, Temperaturmeßwiderstände mit steiler Widerstands-Temperatur-Kennlinie, ähnlich den der bekannten NTC-Widerstände, hergestellt werden können.From the German patent DE-PS 21 39 828 it is known that glass, glass ceramics or similar materials have a temperature-dependent electrical resistance, so that from this by applying conductor tracks, e.g. from precious metals, temperature measuring resistors with a steep resistance-temperature characteristic, similar to that of the known NTC resistors, can be produced.

Diese Art von Temperatur-Sensoren werden in der DE-OS 37 44 372 in Verbindung mit entsprechender Beschaltung dazu benutzt, den o.g. Schutztemperaturbegrenzer vollkommen zu ersetzen. Dazu werden in jeder Kochzone jeweils zwei zueinander parallele Leiterbahnen, die jeweils einen streifenförmigen Glaskeramikwiderstand begrenzen, längs eines halben Durchmessers auf die Glaskeramikkochfläche aufgebracht.This type of temperature sensors are used in DE-OS 37 44 372 in connection with appropriate wiring to the above. Protective temperature limiter to be replaced completely. For this purpose, two mutually parallel conductor tracks, each of which delimit a strip-shaped glass ceramic resistor, are applied to the glass ceramic cooking surface along a half diameter in each cooking zone.

Die Praxis hat gezeigt, daß anomale thermische Belastungszustände bei Glaskeramikkochflächen ihre Ursache meist in der Verwendung schlechten Kochgeschirrs oder Fehlbedienungen haben.Practice has shown that abnormal thermal stress conditions in glass ceramic cooktops are mostly caused by the use of poor cookware or incorrect operation.

So tritt z.B. bei Kochgeschirr mit unebener Auflagefläche ein örtlich unterschiedlicher Wärmeentzug in der Kochzone auf. Durch Unachtsamkeit kann leerkochendes Geschirr noch höhere Temperatur/Zeit-Belastungen für die Glaskeramik verursachen. Weitere Extrembelastungen verursachen Töpfe mit zu kleinen Durchmessern sowie versehentlich versetzt, d.h. nicht zentrisch aufgestellte Töpfe. In diesen Fällen wird die Kochzone in den vom Topf nicht abgedeckten Bereichen überhitzt. Die Obefflächentemperatur der Glaskeramik kann in solchen Fällen erheblich über den im Leerlauf, d.h. ohne Topf, gemessenen Temperaturen liegen. Temperaturerhöhungen von bis zu 200 K über der Oberflächentemperatur im Leerlauf sind möglich.For example, in the case of cookware with an uneven support surface, there is a different local extraction of heat in the cooking zone. Carelessly empty dishes can cause even higher temperature / time loads for the glass ceramic. Other extreme loads cause pots with diameters that are too small and that they are accidentally offset, ie pots that are not centered. In these cases, the cooking zone is overheated in the areas not covered by the pot. In such cases, the surface temperature of the glass ceramic can be considerably higher than that when idling, ie without pot, measured temperatures. Temperature increases of up to 200 K above the surface temperature when idling are possible.

Diese anomalen thermischen Belastungen im Bereich der Kochzonen können sich im Laufe der Zeit zu hohen Temperatur/Zeit-Belastungen aufaddieren und die Zerstörung der Kochflächen zur Folge haben. Extrem hohe Temperaturen können das aufgesetzte Kochgeschirr und auch die Glaskeramikkochfläche beschädigen. Topfemaille kann beispielsweise bei versehentlich leerkochendem Stahlemail-Geschirr anschmelzen. Ebenso kann leerkochendes Aluminium-Geschirr durch schmelzendes Aluminium die Glaskeramikoberfläche beschädigen.These abnormal thermal loads in the area of the cooking zones can add up to high temperature / time loads over time and result in the destruction of the cooking surfaces. Extremely high temperatures can damage the attached cookware and the glass ceramic cooktop. Pot enamel can melt, for example, if steel enamel dishes accidentally empty. Empty aluminum dishes can also damage the glass ceramic surface due to melting aluminum.

Da in der Praxis sowohl schlechtes bzw. ungeeignetes Kochgeschirr verwendet wird als auch die o.g. Fehlbedienungen vorkommen, muß die maximale Oberflächentemperatur im Leerlauf begrenzt werden. Aus dem gleichen Grund ist die spezifische Leistungsdichte der Heizeinrichtungen, bezogen auf die Fläche der beheizten Zone, auf derzeit ca. 7 Watt/cm² begrenzt.Since in practice both bad or unsuitable cookware is used as well as the above Operating errors occur, the maximum surface temperature must be limited when idling. For the same reason, the specific power density of the heating devices, based on the area of the heated zone, is currently limited to approximately 7 watts / cm².

Die oben geschilderten anomalen Belastungszustände können einerseits zur Beschädigung der Glaskeramikkochfläche führen und andererseits den Wirkungsgrad des Kochsystems erheblich verschlechtern.The abnormal loading conditions described above can lead to damage to the glass ceramic cooktop on the one hand and on the other hand considerably impair the efficiency of the cooking system.

Es ist zwar bekannt, daß bei schlechtem Kochgeschirr die von der Heizenrichtung angebotene mittlere Leistung gesteigert werden kann, wenn die Leerlaufjustierung der Heizeinrichtung erhöht wird. Dies führt in der Regel zu einer Verkürzung der Ankochdauer. Allerdings ist bei ständiger Verwendung dieses Geschirrs durch die Erhöhung der Leerlaufjustierung das Überschreiten der Temperatur/Zeit-Belastungsgrenze und damit die mögliche Zerstörung der Glaskeramikkochfläche nicht auszuschließen.It is known that in the case of poor cookware, the average power offered by the heating device can be increased if the idle adjustment of the heating device is increased. This usually leads to a shorter cooking time. However, if this tableware is used continuously, the increase in the idle adjustment means that the temperature / time load limit can be exceeded and thus the possible destruction of the glass ceramic cooktop cannot be ruled out.

Bei Verwendung guten Kochgeschirrs kann mit dieser Methode keine Steigerung der mittleren Leistung erzielt, und damit verbunden, die Ankochdauer gesenkt werden. Gutes Kochgeschirr entzieht der Glaskeramik so viel Wärme, daß der Schutztemperaturbegrenzer während der Ankochvorgänge selten oder überhaupt nicht anspricht. In der Regel steht bei Ankochvorgängen in Verbindung mit gutem Kochgeschirr immer die volle Nennleistung der Heizeinrichtung zur Verfügung. Die Leistungsfähigkeit läßt sich hier nur durch Anheben der Heizleistung und durch gleichzeitige Anhebung der Leerlaufjustierung des Schutztemperaturbegrenzers mit den bereits geschilderten Nachteilen steigern.If good cookware is used, this method cannot achieve an increase in the average output and, as a result, the cooking time can be reduced. Good cookware draws so much heat from the glass ceramic that the protective temperature limiter rarely or not at all responds during the cooking process. As a rule, in the parboiling process Combined with good cookware, the full rated output of the heating device is always available. The efficiency can only be increased here by increasing the heating power and simultaneously increasing the idle adjustment of the protective temperature limiter with the disadvantages already described.

Die Aufgabe der Erfindung ist, ein verbessertes Verfahren zur Leistungssteuerung und -begrenzung bei einer Heizfläche aus Glaskeramik oder einem vergleichbaren Material, insbesondere bei einer Glaskeramikkochfläche bereitzustellen, welches es ermöglicht, auch bei Verwendung schlechten Kochgeschirrs das Kochsystem optimal zu nutzen, dabei aber die thermische Belastung der Heizfläche gering zu halten.The object of the invention is to provide an improved method for power control and limitation in the case of a heating surface made of glass ceramic or a comparable material, in particular in the case of a glass ceramic cooking surface, which enables the cooking system to be used optimally even when poor cookware is used, but also the thermal load to keep the heating surface small.

Eine weitere Aufgabe der Erfindung besteht darin, eine geeignete Vorrichtung zur Durchführung des Verfahrens bei einem Kochfeld mit Glaskeramikkochfläche bereitzustellen.Another object of the invention is to provide a suitable device for carrying out the method in a hob with a glass ceramic hob.

Die Aufgabe wird gelöst durch ein Verfahren mit den Merkmalen des Patentanspruchs 1. Eine geeignete Vorrichtung ist im Patentanspruch 5 beschrieben.The object is achieved by a method having the features of claim 1. A suitable device is described in claim 5.

Nach der Erfindung ist vorgesehen, mit mehreren voneinander unabhängigen, im Bereich einer Heizzone angeordneten Temperatursensoren, die beispielsweise bei einem Kochfeld in die Kochzonenfläche integriert sein können, die Temperaturverteilung in der Heizzone, insbesondere örtliche Überhitzungen, zu erfassen und mit den daraus gewonnenen Temperatursignalen die der Heizzone zugeordneten Heizelemente bzw. die Heizkreise unabhängig voneinander derart zu schalten und zu steuern, daß die Leistungsverteilung und damit die Flächenbelastung der Heizzone an den örtlich unterschiedlichen Wärmefluß, der zum Beispiel bei Kochfeldern von der Geometrie der Auflagefläche der aufgesetzten Töpfe abhängig ist, angepaßt wird.According to the invention, the temperature distribution in the heating zone, in particular local overheating, is recorded with a plurality of independent temperature sensors arranged in the area of a heating zone, which can be integrated into the cooking zone area, for example, and the temperature signals obtained therefrom are used to detect the temperature distribution in the heating zone Switching and controlling the heating elements or heating circuits assigned to the heating zone independently of one another in such a way that the power distribution and thus the surface load of the heating zone is adapted to the locally different heat flow, which, for example, depends on the geometry of the support surface of the pots placed on the hob.

An Stellen des größten Energieentzugs erfolgt die Beheizung somit z.B. auch bei schlechter Topfqualität mit optimaler Heizleistung, während an Stellen mit geringem Wärmeentzug durch Verminderung, z.B. Takten, der Heizleistung Überhitzungen vermieden werden.In places where energy is extracted the most, heating takes place, for example, even when the pot quality is poor, with optimal heating output, while in places where there is little heat extraction, the heating output is prevented by overheating by reducing the number of cycles, for example.

Die Umwandlung der Temperaturmeßsignale in Steuersignale für die Leistungsversorgung der Heizelemente erfolgt mit Hilfe an sich bekannter Steuer- und Regeleinrichtungen.The conversion of the temperature measurement signals into control signals for the power supply of the heating elements is carried out with the help of control devices known per se.

Im einfachsten Fall wird bei Überschreiten einer vorgegebenen Schwellentemperatur die Leistungszufuhr für die Heizelemente so lange unterbrochen, bis die Temperatur in dem zugeordneten überhitzten Kochzonenbereich wieder unterhalb der Schwellentemperatur liegt. Danach wird wieder die volle Heizleistung zugeschaltet.In the simplest case, when a predetermined threshold temperature is exceeded, the power supply for the heating elements is interrupted until the temperature in the assigned overheated cooking zone area is again below the threshold temperature. The full heating output is then switched on again.

Bei Kochfeldern werden kürzere Kochzeiten jedoch dann erzielt, wenn die Leistungszufuhr für die Heizelemente in zeitlichen Abständen stetig oder stufenweise, beispielsweise jeweils auf ein um wenigstens 10 % vermindertes Niveau, so lange reduziert wird bis die Heizleistung der Heizelemente optimal an den maximal möglichen Wärmeentzug in dem zugeordneten Bereich der Heizzone angepaßt ist.In the case of hobs, however, shorter cooking times are achieved if the power supply for the heating elements is reduced continuously or stepwise at intervals, for example to a level which is reduced by at least 10%, until the heating power of the heating elements is optimally matched to the maximum possible heat removal in the assigned area of the heating zone is adapted.

Die stufenweise Leistungsreduzierung bei unterschiedlichen Schalttemperaturen kann in an sich bekannter Weise derart erfolgen, daß für jede Schalttemperatur ein gesonderter Temperatursensor in dem dem jeweiligen Heizelement zugeordneten Bereich der Heizzone vorhanden ist. Es ist jedoch von Vorteil, für diesen Zweck nur einen einzigen Temperatursensor zu verwenden, dem ein Schalt- und Steuerorgan nachgeschaltet ist, das nacheinander bei unterschiedlichen Temperaturen auf verschiedene Leistungsniveaus zurückschaltet.The gradual power reduction at different switching temperatures can take place in a manner known per se in such a way that for each switching temperature there is a separate temperature sensor in the area of the heating zone assigned to the respective heating element. However, it is advantageous to use only a single temperature sensor for this purpose, which is followed by a switching and control element, which switches back in succession to different power levels at different temperatures.

Voneinander unabhängige Temperatursensoren im Sinne dieser Erfindung können beispielsweise elektromechanisch arbeitende Temperaturfühler mit mehreren voneinander unabhängigen Schaltkontakten, wie zum Beispiel die bekannten Stabausdehnungsschalter, zum Beispiel in Form von Kapillaren mit Salzschmelzenfüllung, mit mehreren, jedoch wenigstens zwei, voneinander unabhängigen Schaltkontakten sein. Dabei sollte vorteilhafterweise der Schaltkontakt, der die maximale Oberflächentemperatur begrenzt, bei einer Temperatur ansprechen, die wenigstens 10 K über den Schalttemperaturen der übrigen Schaltkontakte liegt, mit deren Hilfe die Leistungsreduzierung vorgenommen wird.Mutually independent temperature sensors in the sense of this invention can be, for example, electromechanical temperature sensors with a plurality of mutually independent switching contacts, such as the known rod expansion switches, for example in the form of capillaries filled with molten salt, with several, but at least two, mutually independent switching contacts. The switching contact, which limits the maximum surface temperature, should advantageously respond at a temperature which is at least 10 K above the switching temperatures of the other switching contacts, with the aid of which the power is reduced.

Als Temperatursensoren können auch Wärmeleit-Stäbe oder -bleche oder dergleichen verwendet werden, an die außerhalb des Heizkörpers bzw. der beheizten Zone der eigentliche Temperatursensor angekoppelt ist.Thermally conductive rods or sheets or the like can also be used as temperature sensors, to which the actual temperature sensor is coupled outside the radiator or the heated zone.

Bei Kochfeldern mit Kochzonen mit im wesentlichen kreisförmigen Geometrien lassen sich mit Hilfe von Stabausdehnungsschaltern, die längs eines Halb- oder Durchmessers der Kochzone angeordnet sind, die meisten der bekannten anomalen Belastungsfälle, nämlich solche, die zu einer radialsymmetrischen Temperaturverteilung im Kochzonenbereich führen, vollständig erfassen. Lokal auftretende Temperaturspitzen können damit jedoch nicht detektiert werden. Zudem ist die Temperaturüberwachung nur indirekt möglich, da der Stabausdehnungsschalter keinen direkten Kontakt zur Glaskeramikunterseite besitzt, da er nur im Raum zwischen Heizquelle und Glaskeramikunterseite angeordnet ist.In cooktops with cooking zones with essentially circular geometries, most of the known anomalous load cases, namely those that lead to a radially symmetrical temperature distribution in the cooking zone area, can be completely detected with the aid of rod expansion switches which are arranged along a half or diameter of the cooking zone. However, local temperature peaks cannot be detected. In addition, temperature monitoring is only possible indirectly because the rod expansion switch has no direct contact with the underside of the glass ceramic, since it is only arranged in the space between the heating source and the underside of the glass ceramic.

Eine flächendeckende Temperaturüberwachung läßt sich beispielsweise mit Hilfe von Temperatursensoren, die aus rasterartig im Bereich der Heizzone angeordneten Thermoelementen oder anderen geeigneten Temperaturfühlern bestehen, erreichen. Um einen ausreichenden thermischen Kontakt zur Heizfläche zu gewährleisten, müssen diese an die Heizfläche angedrückt werden. Ebenso lassen sich solche Temperatursensoren in die Heizfläche integrieren. So können beispielsweise Thermoelemente in die Heizfläche eingelassen oder eingewalzt werden.Comprehensive temperature monitoring can be achieved, for example, with the aid of temperature sensors which consist of thermocouples or other suitable temperature sensors arranged in the form of a grid in the area of the heating zone. In order to ensure sufficient thermal contact with the heating surface, these must be pressed onto the heating surface. Such temperature sensors can also be integrated into the heating surface. For example, thermocouples can be embedded or rolled into the heating surface.

Bevorzugt werden die aus der DE-PS 21 39 828 bekannten, in die Heizflächen integrierten Temperatursensoren verwendet. Dazu werden auf der Heizfläche im Bereich der Heizzonen in an sich bekannter Weise zwei parallele Leiterbahnen, beispielsweise mittels Siebdruck oder Aufdampfen oder anderer Methoden, aufgebracht und anschließend eingebrannt. Der sehr stark temperaturabhängige elektrische Widerstand der zwischen den Leiterbahnen eingegrenzten Glaskeramik stellt den eigentlichen Temperatursensor dar.The temperature sensors known from DE-PS 21 39 828 and integrated into the heating surfaces are preferably used. For this purpose, two parallel conductor tracks are applied to the heating surface in the area of the heating zones in a manner known per se, for example by means of screen printing or vapor deposition or other methods, and then baked. The very strong temperature-dependent electrical resistance of the glass ceramic delimited between the conductor tracks represents the actual temperature sensor.

Mit dieser Methode lassen sich auf einfache Art großflächige Temperatursensoren mit beliebiger Gestalt realisieren, die eine flächendeckende Temperaturüberwachung zulassen. Damit lassen sich beispielsweise auch großflächige Wärmestrahler und Wärmetauscher mit Heizflächen aus Glaskeramik, Glas oder ähnlichen Materialien überwachen und steuern.With this method, large-scale temperature sensors of any shape can be implemented in a simple manner, which permit area-wide temperature monitoring. This can also be used, for example Monitor and control large-area heat radiators and heat exchangers with heating surfaces made of glass ceramic, glass or similar materials.

Die geometrische Anordnung der Leiterbahnen im Bereich einer Heizzone wird zweckmäßigerweise an die geometrische Anordnung der Heizelemente sowie an die erwartete Temperaturverteilung bei bekannten anomalen thermischen Belastungsfällen angepaßt.The geometrical arrangement of the conductor tracks in the region of a heating zone is expediently adapted to the geometrical arrangement of the heating elements and to the expected temperature distribution in the case of known anomalous thermal load cases.

Die Temperatursensoren erfassen vorteilhafterweise alle wesentlichen Teile der den Heizelementen zugeordneten beheizten Bereiche der Heizzone, so daß auch lokale Überhitzungen erfaßt werden. Beispielsweise können über Heizwendelschleifen oder im Bereich von Flammenspitzen, z.B. bei Gas-Beheizung, an diesen Stellen gegenüber benachbarten Stellen höhere Temperaturen auftreten. Diese Temperaturspitzen müssen erfaßt werden, da sonst an diesen Stellen die Heizfläche beschädigt werden kann.The temperature sensors advantageously detect all essential parts of the heated areas of the heating zone assigned to the heating elements, so that local overheating is also detected. For example, heating coil loops or in the area of flame tips, e.g. with gas heating, higher temperatures occur at these points than neighboring points. These temperature peaks must be recorded, otherwise the heating surface can be damaged at these points.

Nachfolgend wird die Erfindung anhand der Figuren näher erläutert:
Es zeigen:

Figur 1
in einer schematischen Darstellung eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens bei einem Haushaltskochfeld mit Glaskeramikkochfläche, wobei zwei ringförmige, zueinander konzentrisch angeordnete Temperatursensoren entsprechend der Anordnung der Heizkreise eines Zweikreisheizelements den Mitten- und den Randbereich einer Kochzone überwachen;
Figur 2
die Vorrichtung aus Figur 1 in einer Längsschrittdarstellung;
Figuren 3a und 3b
eine Sensoranordnung für nichtrunde Mehrkreisheizelemente
Figur 4
zur Verdeutlichung der Funktionsweise eines Glaskeramik-Temperaturmeßwiderstandes in einer schematischen Darstellung einen vergrößerten Ausschnitt aus einer Anordnung aus zwei parallel verlaufenden Leiterbahnen mit dazwischenliegendem Glaskeramikwiderstand;
Figur 5a
in einer schematischen Darstellung eine bekannte Schaltungsanordnung für die Sensoranordnung aus Figur 1 zur Einstellung des Temperaturbereichs mit größter Meßempfindlichkeit;
Figur 5b
in einer schematischen Darstellung eine bekannte Schaltungsanordnung für die Sensoranordnung aus Figur 1 zur Umwandlung der Temperaturmeßsignale in Steuersignale für die Leistungsversorgung der Heizkreise.
Figur 6
für eine mit einem Zweikreisheizelement beheizte Kochzone für vier verschiedene Belastungsfälle den Verlauf der Sensorsignale mit der Zeit bei einer Leistungssteuerung und -begrenzung gemäß der Erfindung.
The invention is explained in more detail below with reference to the figures:
Show it:
Figure 1
in a schematic representation of an apparatus for performing the method according to the invention in a domestic hob with a glass ceramic hob, two ring-shaped, concentrically arranged temperature sensors to monitor the center and the edge area of a cooking zone in accordance with the arrangement of the heating circuits of a dual-circuit heating element;
Figure 2
the device of Figure 1 in a longitudinal step representation;
Figures 3a and 3b
a sensor arrangement for non-circular multi-circuit heating elements
Figure 4
to illustrate the operation of a glass ceramic temperature measuring resistor in a schematic representation an enlarged section of an arrangement of two parallel conductor tracks with glass ceramic resistor in between;
Figure 5a
a schematic representation of a known circuit arrangement for the sensor arrangement from Figure 1 for setting the temperature range with the greatest sensitivity;
Figure 5b
a schematic representation of a known circuit arrangement for the sensor arrangement of Figure 1 for converting the temperature measurement signals into control signals for the power supply of the heating circuits.
Figure 6
for a cooking zone heated with a two-circuit heating element for four different load cases, the course of the sensor signals over time with a power control and limitation according to the invention.

Die Figuren 1 und 2 zeigen beispielhaft eine Vorrichtung, die zur Durchführung des erfindungsgemäßen Verfahrens bei einem Kochfeld mit Glaskeramikkochfläche besonders geeignet ist.FIGS. 1 and 2 show an example of a device which is particularly suitable for carrying out the method according to the invention in a hob with a glass ceramic hob.

In der vorliegenden Anordnung sind innerhalb der Kochzone (1) eines Glaskeramikkochfeldes auf der Glaskeramikunterseite Leiterbahnen (2) aus Gold angeordnet. Die Leiterbahnführung ist derart gewählt, daß der Außenkreis (3a) und der Innenkreis (3b) eines Zweikreis-Heizelements (4) jeweils mit ringförmig ausgebildeten Leiterbahnen abgedeckt sind. Die Anschlußbereiche (5) liegen zum Schutz gegen thermische Belastungen außerhalb der Kochzone (1).In the present arrangement, gold conductor tracks (2) are arranged within the cooking zone (1) of a glass ceramic hob on the glass ceramic underside. The conductor track is selected such that the outer circle (3a) and the inner circle (3b) of a two-circuit heating element (4) are each covered with ring-shaped conductor tracks. The connection areas (5) lie outside the cooking zone (1) for protection against thermal loads.

Figur 2 zeigt die Anordnung, bestehend aus der Glaskeramikplatte (6), dem Zweikreis-Heizelement (4) mit den Heizwendeln (4a) und den auf der Unterseite der Glaskeramik aufgedruckten Leiterbahnen (2) sowie den Anschlußbereichen (5) im Schnitt.Figure 2 shows the arrangement consisting of the glass ceramic plate (6), the two-circuit heating element (4) with the heating coils (4a) and the printed conductors (2) printed on the underside of the glass ceramic and the connection areas (5) in section.

Die Erfindung ist keineswegs auf die Verwendung der in den Figuren 1 und 2 dargestellten Zweikreis-Heizelemente beschränkt. Prinzipiell kann jede Heizeinrichtung verwendet werden, die sich im Bereich einer Kochzone aus mehreren unabhängig voneinander schalt- und steuerbaren Heizelementen zusammensetzt. Die Erfindung kann z.B. auch bei Gasbrennern zur Anwendung kommen, so z.B. auch bei dem aus der US-PS 4 083 355 bekannte Gasbrenner mit zwei voneinander unabhängig mit Brennstoff beaufschlagbaren Brennerkammern.The invention is in no way limited to the use of the two-circuit heating elements shown in FIGS. 1 and 2. In principle, any heating device can be used that is composed of several heating elements that can be switched and controlled independently of one another in the area of a cooking zone. The invention can e.g. can also be used with gas burners, e.g. also in the gas burner known from US Pat. No. 4,083,355 with two burner chambers which can be acted upon independently of one another by fuel.

Die Heizelemente können z.B. in einem Raster unterhalb der Kochzone angeordnet sein. Vorteilhafterweise ist die geometrische Anordnung der Heizelemente jedoch an die Geometrie des Kochgeschirrs bzw. an die Temperaturverteilung im Kochzonenbereich bei bekannten anomalen thermischen Belastungsfällen angepaßt, so daß eine wirkungsvolle Steuerung der Leistungsverteilung an den örtlich unterschiedlichen Wärmeentzug möglich wird.The heating elements can e.g. be arranged in a grid below the cooking zone. However, the geometric arrangement of the heating elements is advantageously adapted to the geometry of the cookware or to the temperature distribution in the cooking zone area in the case of known anomalous thermal loads, so that effective control of the power distribution to the locally different heat extraction is possible.

Bei den bei Kochfeldern mit Glaskeramikkochfläche möglichen Fehlbedienungen und/oder Unzulänglichkeiten des Kochgeschirrs tritt i.a. ein unterschiedlicher Wärmeentzug im Rand- und Mittenbereich der Kochzone auf. Die Verwendung von Mehrkreisheizelementen (mit und ohne Isolationsbarriere zwischen den Heizkreisen) - insbesondere Zweikreisheizelementen mit zwei zueinander konzentrischen Heizkreisen - die eine getrennte Beheizung von Rand- und Mittenbereich zulassen, ist daher für die Anwendung des erfindungsgemäßen Verfahrens besonders vorteilhaft. Es kann dabei je nach Anwendungsfall zweckmäßig sein, die einzelnen Heizkreise für unterschiedliche Flächenbelastungen auszulegen. Mit Hilfe einer ringförmigen Anordnung der Leiterbahnen über den Heizkreisen ist nicht nur eine wirkungsvolle Überwachung der den einzelnen Heizkreisen zugeordneten Bereiche der Kochzone möglich, es werden damit auch alle für einen Belastungsfall relevanten Stellen im Bereich der Kochzone erfaßt.In the event of incorrect operation and / or inadequacy of the cookware in cooktops with a glass ceramic cooktop, i.a. a different heat extraction in the edge and middle area of the cooking zone. The use of multi-circuit heating elements (with and without an insulation barrier between the heating circuits) - in particular two-circuit heating elements with two concentric heating circuits - which permit separate heating of the edge and center areas is therefore particularly advantageous for the use of the method according to the invention. Depending on the application, it may be useful to design the individual heating circuits for different surface loads. With the aid of a ring-shaped arrangement of the conductor tracks above the heating circuits, not only is it possible to effectively monitor the areas of the cooking zone assigned to the individual heating circuits, it also detects all points in the area of the cooking zone that are relevant to a load.

Die Leiterbahnen (2) decken nur einen geringen Teil der Kochzone ab. Bevorzugt sind Leiterbahnbreiten von < 3 mm. Im vorliegenden Fall sind die Leiterbahnen 1-2 mm breit, so daß die Gesamtfläche der Leiterbahnen in Bezug auf die Fläche der beheizten Zone klein ist. Eine Beeinflussung des Gesamtwärmeflusses wird dadurch minimiert. Der Flächenwiderstand dieser Leiterbahnschichten ist ≦ 50 mΩ/ bei Schichtdicken unter 1 µm.The conductor tracks (2) cover only a small part of the cooking zone. Track widths of <3 mm are preferred. In the present case, the conductor tracks are 1-2 mm wide, so that the total area of the conductor tracks is small in relation to the area of the heated zone. Influencing the This minimizes the total heat flow. The surface resistance of these interconnect layers is ≦ 50 mΩ / with layer thicknesses below 1 µm.

Man erhält so zwei voneinander unabhängige Temperatursensoren, die die beiden Heizkreise (3a) und 3b) getrennt überwachen. Analog zu der oben beschriebenen Anordnung werden für andere, nichtrunde Heizelemente den jeweiligen Umrissen bzw. Geometrien angepaßte Leiterbahnanordnungen gewählt, mit denen die einzelnen Kochzonenbereiche getrennt überwacht werden. Figur 3a und 3b zeigen entsprechende Anordnungen für eckige und ovale Mehrkreis-Heizelemente.In this way, two independent temperature sensors are obtained, which monitor the two heating circuits (3a) and 3b) separately. Analogously to the arrangement described above, conductor track arrangements are selected for other, non-circular heating elements, which are adapted to the respective contours or geometries and with which the individual cooking zone areas are monitored separately. FIGS. 3a and 3b show corresponding arrangements for square and oval multi-circuit heating elements.

Die parallel geführten Leiterbahnen (2) innerhalb der Kochzone (1) begrenzen schmale kreis- oder linienförmige Temperaturmeßzonen, in denen das von den Leiterbahnen eingegrenzte Glaskeramik-Volumen als temperaturabhängiger Widerstand dient. Die elektrische Leitung der Glaskeramik beruht, wie bei Gläsern, auf der Ionenleitung. Die Abhängigkeit wird durch das Gesetz von Rasch und Hinrichsen beschrieben:

R = a * exp (b/T)   (Gl. 1)

Figure imgb0001


R ist der spezifische Widerstand der Glaskeramik in Ohm*cm bei der absoluten Temperatur T in Kelvin.
a und b sind von der Geometrie der Leiterbahnen und von der Glaskeramik abhängige Konstanten (a in Ohm*cm und b in K).The parallel conductor tracks (2) within the cooking zone (1) delimit narrow circular or linear temperature measuring zones in which the glass ceramic volume delimited by the conductor tracks serves as a temperature-dependent resistor. As with glasses, the electrical conduction of the glass ceramic is based on the ion conduction. The dependency is described by the law of Rasch and Hinrichsen:

R = a * exp (b / T) (Eq. 1)
Figure imgb0001


R is the specific resistance of the glass ceramic in Ohm * cm at the absolute temperature T in Kelvin.
a and b are constants dependent on the geometry of the conductor tracks and on the glass ceramic (a in ohm * cm and b in K).

Der Temperaturkoeffizient dieser Meßwiderstände ist negativ. Er ist stark temperaturabhängig und beträgt z.B. für Glaskeramiken des Systems SiO₂-Al₂O₃-Li₂O bei 300°C 3.3 %/°C.The temperature coefficient of these measuring resistors is negative. It is strongly temperature-dependent and is e.g. for glass ceramics of the SiO₂-Al₂O₃-Li₂O system at 300 ° C 3.3% / ° C.

Der elektrische Gesamtwiderstand einer solchen Anordnung setzt sich aus beliebig vielen parallel geschalteten differentiellen Widerständen mit negativem Temperaturkoeffizienten zusammen und läßt sich durch die nachfolgende Gleichung ausdrücken:

1/R = 1/R₁ (T) + 1/R₂ (T) + ... + 1/R i (T) + ... 1/R n (T)   (Gl. 2)

Figure imgb0002


Der temperaturabhängige Widerstand jedes differentiellen Widerstands Ri(T) läßt sich durch die nachfolgende Gleichung ausdrücken

R i (T i ) = l i /A i * a * exp (b/T i )   (Gl. 3)
Figure imgb0003


worin li die Länge in cm und Ai die Querschnittsfläche in cm² eines jeden differentiellen Glaskeramik-Widerstands darstellen. Die Konstanten a und b sind von der Geometrie der Leiterbahnen und von der Glaskeramik abhängige Konstanten (a in Ohm*cm und b in Kelvin). Ti ist die absolute Temperatur eines jeden differentiellen Widerstands in Kelvin.The total electrical resistance of such an arrangement is composed of any number of differential resistors connected in parallel with a negative temperature coefficient and can be expressed by the following equation:

1 / R = 1 / R₁ (T) + 1 / R₂ (T) + ... + 1 / R i (T) + ... 1 / R n (T) (Eq. 2)
Figure imgb0002


The temperature-dependent resistance of each differential resistor R i (T) can be expressed by the following equation

R i (T i ) = l i / A i * a * exp (b / d i ) (Eq. 3)
Figure imgb0003


where l i represents the length in cm and A i represents the cross-sectional area in cm² of each differential glass ceramic resistor. The constants a and b are constants dependent on the geometry of the conductor tracks and on the glass ceramic (a in Ohm * cm and b in Kelvin). T i is the absolute temperature of each differential resistor in Kelvin.

Der elektrische Gesamtwiderstand wird durch den kleinsten Widerstand an der Stelle der höchsten Temperatur der Sensorzonen bestimmt, woraus eine automatische Anzeige der Maximaltemperatur in der jeweiligen Sensorzone resultiert. Lokal auftretende hohe Temperaturen bewirken, daß ein oder mehrere differentielle Widerstände im Verhältnis zu den anderen differentiellen Widerständen, die in kälteren Zonen liegen, niederohmig werden, so daß der Gesamtwiderstand eines Sensors nach Gl. 2 sehr klein wird.The total electrical resistance is determined by the smallest resistance at the point of the highest temperature of the sensor zones, which results in an automatic display of the maximum temperature in the respective sensor zone. Locally occurring high temperatures cause one or more differential resistors to become low-ohmic in relation to the other differential resistors that are in colder zones, so that the total resistance of a sensor according to Eq. 2 becomes very small.

Figur 4 zeigt zur Verdeutlichung schematisch einen Ausschnitt von den gegenüber liegenden Leiterbahnen (2). Die dazwischen eingegrenzte Glaskeramik läßt sich als Parallelschaltung vieler temperaturabhängiger differentieller Widerstände auffassen.FIG. 4 schematically shows a section of the opposite conductor tracks (2) for clarification. The glass ceramic defined between them can be understood as a parallel connection of many temperature-dependent differential resistors.

Bei niedrigen Temperaturen besitzt diese Anordnung gemäß der Gl. 2 und 3 einen sehr hohen Widerstand. Bei höheren Temperaturen, beispielsweise den typischen Temperaturen, die im Leerlauf gemessen werden, nimmt der Widerstand um mehrere Größenordnungen ab. Ebenso nimmt der Widerstand erheblich ab, wenn nur in einem kleinen Bereich der Glaskeramik hohe Temperaturen auftreten, z.B. beim versetzten Topf. Ein Temperaturausgleich zwischen benachbarten Zonen, die unterschiedliche Temperaturen besitzen, findet aufgrund der geringen Wärmeleitung bei Glas, Glaskeramik oder ähnlichem Material mit einem λ von typisch kleiner 2 W/mK kaum statt.At low temperatures this arrangement according to Eq. 2 and 3 have a very high resistance. At higher temperatures, for example the typical temperatures measured when idling, the resistance decreases by several orders of magnitude. The resistance also decreases considerably if high temperatures only occur in a small area of the glass ceramic, for example in the offset pot. A temperature compensation between neighboring zones, which have different temperatures, hardly takes place due to the low heat conduction with glass, glass ceramic or similar material with a λ of typically less than 2 W / mK.

Die Umsetzung der temperaturabhängigen Leitfähigkeitsänderung der Glaskeramik in ein Meßsignal läßt sich in einem mit Wechselspannung versorgten Spannungsteiler realisieren, in dem ein Widerstand durch den temperaturabhängigen Widerstand der Sensorflächen gebildet wird. Die Festwiderstände des Spannungsteilers müssen, abhängig von der Sensorgeometrie so gewählt werden, daß bei Temperaturen, die die zulässige Temperatur/Zeit-Belastung überschreiten, für die Weiterverarbeitung ausreichende Signaländerungen am Spannungsteiler abgegriffen werden können. Der Temperaturbereich, in dem der größte Signalhub auftritt, kann durch Anpassen der Festwiderstände geändert werden. Die Festwiderstände dienen gleichzeitig der Strombegrenzung.The conversion of the temperature-dependent change in conductivity of the glass ceramic into a measurement signal can be implemented in a voltage divider supplied with AC voltage, in which a resistance is formed by the temperature-dependent resistance of the sensor surfaces. Depending on the sensor geometry, the fixed resistors of the voltage divider must be selected so that at temperatures that exceed the permissible temperature / time load, sufficient signal changes can be picked up on the voltage divider for further processing. The temperature range in which the largest signal swing occurs can be changed by adjusting the fixed resistors. The fixed resistors also serve to limit the current.

Die Wechselspannung ist erforderlich, Polarisationseffekte der Glaskeramik und die damit verbundene elektrochemische Zersetzung aufgrund der Ionenwanderung zu vermeiden. Bevorzugt werden für die anliegende Wechselspannung Frequenzen, die im Bereich zwischen 50 Hz und 1000 Hz liegen.The AC voltage is necessary to avoid polarization effects of the glass ceramic and the associated electrochemical decomposition due to the ion migration. Frequencies in the range between 50 Hz and 1000 Hz are preferred for the applied AC voltage.

Figur 5a zeigt schematisch die Schaltungsanordnung gemäß der Erfindung, wobei jeweils ein Spannungsteiler (7) für jeden Temperatursensor dargestellt ist. Beide Spannungsteiler werden von einer Wechselspannungsquelle (8), hier als Transformator dargestellt, versorgt. Damit ist sichergestellt, daß die Glaskeramik, hier als temperaturabhängiger Widerstand (9) dargestellt, nicht von Gleichstrom durchflossen wird. Die beiden Festwiderstände (10a) und (10b) wurden so gewählt, daß eine große Signaländerung im Bereich von 500 bis 600°C auftritt. Dieser Temperaturbereich ist charakteristisch für die in der Praxis vorkommenden Oberflächentemperaturen innerhalb der Kochzonen (1) von Glaskeramik-Kochfeldern.FIG. 5a schematically shows the circuit arrangement according to the invention, a voltage divider (7) for each temperature sensor being shown in each case. Both voltage dividers are supplied by an AC voltage source (8), shown here as a transformer. This ensures that the glass ceramic, shown here as a temperature-dependent resistor (9), is not flowed through by direct current. The two fixed resistors (10a) and (10b) were chosen so that a large signal change in the range from 500 to 600 ° C occurs. This temperature range is characteristic of the surface temperatures that occur in practice within the cooking zones (1) of glass ceramic hobs.

Über eine Gleichrichterschaltung wird das am Spannungsteiler anstehende Wechselspannungssignal gleichrichtet und einer geeigneten elektronischen Schaltung zugeführt. Dies können Operationsverstärker, die als Komparatoren geschaltet sind, oder andere aus der Elektronik bekannte Schaltungen und Bauelemente, wie µ-Prozessoren oder dergleichen sein.The AC voltage signal present at the voltage divider is rectified via a rectifier circuit and fed to a suitable electronic circuit. These can be operational amplifiers, which are connected as comparators, or other circuits and components known from electronics, such as μ-processors or the like.

Die von den Sensoren gelieferten Signale werden in diesen Schaltungen derart verarbeitet, daß an deren Ausgang ein Signal zur Verfügung steht, mit dem sich die einzelnen Heizkreise über Relais oder Leistungs-Halbleiterbauelemente, wie Triac's oder MOS-FET's steuern lassen. Die Leistungssteuerung kann beispielsweise mittels Phasenanschnitt, Halb- oder Vollwellenpaketsteuerung mit unterschiedlichen Tastverhältnissen erfolgen, so daß auch stetige Temperaturregelungen möglich werden. Das Ausgangssignal der Steuerelektronik kann dabei auch über Optokoppler oder andere Schaltungen, die der galvanischen Trennung zwischen Steuerelektronik und Leistungsteil dienen, den oben beschriebenen Halbleiterbauelementen zugeführt werden. Ebenso lassen sich sogenannte Nullspannungsschalter realisieren, die die einzelnen Heizkreise der Heizelemente nur im Spannungsnulldurchgang schalten.The signals supplied by the sensors are processed in these circuits in such a way that a signal is available at their output with which the individual heating circuits can be controlled via relays or power semiconductor components such as triac's or MOS-FET's. The power control can take place, for example, by means of phase control, half or full wave packet control with different duty cycles, so that constant temperature controls are also possible. The output signal of the control electronics can also be supplied to the semiconductor components described above via optocouplers or other circuits which serve for the electrical isolation between control electronics and power section. So-called zero voltage switches can also be implemented, which only switch the individual heating circuits of the heating elements at zero voltage crossing.

In der bestehenden Anordnung (Figur 5b) wird das am Spannungsteiler (7) abgegriffene Signal über eine Gleichrichterschaltung (11) dem einen Eingang eines als Komparator geschalteten Operationsverstärkers (12) zugeführt. Der Komparator hat die Aufgabe, das von der Sensoranordnung stammende temperaturabhängige Signal mit einem fest eingestellten Spannungswert, der Schwellenspannung Us in Figur 5b zu vergleichen. Liegt die Spannung vom Sensor über der Schwellenspannung, was in der vorliegenden Anordnung bei verhältnismäßig niedrigen Temperaturen der Fall wäre, z.B. bei Verwendung guten Geschirrs, wird der Ausgang des Komparators durchgeschaltet. Dieses Signal wird über eine Diode (13) und einen Optokoppler (14) einem Halbleiter-Wechselstromschalter (Triac) mit integriertem Nullspannungsschalter (15) zugeführt der die Heizwendel (4a) eines Heizkreises steuert. Besonders wichtig ist dabei, daß in der vorliegenden Anordnung eine galvanische Trennung zwischen elektronischer Meßschaltung und Leistungsteil gegeben ist.In the existing arrangement (FIG. 5b), the signal tapped at the voltage divider (7) is fed via a rectifier circuit (11) to the one input of an operational amplifier (12) connected as a comparator. The comparator has the task of comparing the temperature-dependent signal originating from the sensor arrangement with a fixed voltage value, the threshold voltage Us in FIG. 5b. If the voltage from the sensor is above the threshold voltage, which would be the case in the present arrangement at relatively low temperatures, e.g. when using good dishes, the output of the comparator is switched through. This signal is fed via a diode (13) and an optocoupler (14) to a semiconductor AC switch (triac) with an integrated zero voltage switch (15) which controls the heating coil (4a) of a heating circuit. It is particularly important that the present arrangement provides galvanic isolation between the electronic measuring circuit and the power section.

Bei Unterschreiten der Schwellenspannung mit zunehmender Temperatur schaltet der Ausgang des Komparators (12) auf negatives Potential. Die Diode (13) sperrt, so daß der Triac (15) ebenfalls sperrt. Der entsprechende Heizkreis wird abgeschaltet. Die Temperatur der Glaskeramik nimmt infolgedessen wieder ab, wodurch sich der elektrische Widerstand der Sensoren wieder erhöht. Dadurch steigt die Spannung am Ausgang des Spannungsteilers wieder an. Sobald die gleichgerichtete Spannung Ui bzw. Ua wieder über der Schwellenspannung Us liegt, schaltet der Ausgang des Komparators (12) wieder auf positives Potential, wodurch über die nun wieder leitende Diode der Triac (15) im Nulldurchgang zündet und damit die entsprechende Heizwendel eingeschaltet wird. Mit dieser Anordnung wird somit, getrennt für jeden Heizkreis, eine Regelung ermöglicht.If the temperature falls below the threshold voltage, the output of the comparator (12) switches to negative potential. The diode (13) blocks, so that the triac (15) also blocks. The corresponding heating circuit is switched off. As a result, the temperature of the glass ceramic decreases again, as a result of which the electrical resistance of the sensors increases again. This increases the voltage at the output of the voltage divider back to. As soon as the rectified voltage U i or U a is again above the threshold voltage U s , the output of the comparator (12) switches back to positive potential, as a result of which the triac (15), which is now conductive again, ignites at zero crossing and thus the corresponding one Heating coil is switched on. With this arrangement, regulation is thus possible, separately for each heating circuit.

Für die Praxis hat dies folgende Auswirkungen:
Bei Verwendung guten Geschirrs bleibt die Oberflächentemperatur der Glaskeramik sowohl im Außenkreis (3a) als auch im Innenkreis (3b) unterhalb einer der Schwellenspannung entsprechenden Temperatur. Die Ausgänge der beiden Komparatoren besitzen ein positives Potential, so daß beide Heizkreise eingeschaltet sind und somit ihre volle Nennleistung abgeben können. Figur 6a zeigt den zeitlichen Spannungsverlauf für Ui (Innenkreis) und Ua (Außenkreis).
In practice, this has the following effects:
When using good dishes, the surface temperature of the glass ceramic remains below a temperature corresponding to the threshold voltage both in the outer circle (3a) and in the inner circle (3b). The outputs of the two comparators have a positive potential, so that both heating circuits are switched on and can therefore deliver their full nominal output. FIG. 6a shows the voltage curve over time for U i (inner circle) and U a (outer circle).

Bei Kochgeschirr mit eingezogenem Boden erhitzt sich die Glaskeramik unter dem Topfboden aufgrund des schlechten Wärmeentzugs im Bereich des Innenkreises wesentlich stärker als im Außenbereich der Kochzone (1), da im Außenbereich die Glaskeramik in Kontakt mit dem Topfboden steht. Für den Innenkreis ist die Folge, daß die Schwellenspannung durch die höhere Temperatur unterschritten wird. Die Leistung des Innenkreises wird daher im zeitlichen Mittel so weit reduziert, daß ein Überschreiten der Temperatur/Zeit-Belastungsgrenze für die Glaskeramik ausgeschlossen ist. Figur 6b zeigt den typischen Verlauf für Ui und Ua. Deutlich ist für den Innenkreis das Takten bei Erreichen der Schwellenspannung Us zu erkennen. Die Hysteresis läßt sich durch geeignete Beschaltung des Komparators (12) einstellen. Im Falle eines Topfes mit nach außen gewölbtem Boden sind die Verhältnisse ähnlich, nur wird entsprechend der Lage der überhitzten Zone im Außenbereich der Kochzone nicht die Leistung für den inneren, sondern für den äußeren Heizkreis reduziert.In the case of cookware with a retracted base, the glass ceramic under the base of the pan heats up considerably more than in the outside of the cooking zone (1) due to the poor heat removal in the area of the inner circle, since the glass ceramic is in contact with the bottom of the pan in the outside. The consequence for the inner circle is that the threshold voltage is not reached due to the higher temperature. The performance of the inner circle is therefore reduced so far on average that it is impossible for the glass ceramic to exceed the temperature / time exposure limit. Figure 6b shows the typical course for U i and U a . The clocking when the threshold voltage U s is reached can be clearly seen for the inner circle. The hysteresis can be set by a suitable connection of the comparator (12). In the case of a pan with a base that curves outwards, the conditions are similar, only the output for the inner, but for the outer heating circuit is reduced, depending on the position of the overheated zone in the outer area of the cooking zone.

Bei den ebenfalls möglichen Belastungsfällen "versetzter Topf" oder "zu kleiner Topf", erhitzt sich der Außenbereich der Kochzone stärker als der Innenbereich, so daß die mittlere Leistung im Außenheizkreis entsprechend reduziert wird, Figur 6c.In the case of the "offset pan" or "too small pan", which is also possible, the outer area of the cooking zone heats up more than that Interior, so that the average power in the external heating circuit is reduced accordingly, Figure 6c.

Für den Fall, daß ein Topf leerkocht, steigt die Temperatur der Glaskeramik im Innen- und Außenbereich stark an. In diesem Fall wird bei beiden Heizkreisen die Leistung reduziert, Figur 6d.In the event that a saucepan boils empty, the temperature of the glass ceramic inside and outside rises sharply. In this case, the power is reduced for both heating circuits, Figure 6d.

Mit der oben beschriebenen Anordnung wird erreicht, daß die dem Topf zugeführte Leistung optimal an dessen Qualität angepaßt wird. Töpfen mit guter Qualität wird aufgrund des guten Wärmeentzugs die volle Nennleistung zur Verfügung gestellt, die, bezogen auf die Fläche der Kochzone, erheblich über der der bisher in Glaskeramikkochfeldern eingesetzten Heizelemente liegen kann. Dadurch wird die Leistungsfähigkeit des Kochsystems wesentlich gesteigert.With the arrangement described above it is achieved that the power supplied to the pot is optimally adapted to its quality. Because of the good heat extraction, pots of good quality are provided with the full nominal output, which, based on the area of the cooking zone, can be considerably higher than that of the heating elements previously used in glass ceramic cooktops. This significantly increases the performance of the cooking system.

Bei Verwendung schlechter Topfqualitäten oder bei Fehlstellungen des Kochgeschirrs wird die Leistungsverteilung so geändert, daß unter dem Topfboden die Temperatur/Zeit-Belastung der Glaskeramik reduziert wird. In den Bereichen der Kochzone, in denen der Topf aufsteht und ein guter Wärmeentzug stattfindet, wird eine gegenüber herkömmlichen Beheizungssystemen erhöhte Leistungsdichte beibehalten, während in Bereichen mit schlechtem Wärmekontakt die Leistung entsprechend reduziert wird. Insgesamt wird damit bei Ankochvorgängen mit schlechtem Geschirr die Ankochdauer infolge der höheren angebotenen mittleren Leistung verringert.If poor pot quality is used or if the cookware is incorrectly positioned, the power distribution is changed so that the temperature / time load on the glass ceramic is reduced under the pan base. In the areas of the cooking zone in which the pot stands up and good heat extraction takes place, an increased power density compared to conventional heating systems is maintained, while in areas with poor thermal contact the power is reduced accordingly. Overall, the cooking time is reduced due to the higher average power offered for parboiling with poor dishes.

Claims (9)

Verfahren zur Leistungssteuerung und -begrenzung bei einer mehrere Heizzonen besitzenden Heizfläche aus Glaskeramik oder einem vergleichbaren Material, insbesondere einer Glaskeramikkochfläche, wobei die Heizzonen der Heizfläche in an sich bekannter Weise mit Heizeinrichtungen mit mehreren unabhängig voneinander schalt- und steuerbaren Heizelementen beheizt werden,
dadurch gekennzeichnet,
daß mittels mehrerer, voneinander unabhängiger Temperatursensoren, die im Bereich der Heizzone angeordnet sind, alle für einen Belastungsfall wesentliche Stellen der Bereiche erfaßt werden,
und daß die einzelnen im Bereich der Heizzone angeordneten Heizelemente aufgrund der von den Temperatursensoren ermittelten Werte unabhängig voneinander so geschaltet und gesteuert werden,
daß die Leistungsverteilung im Heizzonenbereich weitgehend an den örtlich unterschiedlichen Wärmeentzug angepaßt wird.
Method for power control and limitation in the case of a heating surface made of glass ceramic or a comparable material, in particular a glass ceramic cooking surface, which heating surface has a plurality of heating zones, the heating zones of the heating surface being heated in a manner known per se with heating devices having a plurality of heating elements which can be switched and controlled independently of one another,
characterized,
that by means of a plurality of mutually independent temperature sensors which are arranged in the area of the heating zone, all points of the areas which are essential for a load case are recorded,
and that the individual heating elements arranged in the area of the heating zone are switched and controlled independently of one another on the basis of the values determined by the temperature sensors,
that the power distribution in the heating zone area is largely adapted to the locally different heat extraction.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß die den einzelnen Heizelementen zugeführte Leistung in zeitlichen Abständen stufenweise oder stetig an den maximal möglichen Wärmeentzug in den den Heizelementen zugeordneten Bereichen der Heizzone angepaßt wird.
Method according to claim 1,
characterized,
that the power supplied to the individual heating elements is gradually or continuously adapted to the maximum possible heat removal in the areas of the heating zone assigned to the heating elements.
Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
daß bei einer Glaskeramikkochfläche der Rand- und der Mittenbereich der Kochzone unabhängig voneinander beheizt und überwacht werden.
Method according to claim 1 or 2,
characterized,
that the edge and center areas of the cooking zone are heated and monitored independently of one another in a glass ceramic cooktop.
Verfahren nach wenigstens einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß zur Temperaturüberwachung und -steuerung der Heizfläche der temperaturabhängige, elektrische Widerstand des Heizflächenmaterials gemessen wird.
Method according to at least one of claims 1 to 3,
characterized,
that the temperature-dependent, electrical resistance of the heating surface material is measured for temperature monitoring and control of the heating surface.
Vorrichtung zur Durchführung des Verfahrens nach wenigstens einem der Ansprüche 1-4, bei einem Kochfeld mit Glaskeramikkochfläche und Heizeinrichtungen mit mehreren unabhängig voneinander schalt- und steuerbaren Heizelementen im Bereich einer Kochzone,
gekennzeichnet durch
mehrere voneinander unabhängige Temperatursensoren im Bereich der Kochzone,
die so angeordnet sind, daß alle für einen Belastungsfall wesentlichen Stellen erfaßbar sind,
sowie in Wirkverbindung mit den Sensoren stehende geeignete Steuer- und Regeleinrichtungen zur Steuerung und Begrenzung der Leistungszufuhr für die Heizelemente.
Device for carrying out the method according to at least one of claims 1-4, in a hob with a glass ceramic hob and heating devices with a plurality of heating elements which can be switched and controlled independently of one another in the region of a cooking zone,
marked by
several independent temperature sensors in the cooking zone,
which are arranged in such a way that all points essential for a load case can be recorded,
as well as suitable control and regulating devices in operative connection with the sensors for controlling and limiting the power supply for the heating elements.
Vorrichtung nach Anspruch 5,
dadurch gekennzeichnet,
daß die Heizeinrichtungen an sich bekannte Mehrkreisheizelemente sind.
Device according to claim 5,
characterized,
that the heating devices are known multi-circuit heating elements.
Vorrichtung nach Anspruch 6,
dadurch gekennzeichnet,
daß die Heizeinrichtungen an sich bekannte Zweikreisheizelemente sind.
Apparatus according to claim 6,
characterized,
that the heating devices are known double-circuit heating elements.
Vorrichtung nach Anspruch 6 oder 7,
dadurch gekennzeichnet,
daß die einzelnen Heizkreise jeweils für unterschiedliche Flächenbelastungen ausgelegt sind.
Device according to claim 6 or 7,
characterized,
that the individual heating circuits are each designed for different surface loads.
Vorrichtung nach wenigstens einem der Ansprüche 5 bis 8,
dadurch gekennzeichnet,
daß die Temperatursensoren an sich bekannte, streifenförmige, in der Heizfläche durch parallele Leiterbahnen begrenzte und kontaktierte Glaskeramiktemperaturmeßwiderstände sind.
Device according to at least one of claims 5 to 8,
characterized,
that the temperature sensors are known, strip-shaped glass ceramic temperature measuring resistors which are delimited and contacted in the heating surface by parallel conductor tracks.
EP91110463A 1990-07-18 1991-06-25 Device for regulating and limiting the power of a heating plate of ceramic or similar material Expired - Lifetime EP0471171B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4022846 1990-07-18
DE4022846A DE4022846C2 (en) 1990-07-18 1990-07-18 Device for power control and limitation in a heating surface made of glass ceramic or a comparable material

Publications (3)

Publication Number Publication Date
EP0471171A2 true EP0471171A2 (en) 1992-02-19
EP0471171A3 EP0471171A3 (en) 1992-08-05
EP0471171B1 EP0471171B1 (en) 1995-01-11

Family

ID=6410522

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91110463A Expired - Lifetime EP0471171B1 (en) 1990-07-18 1991-06-25 Device for regulating and limiting the power of a heating plate of ceramic or similar material

Country Status (6)

Country Link
US (1) US5352864A (en)
EP (1) EP0471171B1 (en)
JP (1) JP2715193B2 (en)
AT (1) ATE117157T1 (en)
DE (2) DE4022846C2 (en)
ES (1) ES2066280T3 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531987A2 (en) 1991-09-12 1993-03-17 E.G.O. Elektro-Geräte Blanc und Fischer GmbH &amp; Co. KG Electrical heating unit
WO1994024490A1 (en) * 1993-04-13 1994-10-27 Redring Electric Limited A hob
EP0711098A1 (en) * 1994-11-04 1996-05-08 Compagnie Europeenne Pour L'equipement Menager "Cepem" Induction cooking appliance
EP0786923A2 (en) * 1996-01-26 1997-07-30 AEG Hausgeräte GmbH Switching system for the overtemperature protection of a glass ceramic plate of a cooktop
DE10103299A1 (en) * 2001-01-25 2002-08-01 Bsh Bosch Siemens Hausgeraete Cooker heating ring, comprises deposited contact-heating tracks with reversals, which are connected in parallel, permitting track width reduction
DE10307246A1 (en) * 2003-02-17 2004-08-26 E.G.O. Elektrogerätebau GmbH Heating device with two areas
WO2007124891A1 (en) * 2006-04-28 2007-11-08 E.G.O. Elektro-Gerätebau GmbH Apparatus and method for measuring the temperature on an induction heating apparatus
EP2983449A1 (en) * 2014-08-08 2016-02-10 BSH Hausgeräte GmbH Method for accelerating a cooking process, control device and cooking device for same
WO2022022978A1 (en) * 2020-07-30 2022-02-03 BSH Hausgeräte GmbH Hob system and method for operating a hob system

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4345472C2 (en) * 1993-10-28 2001-05-10 Aeg Hausgeraete Gmbh Method for preparing dishes in a cookware at least partially filled with water on a ceramic hob, in particular glass ceramic
DE4445426A1 (en) 1994-12-20 1996-06-27 Schott Glaswerke Radiant burner with a gas-permeable burner plate
US5640947A (en) * 1995-02-15 1997-06-24 Shute; Alan B. Counter-top cooking unit using natural stone
DE19604306C2 (en) * 1996-02-07 2000-05-11 Ako Werke Gmbh & Co Radiant heater
DE19646826C5 (en) * 1996-02-22 2008-10-16 AEG Hausgeräte GmbH Device for measuring the temperature of hotplates
DE19643698C2 (en) * 1996-05-11 2000-04-13 Aeg Hausgeraete Gmbh Device for shielding conductor tracks of a hob used for capacitive measurements
DE19632057C2 (en) * 1996-08-09 2000-06-21 Schott Glas Method for calibrating temperature measuring resistors on supports made of glass, glass ceramic or the like
DE19654773C1 (en) * 1996-12-31 1998-04-23 Schott Glaswerke Operating temperature measurement method in at least one cooking area of a cooking hob with glass ceramic plate
DE19700753C2 (en) * 1997-01-11 2000-09-14 Schott Glas Hob with a non-metallic hotplate
GB2327541A (en) * 1997-07-17 1999-01-27 Ceramaspeed Ltd Electric heater control for a glass-ceramic top cooking appliance
US5973298A (en) * 1998-04-27 1999-10-26 White Consolidated Industries, Inc. Circular film heater and porcelain enamel cooktop
DE19828052A1 (en) * 1998-06-24 1999-12-30 Cherry Gmbh Device for limiting the temperature of a glass ceramic hob
DE19845103A1 (en) * 1998-09-30 2000-04-06 Bsh Bosch Siemens Hausgeraete Contact heat-transmitting electrical cooking system and method for operating a corresponding cooking system
DE19851029C2 (en) 1998-11-05 2000-12-21 Schott Glas Method for adjusting the limit value of the operating temperature of a glass / glass-ceramic cooking surface and apparatus for carrying out the method
DE19906115C1 (en) 1999-02-13 2000-08-31 Schott Glas Method for recognizing the empty cooking of dishes in hobs with a glass ceramic hob and associated device
US6127659A (en) * 1999-04-26 2000-10-03 Hardt Equipment Manufacturing Inc. Food warmer
US6242722B1 (en) * 1999-07-01 2001-06-05 Thermostone Usa, Llc Temperature controlled thin film circular heater
US6225608B1 (en) 1999-11-30 2001-05-01 White Consolidated Industries, Inc. Circular film heater
DE10023179C2 (en) 2000-05-11 2002-07-18 Schott Glas Device and its use Control of cooktops with glass ceramic cooktops
DE10041967A1 (en) * 2000-08-25 2002-03-21 Schott Glas Glass ceramic cooking surface comprises at least one sensor circuit which is located directly below the cooking surface, and is provided outside the cooking zones with a moisture and heat resistant coating
GB2391725A (en) * 2002-04-17 2004-02-11 Diamond H Controls Ltd Control device with thermal sensor
EP1355214A3 (en) * 2002-04-17 2004-12-15 Diamond H Controls Limited A thermal sensor, a method of manufacture and use as a flame failure device
GB0313831D0 (en) * 2003-06-16 2003-07-23 Ceramaspeed Ltd Apparatus and method for detecting abnormal temperature rise associated with a cooking arrangement
FR2856881B1 (en) * 2003-06-30 2005-08-26 Frima Sa HEATING PLATE WITH A PLURALITY OF HEATING TRACKS, AND A COOKING APPARATUS COMPRISING SUCH A HEATING PLATE
US7025893B2 (en) * 2003-08-12 2006-04-11 Thermo Stone Usa, Llc Structure and method to compensate for thermal edge loss in thin film heaters
KR20050026598A (en) * 2003-09-09 2005-03-15 삼성전자주식회사 Electric cooking device and method for controlling the device
FR2859867B1 (en) * 2003-09-16 2006-04-14 Frima Sa HEATING ELEMENT FOR COOKING APPARATUS
DE102004034204A1 (en) * 2004-07-14 2006-02-09 Meier Vakuumtechnik Gmbh Heating plate, in particular for a laminator
WO2007044646A2 (en) 2005-10-05 2007-04-19 Evo, Inc. Electric cooking apparatus
DE102007012379A1 (en) * 2007-03-14 2008-09-18 BSH Bosch und Siemens Hausgeräte GmbH Hob device
DE102008041184B4 (en) * 2008-08-12 2023-08-17 BSH Hausgeräte GmbH Method and device for operating a hotplate of a hob
ES2356780B1 (en) 2009-01-20 2012-03-13 Bsh Electrodomésticos España, S.A. COOKING FIELD WITH AT LEAST ONE HEATING AREA OF VARIOUS HEATING ELEMENTS.
US9282593B2 (en) * 2011-06-03 2016-03-08 General Electric Company Device and system for induction heating
US9909764B2 (en) * 2016-07-11 2018-03-06 Haier Us Appliance Solutions, Inc. Cooking appliance and method for limiting cooking utensil temperatures using dual control modes
KR102069583B1 (en) * 2017-06-26 2020-01-23 엘지전자 주식회사 Induction heating apparatus and pot detection method thereof
US11562913B2 (en) * 2019-04-25 2023-01-24 Watlow Electric Manufacturing Company Multi-zone azimuthal heater

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2060329A (en) * 1979-10-11 1981-04-29 Thorn Domestic Appliances Ltd Cooking hobs
GB2138659A (en) * 1980-01-14 1984-10-24 Johnson Matthey Plc Glass Ceramic Hob including Temperature Sensor
EP0138314A1 (en) * 1983-08-31 1985-04-24 THORN EMI Appliances Limited Heating apparatus

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3622754A (en) * 1970-07-24 1971-11-23 Gen Electric Glass plate surface heating unit with even temperature distribution
DE2139828C3 (en) * 1971-08-09 1974-02-14 Jenaer Glaswerk Schott & Gen., 6500 Mainz Temperature measuring resistor with high thermal shock resistance made of glass ceramic
NL176301C (en) * 1974-08-24 Schwank Gmbh APPLIANCE WITH AT LEAST ONE GAS BURNER FOR A HOB.
US4237368A (en) * 1978-06-02 1980-12-02 General Electric Company Temperature sensor for glass-ceramic cooktop
FR2476308A1 (en) * 1980-01-14 1981-08-21 Johnson Matthey Co Ltd CERAMIC GLASS PLATE COMPRISING A TEMPERATURE MEASURING DEVICE
NZ196104A (en) * 1980-02-01 1984-08-24 Micropore International Ltd Cooker plate with twin element:thermal cut-out for one
US4394546A (en) * 1980-10-09 1983-07-19 Alps Electric Co., Ltd. Composite switch assembly
DE3117205A1 (en) * 1981-04-30 1982-12-02 Ernst Dipl.-Kfm. Dr. 7100 Heilbronn Haag Optoelectronic cooking panel controller
FR2515790B1 (en) * 1981-10-29 1986-12-12 Dietrich De IMPROVEMENT IN RESIDUAL HEAT INDICATORS FOR ELECTRICALLY POWERED TABLES OR COOKING PLATES
US4394564A (en) * 1981-12-21 1983-07-19 General Electric Company Solid plate heating unit
DE3314501A1 (en) * 1983-04-21 1984-10-25 Ego Elektro Blanc & Fischer Heating element, especially a radiant heating element for heating glass-ceramic plates
DE3234349A1 (en) * 1982-09-16 1984-03-22 Ego Elektro Blanc & Fischer Heating element for glass-ceramic cooking surfaces
GB8412339D0 (en) * 1984-05-15 1984-06-20 Thorn Emi Domestic Appliances Heating apparatus
DE3639186A1 (en) * 1986-11-15 1988-05-26 Ego Elektro Blanc & Fischer ELECTRIC SWITCHGEAR, ESPECIALLY FOR POWER CONTROL
US4755655A (en) * 1986-12-04 1988-07-05 General Electric Company Thermal protection arrangement for solid disk glass cooktop
US4740664A (en) * 1987-01-05 1988-04-26 General Electric Company Temperature limiting arrangement for a glass-ceramic cooktop appliance
DE3736005A1 (en) * 1987-10-23 1989-05-03 Bosch Siemens Hausgeraete Control unit for electronically controlling the hob temperature with a temperature sensor
DE8914470U1 (en) * 1988-12-09 1990-06-21 Emaco Ltd., Bedfordshire, Bedfordshire Control device for an electric heating unit
US5001423A (en) * 1990-01-24 1991-03-19 International Business Machines Corporation Dry interface thermal chuck temperature control system for semiconductor wafer testing
DE4022844C1 (en) * 1990-07-18 1992-02-27 Schott Glaswerke, 6500 Mainz, De
DE4022845A1 (en) * 1990-07-18 1992-01-23 Schott Glaswerke TEMPERATURE SENSOR OR SENSOR ARRANGEMENT MADE OF GLASS CERAMIC AND CONTACTING FILM RESISTORS
GB2263379B (en) * 1992-01-10 1995-07-26 Ceramaspeed Ltd Radiant heater having multiple heating zones

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2060329A (en) * 1979-10-11 1981-04-29 Thorn Domestic Appliances Ltd Cooking hobs
GB2138659A (en) * 1980-01-14 1984-10-24 Johnson Matthey Plc Glass Ceramic Hob including Temperature Sensor
EP0138314A1 (en) * 1983-08-31 1985-04-24 THORN EMI Appliances Limited Heating apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0531987B2 (en) 1991-09-12 2003-11-05 E.G.O. Elektro-Gerätebau GmbH Electrical heating unit
EP0531987A2 (en) 1991-09-12 1993-03-17 E.G.O. Elektro-Geräte Blanc und Fischer GmbH &amp; Co. KG Electrical heating unit
WO1994024490A1 (en) * 1993-04-13 1994-10-27 Redring Electric Limited A hob
EP0711098A1 (en) * 1994-11-04 1996-05-08 Compagnie Europeenne Pour L'equipement Menager "Cepem" Induction cooking appliance
FR2726634A1 (en) * 1994-11-04 1996-05-10 Europ Equip Menager INDUCTION COOKING APPARATUS
EP0786923A2 (en) * 1996-01-26 1997-07-30 AEG Hausgeräte GmbH Switching system for the overtemperature protection of a glass ceramic plate of a cooktop
EP0786923A3 (en) * 1996-01-26 1998-01-07 AEG Hausgeräte GmbH Switching system for the overtemperature protection of a glass ceramic plate of a cooktop
DE10103299A1 (en) * 2001-01-25 2002-08-01 Bsh Bosch Siemens Hausgeraete Cooker heating ring, comprises deposited contact-heating tracks with reversals, which are connected in parallel, permitting track width reduction
DE10103299B4 (en) * 2001-01-25 2010-08-05 BSH Bosch und Siemens Hausgeräte GmbH Kochmuldenheizvorrichtung
DE10307246A1 (en) * 2003-02-17 2004-08-26 E.G.O. Elektrogerätebau GmbH Heating device with two areas
US7053340B2 (en) 2003-02-17 2006-05-30 E.G.O. Elektro-Geraetebau Gmbh Heating device with two areas
WO2007124891A1 (en) * 2006-04-28 2007-11-08 E.G.O. Elektro-Gerätebau GmbH Apparatus and method for measuring the temperature on an induction heating apparatus
EP2983449A1 (en) * 2014-08-08 2016-02-10 BSH Hausgeräte GmbH Method for accelerating a cooking process, control device and cooking device for same
WO2022022978A1 (en) * 2020-07-30 2022-02-03 BSH Hausgeräte GmbH Hob system and method for operating a hob system

Also Published As

Publication number Publication date
US5352864A (en) 1994-10-04
DE59104213D1 (en) 1995-02-23
EP0471171A3 (en) 1992-08-05
ES2066280T3 (en) 1995-03-01
ATE117157T1 (en) 1995-01-15
JPH05347177A (en) 1993-12-27
DE4022846A1 (en) 1992-01-23
JP2715193B2 (en) 1998-02-18
DE4022846C2 (en) 1994-08-11
EP0471171B1 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
EP0471171B1 (en) Device for regulating and limiting the power of a heating plate of ceramic or similar material
EP0467134B1 (en) Method and apparatus for indicating an abnormal thermal load condition of a heating surface
DE3744372C2 (en) Power control method for protecting glass ceramic cooking surfaces
DE4130337C2 (en) Method for operating an electric heating unit and electric heating unit
EP0467133B1 (en) Temperature sensor or sensing devices made of glass-ceramics with contacting film-resistances
DE69832329T2 (en) Method and device for controlling an electrical heating element
EP0250880B1 (en) Radiant heating element
DE69026553T2 (en) Temperature measuring device for induction cooking device and device with such a device
DD253137A5 (en) GLASS CERAMIC HOB WITH HEATING BODIES WITH HEATING GUIDE QUICKLY HIRE IN THE HEATING PHASE
CH654966A5 (en) ELECTRIC COOKER.
DE4345472C2 (en) Method for preparing dishes in a cookware at least partially filled with water on a ceramic hob, in particular glass ceramic
DE69016363T2 (en) Electric radiant heaters.
AT389612B (en) ELECTRIC RADIATION HEATING UNIT
DE19648397A1 (en) Method and device for recognizing the cooking point of food
DE10111734A1 (en) Ceramic cooking system with glass ceramic plate, insulation layer and heating elements
EP0967839A2 (en) Cooking plate with operating unit determining its power level
DE4413979C2 (en) Sensor-controlled cooking unit and cooking device
DE19646826A1 (en) Temperature-measuring device for detection of presence of cooking vessel on stove
EP0777169A1 (en) Power controlling device for a radiation heating device
DE19500448A1 (en) Cooker with respective electric resistance and inductive heating systems
DE102017114951A1 (en) Method for operating a hob of an induction hob with a cookware
DE19526091A1 (en) Sensor system limiting electric heater temp. esp. for ceramic glass electric cooker hob
EP0754918B1 (en) Cooking hob with a sensor arrangement for cooker heating elements.
DE3601634C2 (en) Device for regulating or limiting the temperature of radiant or contact radiators
AT389969B (en) Device for inductive heating of a metallic workpiece

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT CH DE ES FR GB IT LI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT CH DE ES FR GB IT LI

17P Request for examination filed

Effective date: 19920821

17Q First examination report despatched

Effective date: 19931123

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT CH DE ES FR GB IT LI

REF Corresponds to:

Ref document number: 117157

Country of ref document: AT

Date of ref document: 19950115

Kind code of ref document: T

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950119

REF Corresponds to:

Ref document number: 59104213

Country of ref document: DE

Date of ref document: 19950223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2066280

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050610

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050613

Year of fee payment: 15

Ref country code: DE

Payment date: 20050613

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050614

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050615

Year of fee payment: 15

Ref country code: AT

Payment date: 20050615

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SCHOTT AG

Free format text: SCHOTT GLASWERKE#HATTENBERGSTRASSE 10#D-55122 MAINZ 1 (DE) -TRANSFER TO- SCHOTT AG#HATTENBERGSTRASSE 10#55122 MAINZ (DE)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060625

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060625

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060630

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070103

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060625

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070625