EP0463263B1 - Antenne omnidirective en polarisation circulaire transversale à maximum de gain sous l'horizon - Google Patents

Antenne omnidirective en polarisation circulaire transversale à maximum de gain sous l'horizon Download PDF

Info

Publication number
EP0463263B1
EP0463263B1 EP19900401787 EP90401787A EP0463263B1 EP 0463263 B1 EP0463263 B1 EP 0463263B1 EP 19900401787 EP19900401787 EP 19900401787 EP 90401787 A EP90401787 A EP 90401787A EP 0463263 B1 EP0463263 B1 EP 0463263B1
Authority
EP
European Patent Office
Prior art keywords
antenna
elements
polarization
horizontal
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19900401787
Other languages
German (de)
English (en)
Other versions
EP0463263A1 (fr
Inventor
Davey Bickford Smith & Cie Etablissements
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETABLISSEMENTS DAVEY BICKFORD SMITH & CIE
Original Assignee
Davey Bickford Smith et Cie SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Davey Bickford Smith et Cie SA filed Critical Davey Bickford Smith et Cie SA
Publication of EP0463263A1 publication Critical patent/EP0463263A1/fr
Application granted granted Critical
Publication of EP0463263B1 publication Critical patent/EP0463263B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic

Definitions

  • the present invention relates to an electromagnetic antenna with transverse omnidirectional radiation in right or left circular polarization.
  • known antennas of this kind such as simple helices, crossed dipoles, folded crossed dipoles, quadrifilar helices, Archimedean spirals, conical spirals, logarithmic spirals, and planar antennas (patch) do not radiate in circular polarization only along their main axis of revolution and can not provide omnidirectional coverage in azimuth because the energy radiated transversely is almost nonexistent by construction.
  • Transmitting or receiving stations for traveling satellites involve the use of a circularly polarized antenna below the horizon with omnidirectional coverage.
  • a large number of messages are lost or erroneous because for low sites (unfavorable case), the "ground” or "on-board” antennas only radiate laterally a low energy in rectilinear polarization.
  • the lack of energy at low sites and the rotation of the plane of polarization result in the rupture of the links and so messages.
  • the present invention aims to remedy the drawbacks of known antennas by proposing an antenna which makes it possible to obtain omnidirectional coverage in azimuth, in right or left circular polarization, and in which the transverse components of the radiated fields E and H are in quadrature and at their maximum amplitude so as to obtain a maximum of energy radiated transversely in circular polarization.
  • Another object of the invention is to propose an omnidirectional antenna in azimuth which radiates a maximum of transverse energy in right or left circular polarization in a large cone focused on the horizon.
  • Omnidirectional antennas comprising at least two antenna elements in horizontal rectilinear polarization are already known in this regard from document US-2532428, as well as from document US-2217911 which constitutes the state of the art of the application. spaced substantially uniformly in a first plane and concentrically with a third antenna element in vertical rectilinear polarization situated in a second plane substantially perpendicular to the first, said antenna elements each being supplied radioelectrically by currents substantially of the same phase and of same amplitude, the phase centers of the antenna elements in horizontal rectilinear polarization and the phase center of the antenna element in vertical rectilinear polarization being substantially distant by an odd number of quarter waves in the direction of propagation of the wave.
  • the arrangement of the elements is such that there is no disturbance of the field radiated by the presence of an excitation line parallel to the radiating elements.
  • the polarization is perfectly circular and easily controllable.
  • the present invention therefore relates to an omnidirectional antenna comprising at least two antenna elements in horizontal rectilinear polarization spaced substantially uniformly in a first plane and concentrically with a third antenna element in vertical rectilinear polarization located in a second plane substantially perpendicular to the first, said antenna elements being each supplied radioelectrically by currents substantially of the same phase and of the same amplitude, the phase centers of the antenna elements in rectilinear polarization horizontal and the phase center of the antenna element in vertical rectilinear polarization being substantially distant by an odd number of quarter waves in the direction of wave propagation, characterized in that the supply of the elements d the antenna in horizontal rectilinear polarization is produced by means of feed elements extending substantially radially with respect to said antenna elements, substantially in said first plane.
  • the supply elements are substantially evenly distributed in said first plane; the feed elements of the horizontally polarized antenna elements extend radially from said antenna elements to a transformer impedance head common to the horizontal or vertical polarized antenna elements; the head of said antenna impedance transformer is located at the phase center of the vertically polarized antenna element.
  • the omnidirectional antenna according to the invention can comprise three antenna elements with horizontal polarization. It may in particular comprise three half-wave antennas with horizontal polarization spaced substantially uniformly in the same plane and arranged concentrically with a fourth monopole or dipole antenna with vertical polarization and situated in a plane substantially perpendicular to that of said half-wave antennas, these four antennas being supplied by currents of the same phase and of the same amplitude, the diameter of the circle containing the three half-wave antennas being substantially equal to half a wavelength in air at the average working frequency.
  • Each antenna element with horizontal polarization preferably comprises two conductive elements, of rectilinear shape or in an arc of a circle, arranged at the periphery of an insulating plate, on either side thereof, interconnected by a conductive jumper of liaison.
  • the vertically polarized antenna element can be of the cuff antenna type.
  • the horizontally polarized antenna elements can be arranged on a printed circuit.
  • the antenna elements with vertical and horizontal polarizations are advantageously planar elements.
  • the invention also relates to an application of the above-mentioned antenna to all-azimuth ground-ground, ground-air, ground-sea, sea-air, sea-ground, sea-sea, air-ground, air-sea, air- air in a disturbed surrounding environment as well as an application of this antenna to the production of an FM transmitter of reduced power.
  • the elements marked 1, 2, 3 and 4 form the upper radiating assembly, in vertical rectilinear polarization, of the cuff antenna type. These elements are coaxial.
  • the elements 1, 2, 3 and 4 are metallic and welded together to establish radio-electrical continuity, the element 2 being a coaxial energy supply element which is covered by an electrically insulating material of an appropriate nature 26.
  • the respective pairs of electrically conductive elements (for example made of copper) 5 and 6, 7 and 8 and 9 and 10, shaped as a circular arc or toroidal cross-section, form three half-wave antennas in horizontal rectilinear polarization fed in their center by current balancing elements respectively marked 11, 12 and 13.
  • the above-mentioned pairs of radiating elements are joined to the periphery of a support plate 25 made of electrically insulating material (for example epoxy resin) and coaxial with the above-mentioned cuff antenna element, and are regularly angularly arranged. on the outskirts of this plateau.
  • Each pair of above-mentioned radiating elements 5 to 10 comprises an element disposed on the upper face 25 a of the plate 25 and an element disposed against the underside 25 b of the plate 25, the two elements of the same pair being electrically connected by a conductive jumper such as that marked 17 in FIG. 2.
  • the plate 25 also includes three circular cuts 25 c regularly angularly spaced, each circular cut 25 c extending between two adjacent radial symmetrization elements.
  • the elements 5 to 10 may be in the form of straight lines (see Figure 6).
  • the antenna elements with horizontal polarization can also be only 2 in number and arranged as schematically represented in FIGS. 7 and 8.
  • the plate 25 is not essential and the antenna will then be self-supporting.
  • the embodiment shown in Figure 1 corresponds to a polarized antenna circular right.
  • an antenna with left circular polarization is obtained.
  • the oblong radial cuts 25 d of the plate 25 housing the baluns 11 to 13 make it possible not to modify the "electrical length" of said baluns and to avoid operating aberrations.
  • the antenna elements with horizontal polarization A1 to A3 can be produced in the form of a printed circuit.
  • each antenna element A1 to A4 can be produced in the form of a plane element known to those skilled in the art.
  • the metallic element marked 16 forms the external reinforcement of the supply circuits of the four above-mentioned antenna elements and is extended, on the side opposite to the antenna element A4, by a metal support member 14, also coaxial with the plate 25, and by a coaxial connector of end 15 which can also be used as a support for an envelope 40 (shown partially in phantom in Figure 1) housing the antenna and preferably filled with a polyurethane foam, or a metal reflective plane 41 shown in dashed line in Figure 2.
  • the aforementioned polyurethane foam could be replaced by a material dielectric or magnetic to reduce the physical dimensions of the antenna elements.
  • the cutouts 25 c thus allow good filling of the envelope 40 despite the presence of the plate 25.
  • the antenna according to the invention also comprises, coaxial with the latter, the internal head 22 of the impedance transformer which receives the coaxial cores of radio frequency (RF) power from the antenna in vertical polarization A4, that is to say the coaxial core marked 20, and of the three antennas A1 to A3 in horizontal polarization, that is to say the coaxial souls identified 19 which extend, opposite of the aforementioned head 22, perpendicular to the coaxial core 20 of the antenna A4.
  • RF radio frequency
  • the head 22 of said impedance transformer is extended downwards by a metallic cylindrical element 23 which constitutes the transforming section of the antenna according to the invention and which is held in place inside a cylindrical insulating sleeve 24 also coaxial with the plate 25, in particular.
  • the conductor 23 is extended downwards, that is to say towards the coaxial connector 15, by a metallic cylindrical element 18 which constitutes the 50 ohm coaxial feed line of the antenna.
  • the balancing elements 11 to 13 can be interconnected at point 2 so that the impedance head 22 is brought back to this point 2.
  • the radial symmetrization elements marked 11 and 11 '(see Figures 2 and 4) or 11, 12 and 13 (see Figure 1) form with the interconnection jumpers marked 17 (see Figures 1, 2 and 4) and the insulating sleeves 27 surrounding the aforementioned symmetrization conductors (see FIG. 4), symmetrizers of the "paper clip" type which allow the radiofrequency supply of the radiating elements in horizontal polarization respectively 5, 6; 7, 8 and 9, 10.
  • Figures 4 and 5 show the principle of radio antenna power.
  • Figure 4 illustrates in particular the detail of the radio-frequency supply of the radiating elements in horizontal polarization with the use of a trombone type balun known in itself. It can of course be used any other type of balun (for example of the apelooka type).
  • the antenna in vertical polarization is dimensioned to be tuned to the working frequency according to the conventional calculations linked to the antennas and known to those skilled in the art. It is the same for the radiating elements in horizontal polarization which are tuned to the working frequency.
  • the antenna according to the invention can operate in a relatively large frequency band (approximately 20%) if the radiating elements are dimensioned accordingly.
  • the coaxial paths marked 21, 11 and 11 '(see Figure 2) must have an identical "electrical length" so that the phases ⁇ d in 2 and 17 are also identical.
  • the distribution of the impedances at the points marked 20 and 22 is such that the amplitude and the phase of the radio-electric field produced in a direction of space by the element in vertical polarization A4 (direction parallel to this element ) and the amplitude and the phase of the field produced in 17 by the elements in horizontal polarization A1 to A3 are identical.
  • the transformer 21 makes it possible to obtain the aforementioned results and the transformer 23 makes it possible to reduce the impedance of the antenna according to the invention to 50 ohms.
  • a prototype antenna according to the invention was produced by the applicant, using dipoles half-wave in a frequency band between 2.3 and 2.6 GHz.
  • the gain measured with respect to the circular isotrope is equal to 4 dB in the aforementioned frequency band and the ellipticity rate at 90 ° from the longitudinal axis, less than 1 dB.
  • the ROS (standing wave ratio) in the above band is less than 1.6 compared to 50 ohms.
  • the azimuth coverage is omnidirectional to ⁇ 0.5 dB and the site coverage varies in the 2.3-2.6 GHz band from 60 to 70 ° opening at 1/2 power. In this case also, the maximum of energy is directed on the horizon.
  • the radiating element in vertical polarization A4 10 is calculated as a conventional half-wave cuff dipole.
  • the dimensions l1 and l2 are a function of the ratio l / a (length over diameter) knowing that l1 + l2 is always slightly less than ⁇ 2 o ( ⁇ o: working wavelength).
  • the diameter of the radiating elements 5, 6; 7, 8 and 9, 10 of the three half-wave antennas A1 to A3 in horizontal polarization also plays on the length of the half-elements rx ⁇ i i see Figure 3) and in this case, we obtain rx ⁇ i slightly less than o .
  • the diameter 24 xr of arrangement of the three radiating half-wave elements with horizontal polarization is equal to ⁇ 2 o in the air and at ⁇ 2 ox ( ⁇ r ) ⁇ 1 in a medium of relative permitivity r.
  • the diameter of the radiating element with vertical polarization is less than ⁇ 12 o.
  • a particularly interesting application of the antenna according to the invention which can be described as an omnidirectional antenna with transverse circular polarization and maximum gain under the horizon, is in the field of all-azimuth ground-to-ground transmissions , ground-air, ground-sea, air-ground, air-sea, air-air, sea-ground, sea-air, sea-sea, in disturbed surrounding environment.
  • the use of an antenna in circular polarization for such transmissions which involve a maximum energy under the horizon makes it possible to considerably limit the discomfort brought by the disturbing environment, since in the event of reflection on a close metallic obstacle, it there is inversion of the polarization of the reflected wave.
  • each dipole with horizontal polarization (only one is shown in FIG. 10) is supported axially by two vertical balancing elements, with respect to a common base reflector plate 41.
  • phase centers of the horizontally polarized antenna elements are located at the points marked 17 while the phase center of the vertically polarized element is located at point 2.
  • Another application particularly interesting of the antenna according to the invention is the realization of an FM transmitter of reduced power.

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Description

  • La présente invention concerne une antenne électromagnétique à rayonnement omnidirectif transversal en polarisation circulaire droite ou gauche.
  • D'une façon générale, les antennes connues de ce genre, telles que hélices simples, dipoles croisés, dipoles croisés repliés, hélices quadrifilaires, spirales d'Archimède, spirales coniques, spirales logarithmiques, et antennes planes (patch) ne rayonnent en polarisation circulaire que selon leur axe principal de révolution et ne peuvent assurer une couverture omnidirective en azimut car l'énergie rayonnée transversalement est par construction quasiment inexistante.
  • Pour obtenir un rayonnement latéral avec ce genre d'antennes, il faut les grouper par trois ou quatre d'un même type sur les faces d'un support triangulaire ou carré, mais dans ce cas, l'éloignement obligatoire entre les centres de phase des antennes élémentaires crée des ondulations importantes de la couverture en azimut et une variation non négligeable du taux d'ellipticité de l'énergie rayonnée.
  • Les stations d'émission ou de réception pour les satellites défilants, impliquent l'utilisation d'une antenne en polarisation circulaire sous l'horizon à couverture omnidirective. Actuellement, un grand nombre de messages sont perdus ou erronés car pour les sites bas (cas défavorable), les antennes "sol" ou "embarquées" ne rayonnent latéralement qu'une faible énergie en polarisation rectiligne. Le manque d'énergie aux sites bas et la rotation du plan de polarisation ont pour conséquence la rupture des liaisons et donc des messages.
  • La présente invention a pour but de remédier aux inconvénients des antennes connues en proposant une antenne qui permette d'obtenir une couverture omnidirective en azimut, en polarisation circulaire droite ou gauche, et dans laquelle les composantes transversales des champs rayonnés E et H soient en quadrature et à leur maximum d'amplitude de manière à obtenir un maximum d'énergie rayonnée transversalement en polarisation circulaire.
  • Un autre but de l'invention est de proposer une antenne omnidirective en azimut qui rayonne un maximum d'énergie transversale en polarisation circulaire droite ou gauche dans un large cône axé sur l'horizon.
  • On connaît déjà, à cet égard, par le document US-2532428, ainsi que par le document US-2217911 qui constitue l'état de la technique de la demande, des antennes omnidirectives comprenant au moins deux éléments d'antenne en polarisation rectiligne horizontale espacés sensiblement uniformément dans un premier plan et de façon concentrique à un troisième élément d'antenne en polarisation rectiligne verticale situé dans un second plan sensiblement perpendiculaire au premier, lesdits éléments d'antenne étant chacun alimentés radioélectriquement par des courants sensiblements de même phase et de même amplitude, les centres de phase des éléments d'antenne en polarisation rectiligne horizontale et le centre de phase de l'élément d'antenne en polarisation rectiligne verticale étant sensiblement distants d'un nombre impair de quarts d'onde dans le sens de propagation de l'onde.
  • Cependant, dans les antennes dont font état les documents US-2532428 et US-2217911, les éléments horizontaux rayonnants sont alimentés latéralement par des lignes d'excitation parallèles à l'élément rayonnant vertical. Cette configuration est à l'origine d'une gêne importante au niveau du rayonnement, qui, d'une part, affecte fortement l'omnidirectivité de l'antenne et, d'autre part, ne permet d'obtenir qu'une polarisation elliptique.
  • On notera encore que dans le dispositif du brevet US-2217911, le courant dans la boucle horizontale est maintenu constant par des capacités et que dans le brevet US-2532428, il existe une différence de phase de 90° entre l'élément rayonnant vertical et l'élément rayonnant horizontal.
  • Dans le dispositif de la demanderesse, la disposition des éléments est telle qu'il n'existe aucune perturbation du champ rayonné par la présente d'une ligne d'excitation parallèle aux éléments rayonnants. De plus, la polarisation est parfaitement circulaire et aisément maîtrisable.
  • La présente invention a donc pour objet une antenne omnidirective comprenant au moins deux éléments d'antenne en polarisation rectiligne horizontale espacés sensiblement uniformément dans un premier plan et de façon concentrique à un troisième élément d'antenne en polarisation rectiligne verticale situé dans un second plan sensiblement perpendiculaire au premier, lesdits éléments d'antenne étant chacun alimentés radioélectriquement par des courants sensiblement de même phase et de même amplitude, les centres de phase des éléments d'antenne en polarisation rectiligne horizontale et le centre de phase de l'élément d'antenne en polarisation rectiligne verticale étant sensiblement distants d'un nombre impair de quarts d'onde dans le sens de propagation de l'onde, caractérisée en ce que l'alimentation des éléments d'antenne en polarisation rectiligne horizontale est réalisée par l'intermédiaire d'éléments d'alimentation s'étendant sensiblement radialement par rapport auxdits éléments d'antenne, sensiblement dans ledit premier plan.
  • Avantageusement les éléments d'alimentation sont sensiblement répartis régulièrement dans ledit premier plan; les éléments d'alimentation des éléments d'antenne à polarisation horizontale, s'étendent radialement desdits éléments d'antenne jusqu'à une tête de transformateur d'impédance commune aux éléments d'antenne à polarisation horizontale ou verticale; la tête dudit transformateur d'impédance de l'antenne est située au centre de phase de l'élément d'antenne à polarisation verticale.
  • L'antenne omnidirective selon l'invention peut comprendre trois éléments d'antenne à polarisation horizontale. Elle peut en particulier comprendre trois antennes demi-onde à polarisation horizontale espacées sensiblement uniformément dans un même plan et disposées de façon concentrique à une quatrième antenne monopole ou dipole à polarisation verticale et située dans un plan sensiblement perpendiculaire à celui desdites antennes demi-onde, ces quatre antennes étant alimentées par des courants de même phase et de même amplitude, le diamètre du cercle contenant les trois antennes demi-onde étant sensiblement égal à une demie longueur d'onde dans l'air à la fréquence moyenne de travail.
  • Chaque élément d'antenne à polarisation horizontale comprend préférentiellement deux éléments conducteurs, de forme rectiligne ou en arc de cercle, disposés à la périphérie d'un plateau isolant, de part et d'autre de celui-ci, interconnectés par un cavalier conducteur de liaison.
  • L'élément d'antenne à polarisation verticale peut être du type antenne à manchette.
  • Les éléments d'antenne à polarisation horizontale peuvent être disposés sur un circuit imprimé.
  • Les éléments d'antenne à polarisations verticale et horizontale sont avantageusement des éléments plans.
  • L'invention vise également une application de l'antenne précitée aux transmissions tout azimut sol-sol, sol-air, sol-mer, mer-air, mer-sol, mer-mer, air-sol, air-mer, air-air en milieu environnant perturbé ainsi qu'une application de cette antenne à la réalisation d'un émetteur FM de puissance réduite.
  • D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui va suivre.
  • Aux dessins annexés donnés à titre d'exemples non limitatifs:
    • La Figure 1 est une vue en perspective d'une antenne conforme à l'invention,
    • La Figure 2 est une vue en coupe axiale de l'antenne de la Figure 1 selon un plan passant par l'une des antennes demi-onde dipole de l'antenne conforme à l'invention,
    • La Figure 3 est une vue selon le plan III-III de la Figure 2,
    • La Figure 4 est une vue d'un détail de la Figure 2, à échelle agrandie, illustrant l'alimentation radio-fréquence d'une antenne demi-onde dipole,
    • La Figure 5 est un schéma électrique équivalent illustrant le principe de l'alimentation radio-électrique de l'antenne conforme à l'invention, et
    • Les Figures 6 à 10 représentent une antenne conforme à l'invention selon diverses variantes de réalisation.
  • Le dimensionnement des éléments constitutifs de l'antenne représentée aux dessins annexés, peut être facilement déterminé à partir des valeurs des paramètres exprimées dans la description ci-après, en fonction de la longueur d'onde de travail λo dans l'air. Dans le cas où, pour des raisons de tenue mécanique, les éléments d'antenne sont noyés dans un milieu électriquement isolant de constante diélectrique relative εr, il y aura lieu d'appliquer un coefficient de raccourcissement K (qui dépend en particulier de εr).
  • A la Figure 1, les éléments repérés 1, 2, 3 et 4 forment l'ensemble rayonnant supérieur, en polarisation rectiligne verticale, du type antenne à manchette. Ces éléments sont coaxiaux.
  • Les éléments 1, 2, 3 et 4 sont métalliques et soudés entre eux pour établir une continuité radio-électrique, l'élément 2 étant un élément coaxial d'alimentation en énergie qui est recouvert par un matériau électriquement isolant de nature appropriée 26.
  • Les paires respectives d'éléments électriquement conducteurs (par exemple réalisés en cuivre) 5 et 6, 7 et 8 et 9 et 10, conformés en arc de cercle ou section de tore, forment trois antennes demi-onde en polarisation rectiligne horizontale alimentées en leur centre par des éléments de symétrisation de courant respectivement repérés 11, 12 et 13. Les paires d'éléments rayonnants précités sont solidarisées à la périphérie d'un plateau support 25 en matériau électriquement isolant (par exemple en résine époxyde) et coaxial à l'élément d'antenne à manchette précité, et sont régulièrement angulairement disposées à la périphérie de ce plateau. Chaque paire d'éléments rayonnants précitée 5 à 10 comprend un élément disposé sur la face supérieure 25a du plateau 25 et un élément disposé contre la face inférieure 25b du plateau 25, les deux éléments d'une même paire étant électriquement reliés par un cavalier conducteur tel que celui repéré 17 à la Figure 2. Le plateau 25 comprend également trois découpes circulaires 25c régulièrement angulairement espacées, chaque découpe circulaire 25c s'étendant entre deux éléments de symétrisation radiaux adjacents.
  • En variante, les éléments 5 à 10, de préférence sous forme de conducteurs pleins, peuvent se présenter sous forme de segments de droite (voir Figure 6). Les éléments d'antenne à polarisation horizontale peuvent aussi n'être qu'au nombre de 2 et disposés comme schématiquement représentés aux Figures 7 et 8.
  • Pour une antenne de petites dimensions, le plateau 25 n'est pas indispensable et l'antenne sera alors autoporteuse.
  • La forme de réalisation représentée à la Figure 1 correspond à une antenne à polarisation circulaire droite. Par simple permutation circulaire des conducteurs respectivement 5 et 6, 7 et 8, 9 et 10, on obtient une antenne à polarisation circulaire gauche.
  • Les découpes radiales oblongues 25d du plateau 25 logeant les éléments symétriseurs 11 à 13 permettent de ne pas modifier la "longueur électrique" desdits symétriseurs et d'éviter les aberrations de fonctionnement.
  • Selon une autre variante de réalisation, les éléments d'antenne à polarisation horizontale A1 à A3 peuvent être réalisés sous forme d'un circuit imprimé.
  • En outre, ainsi que représenté schématiquement à la Figure 9, chaque élément d'antenne A1 à A4 peut être réalisé sous forme d'élément plan connu de l'homme du métier.
  • L'élément métallique repéré 16 (voir Figure 1), coaxial au plateau 25 et à l'antenne à manchette repérée A4 à la Figure 1 (les éléments rayonnants en polarisation rectiligne horizontale étant respectivement repérés A1, A2 et A3), forme l'armature extérieure des circuits d'alimentation des quatre éléments d'antenne précités et est prolongé, du côté opposé à l'élément d'antenne A4, par un organe support métallique 14, également coaxial au plateau 25, et par un connecteur coaxial d'extrémité 15 qui peut également être utilisé comme support d'une enveloppe 40 (représentée partiellement en trait mixte à la Figure 1) logeant l'antenne et de préférence remplie d'une mousse de polyuréthanne, ou d'un plan réflecteur métallique 41 représenté en trait mixte à la Figure 2. En variante, la mousse polyuréthanne précitée pourrait être remplacée par un matériau diélectrique ou magnétique permettant de réduire les dimensions physiques des éléments d'antenne.
  • Les découpes 25c permettent ainsi un bon remplissage de l'enveloppe 40 malgré la présence du plateau 25.
  • Sensiblement en regard du plateau 25, l'antenne conforme à l'invention comprend également, coaxiale à celui-ci, la tête intérieure 22 du transformateur d'impédance qui reçoit les âmes coaxiales d'alimentation radio-fréquence (RF) de l'antenne en polarisation verticale A4, c'est-à-dire l'âme coaxiale repérée 20, et des trois antennes A1 à A3 en polarisation horizontale, c'est-à-dire les âmes coaxiales repérées 19 qui s'étendent, en regard de la tête 22 précitée, perpendiculairement à l'âme coaxiale 20 de l'antenne A4.
  • La tête 22 dudit transformateur d'impédance est prolongée vers le bas par un élément cylindrique métallique 23 qui constitue la section de transformation de l'antenne selon l'invention et qui est maintenu en place à l'intérieur d'un manchon cylindrique isolant 24 également coaxial au plateau 25, en particulier.
  • Le conducteur 23 est prolongé vers le bas, c'est-à-dire vers le connecteur coaxial 15, par un élément cylindrique métallique 18 qui constitue la ligne d'alimentation coaxiale 50 ohms de l'antenne.
  • Selon une variante de réalisation, les éléments symétriseurs 11 à 13 peuvent être interconnectés au point 2 de sorte que la tête d'impédance 22 se trouve ramenée en ce point 2.
  • A l'exclusion des éléments repérés respectivement 24 à 27 qui sont réalisés en matériau électriquement isolant, de nature appropriée (téflon, polyéthylène ou céramique), tous les autres éléments constitutifs de l'antenne sont réalisés en matériau conducteur des courants radio-fréquence et interconnectés entre eux de manière que, si l'antenne est alimentée en courant continu, tous les points de la structure métallique de cette antenne soient au même potentiel.
  • Les éléments radiaux de symétrisation repérés 11 et 11' (voir Figures 2 et 4) ou 11, 12 et 13 (voir Figure 1) forment avec les cavaliers d'interconnexion repérés 17 (voir Figures 1, 2 et 4) et les manchons isolants 27 entourant les conducteurs de symétrisation précités (voir Figure 4), des symétriseurs du type "trombone" qui permettent l'alimentation radio-fréquence des éléments rayonnants en polarisation horizontale respectivement 5, 6; 7, 8 et 9, 10.
  • Les Figures 4 et 5 représentent le principe de l'alimentation radio-électrique de l'antenne. La Figure 4 illustre en particulier le détail de l'alimentation radio-fréquence des éléments rayonnants en polarisation horizontale avec l'utilisation d'un symétriseur du type trombone connu en lui-même. Il peut bien entendu être utilisé tout autre type de symétriseur (par exemple du type bazooka).
  • Les potentiels VD et les phases φD (voir Figure 4) doivent être identiques en 17 pour chacune des antennes en polarisation horizontale. De plus, il est nécessaire que la phase en 2 soit identique à la phase φD et que l'amplitude en ce point soit très peu différente.
  • Les antennes en polarisation horizontale sont placées sur un cercle de rayon λ 4 εR
    Figure imgb0001
    à la fréquence de travail ou sur un cercle de rayon λ/4n√εR, expression dans laquelle n est impair et vaut 1, 3, 5 etc... et r = 1 pour l'air.
  • L'antenne en polarisation verticale est dimensionnée pour être accordée à la fréquence de travail selon les calculs classiques liés aux antennes et connus de l'homme du métier. Il en est de même pour les éléments rayonnants en polarisation horizontale qui sont accordés à la fréquence de travail.
  • L'antenne conforme à l'invention peut fonctionner dans une bande de fréquence relativement importante (environ 20%) si on dimensionne les éléments rayonnant en conséquence. A cet effet, les trajets coaxiaux repérés 21, 11 et 11' (voir Figure 2) doivent avoir une "longueur électrique" identique de sorte que les phases φd en 2 et 17 soient elles aussi identiques.
  • La répartition des impédances aux points repérés 20 et 22 (Figure 2) est telle que l'amplitude et la phase du champ radio-électrique produit dans une direction de l'espace par l'élément en polarisation verticale A4 (direction parallèle à cet élément) et l'amplitude et la phase du champ produit en 17 par les éléments en polarisation horizontale A1 à A3 soient identiques.
  • Le transformateur 21 permet d'obtenir les résultats précités et le transformateur 23 permet de ramener l'impédance de l'antenne conforme à l'invention à 50 ohms.
  • Un prototype d'antenne selon l'invention a été réalisé par le déposant, à l'aide de dipoles demie-onde dans une bande de fréquence comprise entre 2,3 et 2,6 GHz. Dans ce cas, le gain mesuré par rapport à l'isotrope circulaire est égal à 4 dB dans la bande de fréquence précitée et le taux d'ellipticité à 90° de l'axe longitudinal, inférieur à 1 dB. Le ROS (rapport d'onde stationnaire) dans la bande précitée est inférieur à 1,6 par rapport à 50 ohms. La couverture azimut est omnidirective à ± 0,5 dB et la couverture site varie dans la bande 2,3-2,6 GHz de 60 à 70° d'ouverture à 1/2 puissance. Dans ce cas également, le maximum d'énergie est dirigé sur l'horizon.
  • L'élément rayonnant en polarisation verticale A4 10 est calculé comme un dipole à manchette demie-onde classique. Les dimensions l₁ et l₂ (voir Figure 2) sont fonction du rapport l/a (longueur sur diamètre) sachant que l₁ + l₂ est toujours légèrement inférieur à λ 2
    Figure imgb0002
    o ( λo : longueur d'onde de travail).
  • Le diamètre des éléments rayonnants 5, 6; 7, 8 et 9, 10 des trois antennes demie-onde A1 à A3 en polarisation horizontale joue également sur la longueur des demi-éléments r x ϑi i voir Figure 3) et dans ce cas, on obtient rx ϑi légèrement inférieur à o.
  • Le diamètre 2⁴ x r de disposition des trois éléments rayonnants demie-onde à polarisation horizontale est égal à λ 2
    Figure imgb0003
    o dans l'air et à λ 2
    Figure imgb0004
    o x(εr)⁻¹ dans un milieu de permitivité relative r.
  • Pour un fonctionnement optimal de l'antenne, il est recommandé que le diamètre de l'élément rayonnant à polarisation verticale soit inférieur à λ 12
    Figure imgb0005
    o.
  • Pour que chacune des antennes soit alimentée par des courants de même amplitude et de même phase, la longueur des éléments coaxiaux d'alimentation repérés 4 pour l'élément d'antenne A₄ et 11, 12, 13 pour les trois éléments d'antenne horizontaux doivent être rigoureusement identiques c'est-à-dire l₁ = l₂ = l₃ = l₄.
  • Une application particulièrement intéRessante de l'antenne conforme à l'invention, que l'on peut qualifier d'antenne omnididirective à polarisation circulaire transversale et à maximum de gain sous l'horizon, se situe dans le domaine des transmissions tout azimut sol-sol, sol-air, sol-mer, air-sol, air-mer, air-air, mer-sol, mer-air, mer-mer, en milieu environnant perturbé. L'utilisation d'une antenne en polarisation circulaire pour de telles transmissions qui impliquent une énergie maximale sous l'horizon, permet de limiter considérablement la gêne apportée par l'environnement perturbateur, puisqu'en cas de réflexion sur un obstacle métallique proche, il y a inversion de la polarisation de l'onde réfléchie.
  • La variante de réalisation représentée à la Figure 10 est également possible. Dans ce cas, chaque dipole à polarisation horizontale (un seul est représenté Figure 10) est supporté axialement par deux éléments symétriseurs verticaux, par rapport à un plateau réflecteur de base commun 41.
  • On notera que les centres de phase des éléments d'antenne à polarisation horizontale se situent aux points repérés 17 tandis que le centre de phase de l'élément à polarisation verticale se situe au point 2.
  • Une autre application particulièrement intéressante de l'antenne conforme à l'invention, est la réalisation d'un émetteur FM de puissance réduite.
  • Les signes de référence insérés après les caractéristiques techniques mentionnées dans les revendications, ont pour seul but de faciliter la compréhension de ces dernières, et n'en limitent aucunement la portée.

Claims (12)

  1. Antenne omnidirective comprenant au moins deux éléments d'antenne (A1, A2, A3) en polarisation rectiligne horizontale espacés sensiblement uniformément dans un premier plan et de façon concentrique à un élément d'antenne (A4) en polarisation rectiligne verticale situé dans un second plan sensiblement perpendiculaire au premier, lesdits éléments d'antenne étant chacun alimentés radio-électriquement par des courants sensiblement de même phase et de même amplitude, les centres de phase (17) des éléments d'antenne (A1,A2,A3) en polarisation rectiligne horizontale et le centre de phase (2) de l'élément d'antenne (A4) en polarisation rectiligne verticale étant sensiblement distants d'un nombre impair de quarts d'onde dans le sens de propagation de l'onde, caractérisée en ce que l'alimentation des éléments d'antenne (A₁, A₂, A₃) en polarisation rectiligne horizontale est réalisée par l'intermédiaire d'éléments d'alimentation (11,12,13) s'étendant sensiblement radialement par rapport auxdits éléments d'antenne, sensiblement dans ledit premier plan.
  2. Antenne omnidirective selon la revendication 1, caractérisée en ce que les éléments d'alimentation (11,12,13) sont sensiblement répartis régulièrement dans ledit premier plan.
  3. Antenne omnidirective selon l'une des revendications 1 ou 2, caractérisée en ce que les éléments d'alimentation (11,12,13) des éléments d'antenne (A1,A2,A3) à polarisation horizontale, s'étendent radialement desdits éléments d'antenne jusqu'à une tête de transformateur d'impédance commune aux éléments d'antenne à polarisation horizontale ou verticale.
  4. Antenne selon la revendication 3, caractérisée en ce que la tête (22) dudit transformateur d'impédance de l'antenne est située au centre de phase (2) de l'élément d'antenne à polarisation verticale.
  5. Antenne omnidirective selon l'une des revendications précédentes, caractérisée en ce qu'elle comprend trois éléments d'antenne à polarisation horizontale (A1, A2, A3).
  6. Antenne omnidirective selon la revendication 5, caractérisée en ce qu'elle comprend trois antennes demi-onde à polarisation horizontale espacées sensiblement uniformément dans un même plan et disposées de façon concentrique à une quatrième antenne monopole ou dipole à polarisation verticale et située dans un plan sensiblement perpendiculaire à celui desdites antennes demi-onde, ces quatres antennes étant alimentées par des courants de même phase et de même amplitude, le diamètre du cercle contenant les trois antennes demi-onde étant sensiblement égal à une demie longueur d'onde dans l'air à la fréquence moyenne de travail.
  7. Antenne selon l'une des revendications précédentes, caractérisée en ce que chaque élément d'antenne (A1,A2,A3) à polarisation horizontale comprend deux éléments conducteurs, de forme rectiligne ou en arc de cercle, disposés à la périphérie d'un plateau isolant (25), de part et d'autre de celui-ci, interconnectés par un cavalier conducteur de liaison (17).
  8. Antenne selon l'une des revendications précédentes, caractérisée en ce que l'élément d'antenne (A4) à polarisation verticale est du type antenne à manchette.
  9. Antenne selon l'une des revendications précédentes, caractérisée en ce que les éléments d'antenne à polarisation horizontale (A1 à A3) sont disposés sur un circuit imprimé.
  10. Antenne selon l'une des revendications précédentes, caractérisée en ce que les éléments d'antenne à polarisations verticale et horizontale sont des éléments plans.
  11. Application d'une antenne omnidirective selon l'une des revendications précédentes aux transmissions tout azimut sol-sol, sol-air, sol-mer, mer-sol, mer-air, mer-mer, air-sol, air-mer et air-air en milieu environnant perturbé.
  12. Application d'une antenne selon l'une des revendications 1 à 12, à la réalisation d'un émetteur FM de puissance réduite.
EP19900401787 1989-03-22 1990-06-22 Antenne omnidirective en polarisation circulaire transversale à maximum de gain sous l'horizon Expired - Lifetime EP0463263B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR8903778A FR2644937B1 (fr) 1989-03-22 1989-03-22 Antenne omnidirective en polarisation circulaire transversale a maximum de gain sous l'horizon

Publications (2)

Publication Number Publication Date
EP0463263A1 EP0463263A1 (fr) 1992-01-02
EP0463263B1 true EP0463263B1 (fr) 1994-04-13

Family

ID=9379964

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19900401787 Expired - Lifetime EP0463263B1 (fr) 1989-03-22 1990-06-22 Antenne omnidirective en polarisation circulaire transversale à maximum de gain sous l'horizon

Country Status (5)

Country Link
EP (1) EP0463263B1 (fr)
DE (1) DE69008170T2 (fr)
DK (1) DK0463263T3 (fr)
ES (1) ES2053136T3 (fr)
FR (1) FR2644937B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8803749B2 (en) 2011-03-25 2014-08-12 Kwok Wa Leung Elliptically or circularly polarized dielectric block antenna

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2676311B1 (fr) * 1991-05-07 1993-11-19 Agence Spatiale Europeenne Antenne a polarisation circulaire.
GB2259811B (en) * 1991-09-21 1995-05-17 Motorola Israel Ltd An antenna
FR2721757B1 (fr) * 1994-06-28 1996-09-13 Jac International Antenne omnidirectionnelle en azimut et directive en site et répondeur maritime ainsi équipé.
US7411399B2 (en) * 2005-10-04 2008-08-12 Schlumberger Technology Corporation Electromagnetic survey system with multiple sources
GB2512111B (en) 2013-03-20 2017-02-15 British Broadcasting Corp Antenna arrangement for transmitting two or more polarisations of radio signal
US9899746B2 (en) * 2013-12-14 2018-02-20 The Charles Stark Draper Laboratory, Inc. Electronically steerable single helix/spiral antenna
CN103822973A (zh) * 2014-02-26 2014-05-28 北京工业大学 一种全向性的水平剪切模态磁致伸缩传感器
FR3060089B1 (fr) 2016-12-08 2019-08-23 Mbda France Ensemble d'equilibrage a bagues d'equilibrage pour missile et missile pourvu d'un tel ensemble d'equilibrage
CN109216941A (zh) * 2018-09-03 2019-01-15 吴通控股集团股份有限公司 一种小型干涉仪测向天线组

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2217911A (en) * 1938-08-12 1940-10-15 Rca Corp Radio communication
US2532428A (en) * 1946-11-14 1950-12-05 United Broadeasting Company Elliptical polarization electromagnetic energy radiation system
US3348228A (en) * 1965-08-02 1967-10-17 Raytheon Co Circular dipole antenna array
US3555552A (en) * 1969-12-19 1971-01-12 Andrew Alford Dual polarized antenna system with controlled field pattern
US4083051A (en) * 1976-07-02 1978-04-04 Rca Corporation Circularly-polarized antenna system using tilted dipoles
US4555708A (en) * 1984-01-10 1985-11-26 The United States Of America As Represented By The Secretary Of The Air Force Dipole ring array antenna for circularly polarized pattern

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8803749B2 (en) 2011-03-25 2014-08-12 Kwok Wa Leung Elliptically or circularly polarized dielectric block antenna

Also Published As

Publication number Publication date
DE69008170T2 (de) 1994-10-13
FR2644937B1 (fr) 1991-09-27
ES2053136T3 (es) 1994-07-16
DK0463263T3 (da) 1994-06-06
EP0463263A1 (fr) 1992-01-02
DE69008170D1 (de) 1994-05-19
FR2644937A1 (fr) 1990-09-28

Similar Documents

Publication Publication Date Title
EP0427654B1 (fr) Antenne en hélice, quadrifilaire, résonnante bicouche
Nakano et al. A monofilar spiral antenna and its array above a ground plane-formation of a circularly polarized tilted fan beam
EP0243289B1 (fr) Antenne plaque à double polarisations croisées
US8537063B2 (en) Antenna for reception of satellite radio signals emitted circularly, in a direction of rotation of the polarization
EP1073143B1 (fr) Antenne imprimée bi-polarisation et réseau d'antennes correspondant
FR2752646A1 (fr) Antenne imprimee plane a elements superposes court-circuites
CN101065883B (zh) 四臂螺旋式天线
EP1407512B1 (fr) Antenne
FR2810163A1 (fr) Perfectionnement aux antennes-sources d'emission/reception d'ondes electromagnetiques
CA2019181A1 (fr) Element rayonnant diplexant
JPS6125304A (ja) 小型適応型アレイアンテナ
FR2863111A1 (fr) Antenne en reseau multi-bande a double polarisation
EP0315141A1 (fr) Dispositif d'excitation d'un guide d'onde en polarisation circulaire par une antenne plane
FR2907602A1 (fr) Antenne a fils multiples a double polarisation.
EP0327965A2 (fr) Antenne multifréquence, utilisable notamment dans le domaine des télécommunications spatiales
FR2709833A1 (fr) Instrument d'écoute large bande et bande basse pour applications spatiales.
EP0463263B1 (fr) Antenne omnidirective en polarisation circulaire transversale à maximum de gain sous l'horizon
FR2746547A1 (fr) Antenne helice a alimentation large bande integree, et procedes de fabrication correspondants
WO2005055362A1 (fr) Antenne en reseau multi-bande a double polarisation
FR2578105A1 (fr) Antenne plane a micro-ondes
FR2819346A1 (fr) Antenne planaire et dispositif de transmission bi-bande incluant cette antenne
EP1516392B1 (fr) Antenne a brins
EP0642189B1 (fr) Antenne pour appareil radio portatif
CA2006291C (fr) Dispositif rayonnant bifrequence
EP0512876A1 (fr) Antenne à polarisation circulaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE DK ES GB IT LI NL SE

17Q First examination report despatched

Effective date: 19930714

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ETABLISSEMENTS DAVEY BICKFORD SMITH & CIE

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE DK ES GB IT LI NL SE

REF Corresponds to:

Ref document number: 69008170

Country of ref document: DE

Date of ref document: 19940519

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940503

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2053136

Country of ref document: ES

Kind code of ref document: T3

EAL Se: european patent in force in sweden

Ref document number: 90401787.8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19990603

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19990616

Year of fee payment: 10

Ref country code: GB

Payment date: 19990616

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19990628

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19990629

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990702

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19990715

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19990914

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000622

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000622

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000623

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 20000623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

BERE Be: lapsed

Owner name: ETS DAVEY BICKFORD SMITH & CIE

Effective date: 20000630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000622

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed

Ref document number: 90401787.8

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20020204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050622