EP0327965A2 - Antenne multifréquence, utilisable notamment dans le domaine des télécommunications spatiales - Google Patents

Antenne multifréquence, utilisable notamment dans le domaine des télécommunications spatiales Download PDF

Info

Publication number
EP0327965A2
EP0327965A2 EP89101798A EP89101798A EP0327965A2 EP 0327965 A2 EP0327965 A2 EP 0327965A2 EP 89101798 A EP89101798 A EP 89101798A EP 89101798 A EP89101798 A EP 89101798A EP 0327965 A2 EP0327965 A2 EP 0327965A2
Authority
EP
European Patent Office
Prior art keywords
antenna
printed
ground plane
wire
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89101798A
Other languages
German (de)
English (en)
Other versions
EP0327965A3 (fr
Inventor
Gérard Raguenet
Régis Lenormand
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Espace Industries SA
Original Assignee
Alcatel Espace Industries SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Espace Industries SA filed Critical Alcatel Espace Industries SA
Publication of EP0327965A2 publication Critical patent/EP0327965A2/fr
Publication of EP0327965A3 publication Critical patent/EP0327965A3/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/362Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith for broadside radiating helical antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • H01Q5/45Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements using two or more feeds in association with a common reflecting, diffracting or refracting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/16Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
    • H01Q9/20Two collinear substantially straight active elements; Substantially straight single active elements

Definitions

  • the invention relates to a multifrequency antenna, usable in particular in the field of space telecommunications.
  • each mission has its own specificities concerning the following characteristics: - Frequency band, - blanket, - general radio-electric performances (gain, decoupling of space etc ).
  • the object of the invention is to meet such an objective.
  • the invention proposes, for this purpose, a multifrequency antenna comprising a first printed antenna operating at one or more frequencies, characterized in that it comprises a second antenna disposed in front of the first antenna using the same radiating surface and operating at a different frequency .
  • the first antenna is formed of a ground plane, of a dielectric substrate on which is disposed a metal track and the second antenna is a wire type antenna which crosses the first antenna in a through hole drilled in the center of symmetry of the metal track, the ground plane seen by the wire antenna being composed of the metal track as well as the ground plane general of the printed antenna.
  • the first antenna is a planar antenna
  • the second antenna is produced by a coaxial cable which ends in a dipole.
  • the first antenna is a planar antenna and the second antenna is produced by a coaxial cable which ends in a helix.
  • the invention consists of the association on the same projected surface of at least two radiating elements operating according to different principles: - radiation produced by "cavities”, thus producing a microstrip or printed type antenna ("Patch” in English) - wire-type radiation, thus producing a radiating dipole or helix.
  • a dual-frequency antenna according to the invention enables radiation on one frequency to be produced at one frequency using a printed antenna, radiation at another frequency via a wire antenna.
  • the independence of operation of these two antennas makes it possible to optimize them at separate frequencies.
  • the decoupling between the two elements is ensured by the fact that the principles which contribute to the radiation are of different natures.
  • a wire antenna is installed on a printed antenna using this property.
  • Such an embodiment has the following two characteristics: -
  • the wire antenna does not affect the adaptation and radiation characteristics of the printed antenna. - Due to different radiation principles, the coupling between the two elements remains very weak.
  • wire antenna A certain number of types of wire antenna can be envisaged as being able to be mounted on the printed antenna. The precise choice depends on an optimization in relation to a need, and directs the solution towards dipoles, monofilar helices, quadrifilar helices ...
  • wire-type antennas have been studied for many years (see notably Richard C manual JOHNSON and Henry JASIK entitled “Antenna Engineering Handbook", McGraw-Hill Book Company, New York).
  • the calculation methods developed in particular in this document make assumptions about the nature of the current established on the conductors in order to assess the radiation integral.
  • the wire element In nominal operation (without printed antenna) the wire element is placed in front of a ground plane at a suitable distance.
  • the resulting radiation can be estimated for example using the principle images for a dipole structure.
  • the ground plane seen by the wire antenna being produced by all of the printed conductor and the general ground plane of the antenna printed.
  • the operating frequency of the wire antenna does not correspond to a resonance of the printed antenna, the printed antenna does not play a particular role (field concentration, cavity, resonance).
  • a slight adaptation of the height of the dipole may however be necessary in order to optimize the resulting diagram.
  • FIG. 3 we have: - A flat printed antenna, as shown in Figure 2, pierced in its center with a through hole 15; - a coaxial cable 16, passing through this hole 15 perpendicular to the plane of the printed antenna. This cable ends at its free end with a dipole antenna 17.
  • the dielectric substrate has a thickness of a few millimeters, the track is square in shape and about 60 mm on a side.
  • the printed antenna has a resonant frequency at 1628 MHz (see curve 20 in Figure 5) and adaptation bandwidths: at -10dB: 31 MHz at -15dB: 16 MHz.
  • the dipole alone is defined at 2449 MHz (see curve 21 in Figure 6) and has the following adaptation bandwidths: at -10dB: 227 MHz at -15dB: 110 MHz
  • the tuning frequency is obtained for 1638 MHz (see curve 22 in Figure 5), ie a deviation of less than 1% compared to the "Patch" alone, and the adaptation bandwidths are : at -10dB: 31.5 MHz at -15dB: 16.9 MHz - for dipole antenna access, the tuning frequency obtained is 2446 MHz (see curve 23 in Figure 6), i.e. a deviation much less than 1% compared to the element alone, the adaptation widths are: at -10dB: 236 MHz at -15dB: 122 MHz
  • the thickness of the dielectric substrate is relatively small and depends on the nature of the dielectric material; for a "honeycomb" structure in KEVLAR: we will always have a thickness ⁇ 10 mm, for dielectric materials with a higher constant, this thickness may not exceed a few millimeters (2 to 3 mm typically for ⁇ r ⁇ 2, 5)
  • the coaxial cable 16 passing through the hole 15 ends in an antenna 18 in a helix.
  • the shape of the microstrip antenna may obviously not be planar and be provided with a certain curvature (cylindrical, spherical%), Depending on its particular location on a structure: for example implantation on concave surfaces.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)
  • Waveguide Aerials (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

Le dispositif se rapport à une antenne multifréquence comprenant une première antenne imprimée (10, 11, 12) fonctionnant à une ou plusieurs fréquences, et une seconde antenne (17) disposée devant la première antenne utilisant la même surface rayonnante et fonctionnant à une fréquence différente. Application notamment au domaine des télécommunications spatiales.

Description

  • L'invention concerne une antenne multifréquence, utilisable notamment dans le domaine des télécommunications spatiales.
  • L'évolution actuelle dans le domaine des satellites de télécommunication va dans le sens d'une augmentation générale de capacités : chaque satellite devant pour des raisons économiques pouvoir embarquer plusieurs charges utiles. D'une façon générale on peut dire que l'augmentation des capacités de trafic impose, pour des raisons de débit d'information, l'utilisation d'antennes à gain élevé.
  • De plus, chaque mission a ses spécificités propres concernant les caractéristiques suivantes :
    - Bande de fréquence,
    - couverture,
    - performances générales radio-électriques (gain, découplage d'espace etc...).
  • Et il n'est pas possible, au sens de leur implantation sur le même corps de satellite, de multiplier le nombre de grandes antennes (diamètre supérieur à 2 mètres environ).
  • De façon générale, que ce soit dans le cas d'un réseau à rayonnement direct ou d'une antenne à réflecteurs, il est attractif d'utiliser la même surface rayonnante : Ceci allant dans le sens d'une intégration maximale des fonctions et d'une meilleure utilisation des surfaces.
  • L'invention a pour objet de répondre à un tel objectif.
  • L'invention propose, à ct effet, une antenne multifréquence comprenant une première antenne imprimée fonctionnant à une ou plusieurs fréquences, caractérisée en ce qu'elle comprend une seconde antenne disposée devant la première antenne utilisant la même surface rayonnante et fonctionnant à une fréquence différente.
  • Avantageusement, la première antenne est formée d'un plan de masse, d'un substrat diélectrique sur lequel est disposée une piste métallique et la seconde antenne est une antenne de type filaire qui traverse la première antenne dans un trou de passage percé au centre de symétrie de la piste métallique, le plan de masse vu par l'antenne filaire étant composé de la piste métallique ainsi que du plan de masse général de l'antenne imprimée.
  • Dans une première réalisation la première antenne est une antenne plane, la seconde antenne est réalisée par un câble coaxial qui se termine par un dipôle.
  • Dans une seconde réalisation, la première antenne est une antenne plane et la seconde antenne est réalisée par un câble coaxial qui se termine par une hélice.
  • Les caractéristiques et avantages de l'invention ressortiront d'ailleurs de la description qui va suivre, à titre d'exemple non limitatif, en référence aux figures annexées sur lesquelles :
    • - les figures 1 et 2 représentent deux vues en coupe de réalisation de l'art connu ;
    • - la figure 3 représente une vue en coupe d'une réalisation de l'antenne selon l'invention ;
    • - la figure 4 représente une vue en coupe d'une autre réalisation de l'antenne selon l'invention ;
    • - les figures 5 et 6 illustrent des courbes, caractéristiques des pertes en réflection en fonction de la fréquence, relatives à la réalisation représentée à la figure 3 ;
    • - la figure 7 représente une courbe, du découplage interéléments en fonction de la fréquence, relative à la réalisation représentée à la figure 3.
  • L'invention consiste en l'association sur une même surface projetée d'au moins deux éléments rayonnants fonctionnant selon des principes différents :
    - un rayonnement réalisé par "cavités", réalisant ainsi une antenne microruban ou de type imprimée ("Patch" en anglais)
    - un rayonnement de type filaire, réalisant ainsi un dipôle ou une hélice rayonnants.
  • Une antenne bi-fréquence selon l'invention permet de réaliser sur la même surface utile le rayonnement à une fréquence à l'aide d'une antenne imprimée, le rayonnement à une autre fréquence par le biais d'une antenne filaire. L'indépendance de fonctionnement de ces deux antennes permet d'optimiser celles-ci à des fréquences séparées. Le découplage entre les deux éléments est assuré par le fait que les principes qui contribuent au rayonnement sont de natures différentes.
  • Le principe et le calcul du rayonnement d'une antenne microruban, telle que représentée aux figures 1 et 2 avec un plan de masse 11, un substrat diélectrique 12 et une piste métallique 10, ont été décrit par de nombreux auteurs (voir notamment l'article de R.MOSIG et de E. GARDIOL intitulé "Rayonnement d'une antenne microruban de forme arbitraire", paru dans ANN. TELECOMMUN. 40, n° 3-4 1985 aux pages 181 à 189).
  • Dans le cas d'éléments de forme carrée ou circulaire, on s'aperçoit que le point central A de la piste imprimée supérieure 10 (croisement de ses deux axes de symétrie) est au même potentiel que le plan de masse inférieur 11, comme représenté à la figure 1.
  • Il y a donc aucun changement dans les caractéristiques (adaptation, rayonnement) entre une antenne imprimée nominale ou une antenne imprimée dont le conducteur supérieur est relié au plan de masse 12 (AB) par un stub métallique 13, comme représenté sur la figure 2.
  • Selon l'invention on implante une antenne filaire sur une antenne imprimée en utilisant cette propriété.
  • Une telle réalisation présente les deux caractéristiques suivantes :
    - L'antenne filaire n'affecte pas les caractéristiques adaptation et rayonnement de l'antenne imprimée.
    - Du fait de principes de rayonnement différents, le couplage entre les deux éléments reste très faible.
  • Un certain nombre de types d'antennes filaires, peut être envisagé comme pouvant être montées sur l'antenne imprimée. Le choix précis dépend d'une optimisation par rapport à un besoin, et oriente la solution vers des dipôles, hélices monofilaires, hélices quadrifilaires... De telles antennes de type filaire ont été étudiées depuis de nombreuses années (voir notamment manuel de Richard C. JOHNSON et Henry JASIK intitulé "Antenna Engineering Handbook", McGraw-Hill Book Company, New-York). Les méthodes de calcul développées notamment dans ce document font des hypothèses sur la nature du courant établi sur les conducteurs afin d'évaluer l'intégrale de rayonnement.
  • En fonctionnement nominal (sans antenne imprimée) l'élément filaire est placé devant un plan de masse à une distance convenable. Le rayonnement résultant peut être estimé par exemple à l'aide du principe des images pour une structure dipôle.
  • Il n'y a aucun changement notable de performances de l'antenne filaire implantée sur une antenne imprimée, le plan de masse vu par l'antenne filaire étant réalisé par l'ensemble du conducteur imprimé et du plan de masse général de l'antenne imprimée . Comme la fréquence de fonctionnement de l'antenne filaire ne correspond pas à une résonnance de l'antenne imprimée, l'antenne imprimée ne joue pas de rôle particulier (concentration de champ, cavité, résonnance). Une légère adaptation de la hauteur du dipôle peut être toutefois nécessaire afin d'optimiser le diagramme résultant.
  • Dans un exemple de réalisation, comme représenté à la figure 3, on a :
    - une antenne imprimée plane , comme represéntée à la figure 2, percée en son centre d'un trou 15 de passage ;
    - un câble coaxial 16, passant par ce trou 15 perpendiculairement au plan de l'antenne imprimée. Ce câble se termine à son extrémité libre par une antenne dipôle 17.
  • Dans cette réalisation représentée à la figure 3, le substrat diélectrique présente une épaisseur de quelques millimètres, la piste est de forme carrée et d'environ 60 mm de côté.
  • En fonctionnement nominal :
    - l'antenne imprimée présente une fréquence de résonance à 1628 MHz (voir courbe 20 à la figure 5) et des largeurs de bande d'adaptation :
    à -10dB : 31 MHz
    à -15dB : 16 MHz.
    - le dipôle seul est défini à 2449 MHz (voir courbe 21 à la figure 6) et présente les largeurs de bande d'adaptation suivantes :
    à -10dB : 227 MHz
    à -15dB : 110 MHz
  • En fonctionnement bi-bande ces résultats sont très peu altérés, et les caractérisations de mesures ont fourni les indications suivantes :
    - pour l'accès antenne imprimée la fréquence d'accord est obtenue pour 1638 MHz (voir courbe 22 à la figure 5), soit un écart inférieur à 1% par rapport au "Patch" seul, et les largeurs de bande d'adaptation sont :
    à -10dB : 31,5 MHz
    à -15dB : 16,9 MHz
    - pour l'accès antenne dipôle, la fréquence d'accord obtenue est 2446 MHz (voir courbe 23 à la figure 6), soit un écart largement inférieur à 1% par rapport à l'élément seul, les largeurs d'adaptation sont :
    à -10dB : 236 MHz
    à -15dB : 122 MHz
  • Dans les deux cas, les différences sont mineures entre un fonctionnement bi-bande et un fonctionnement nominal en ce qui concerne :
    . la localisation des fréquences d'accord (écart ≦ 1%) ;
    . la stabilité des performances d'adaptation en fréquence.
  • De plus on vérifie le fait que le découplage interéléments De est toujours supérieur à 20dB, montrant ainsi le peu d'action d'une antenne sur l'autre (voir figure 7).
  • On vérifie, de même, sur les coupes de diagramme qu'il n'existe aucune déviation ou impact majeur entre l'élément nominal (antennes prises seules) et l'élément bi-bande.
  • On sait, par ailleurs, que l'épaisseur du substrat diélectrique est relativement faible et dépend de la nature du matériau diélectrique ; pour une structure "nid d'abeille" en KEVLAR : on aura toujours une épaisseur ≦ 10 mm, pour des matériaux diélectriques à constante plus élevée, cette épaisseur peut ne pas dépasser quelques millimètres (2 à 3 mm typiquement pour εr ∼ 2,5)
  • Dans un autre exemple de réalisation, représenté à la figure 4, le câble coaxial 16 passant par le trou 15 se termine par une antenne 18 en hélice.
  • Il est bien entendu que la présente invention n'a été décrite et représentée qu'à titre d'exemple préférentiel et que l'on pourra remplacer ses éléments constitutifs par des éléments équivalents sans, pour autant, sortir du cadre de l'invention.
  • Ainsi d'autres types d'antennes peuvent être associées à une antenne microruban, tout en utilisant la même surface rayonnante.
  • La forme de l'antenne microruban peut bien évidemment ne pas être plane et être munie d'une certaine courbure (cylindrique, sphérique. . . .), dépendant de son implantation particulière sur une structure : par exemple implantation sur des surfaces concaves.

Claims (6)

1/ Antenne multifréquence comprenant une première antenne imprimée (10, 11, 12) fonctionnant à une ou plusieurs fréquences, caractérisée en ce qu'elle comprend une seconde antenne (17) disposée devant la première antenne utilisant la même surface rayonnante et fonctionnant à une fréquence différente.
2/ Antenne selon la revendication 1, caractérisée en ce que la première antenne (10, 11, 12) est formée d'un plan de masse (11), d'un substrat diélectrique (12) sur lequel est diposée une piste métallique (10), en ce que la seconde antenne (17) est une antenne de type filaire qui traverse la première antenne dans un trou de passage (15) percé au centre de symétrie de la piste métallique (10), le plan de masse vu par l'antenne filaire étant composé de la piste métallique (10) ainsi que du plan de masse général (11) de l'antenne imprimée.
3/ Antenne selon la revendication 2, caractérisée en ce que la seconde antenne est réalisée par un câble coaxial (16) qui se termine par un dipôle (17).
4/ Antenne selon la revendicaton 2 , caractérisée en ce que la seconde antenne est réalisée par un câble coaxial qui se termine par une hélice (18).
5/ Antenne selon l'une quelconque des revendications précédentes, caractérisé en ce que la première antenne (10, 11, 12) est une antenne plane.
6/ Antenne réseau, caractérisée en ce qu'elle est formée de l'association d'un certain nombre d'antennes élémentaires selon l'une quelconque des revendications 1 à 5.
EP19890101798 1988-02-12 1989-02-02 Antenne multifréquence, utilisable notamment dans le domaine des télécommunications spatiales Withdrawn EP0327965A3 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8801697 1988-02-12
FR8801697A FR2627330B1 (fr) 1988-02-12 1988-02-12 Antenne multifrequence, utilisable notamment dans le domaine des telecommunications spatiales

Publications (2)

Publication Number Publication Date
EP0327965A2 true EP0327965A2 (fr) 1989-08-16
EP0327965A3 EP0327965A3 (fr) 1991-05-08

Family

ID=9363228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890101798 Withdrawn EP0327965A3 (fr) 1988-02-12 1989-02-02 Antenne multifréquence, utilisable notamment dans le domaine des télécommunications spatiales

Country Status (5)

Country Link
US (1) US5220334A (fr)
EP (1) EP0327965A3 (fr)
JP (1) JPH01296703A (fr)
CA (1) CA1295732C (fr)
FR (1) FR2627330B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826868A3 (fr) * 1998-09-09 2007-10-03 Qualcomm, Incorporated Antenne de résonateur diélectrique polarisée circulairement

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2640431B1 (fr) * 1988-12-08 1991-05-10 Alcatel Espace Dispositif rayonnant multifrequence
US5835057A (en) * 1996-01-26 1998-11-10 Kvh Industries, Inc. Mobile satellite communication system including a dual-frequency, low-profile, self-steering antenna assembly
US5838282A (en) * 1996-03-22 1998-11-17 Ball Aerospace And Technologies Corp. Multi-frequency antenna
US5864318A (en) * 1996-04-26 1999-01-26 Dorne & Margolin, Inc. Composite antenna for cellular and gps communications
US6005519A (en) * 1996-09-04 1999-12-21 3 Com Corporation Tunable microstrip antenna and method for tuning the same
JP3580654B2 (ja) * 1996-12-04 2004-10-27 京セラ株式会社 共用アンテナおよびこれを用いた携帯無線機
JP2998669B2 (ja) * 1997-01-08 2000-01-11 日本電気株式会社 アンテナ装置
SE510995C2 (sv) * 1997-03-24 1999-07-19 Ericsson Telefon Ab L M Aktiv sändnings/mottagnings gruppantenn
WO1999059223A2 (fr) * 1998-05-11 1999-11-18 Csa Limited Reseau d'antennes microruban double bande
SE516482C2 (sv) * 1999-05-31 2002-01-22 Allgon Ab Patchantenn och en kommunikationsutrustning inkluderande en sådan antenn
WO2000079649A1 (fr) * 1999-06-21 2000-12-28 Thomson Licensing S.A Dispositif d'emission et/ou de reception de signaux
US6335706B1 (en) * 1999-10-04 2002-01-01 Paul Gordon Elliot Method to feed antennas proximal a monopole
SE518331C2 (sv) * 2000-10-27 2002-09-24 Ericsson Telefon Ab L M Mobiltelefonantennanordning för en första och en andra radioapplikation
SE518467C2 (sv) * 2001-02-05 2002-10-15 Bluetronics Ab Patchantenn för bluetooth och WLAN
US6785543B2 (en) * 2001-09-14 2004-08-31 Mobile Satellite Ventures, Lp Filters for combined radiotelephone/GPS terminals
FR2842025B1 (fr) * 2002-07-02 2006-07-28 Jacquelot Technologies Dispositif rayonnant bi-bande a polarisations coplanaires
JP2006270717A (ja) * 2005-03-25 2006-10-05 Nippon Antenna Co Ltd 車載用アンテナ
JP4970206B2 (ja) * 2007-09-21 2012-07-04 株式会社東芝 アンテナ装置
TWI370580B (en) 2007-12-27 2012-08-11 Wistron Neweb Corp Patch antenna and method of making same
US10197679B2 (en) 2014-01-16 2019-02-05 Topcon Positioning Systems, Inc. GNSS base station antenna system with reduced sensitivity to reflections from nearby objects
WO2015108436A1 (fr) * 2014-01-16 2015-07-23 Llc "Topcon Positioning Systems" Système mondial d'antenne de navigation par satellites ayant un noyau creux
KR101609665B1 (ko) * 2014-11-11 2016-04-06 주식회사 케이엠더블유 이동통신 기지국 안테나
US10115683B2 (en) * 2016-04-14 2018-10-30 Nxp Usa, Inc. Electrostatic discharge protection for antenna using vias
CN115917874A (zh) * 2020-08-03 2023-04-04 住友电气工业株式会社 阵列天线
US20220102857A1 (en) * 2020-09-29 2022-03-31 T-Mobile Usa, Inc. Multi-band millimeter wave (mmw) antenna arrays

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2629502A1 (de) * 1976-06-30 1978-01-05 Siemens Ag Mehrfachrundstrahlantenne
US4118706A (en) * 1977-09-29 1978-10-03 The United States Of America As Represented By The Secretary Of The Army Microstrip-fed parasitic array
US4218682A (en) * 1979-06-22 1980-08-19 Nasa Multiple band circularly polarized microstrip antenna
GB2180407A (en) * 1985-09-09 1987-03-25 Elta Electronics Ind Ltd Microstrip antenna
JPH0651008A (ja) * 1992-12-18 1994-02-25 Tomoegawa Paper Co Ltd トナーの電荷量測定方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1221694B (de) * 1961-07-07 1966-07-28 Siemens Ag Einrichtung zur Beseitigung der von Sendeantennen reflektierten hochfrequenten Energieanteile
US4089003A (en) * 1977-02-07 1978-05-09 Motorola, Inc. Multifrequency microstrip antenna
JPS5425654A (en) * 1977-07-29 1979-02-26 Hitachi Denshi Ltd Antenna mocrowave band
US4162499A (en) * 1977-10-26 1979-07-24 The United States Of America As Represented By The Secretary Of The Army Flush-mounted piggyback microstrip antenna
JPS57107610A (en) * 1980-12-25 1982-07-05 Nippon Telegr & Teleph Corp <Ntt> Circular polarized wave cone beam antenna
JPS5829203A (ja) * 1981-08-17 1983-02-21 Nippon Telegr & Teleph Corp <Ntt> 多層形マイクロストリップダイバ−シチアンテナ
US4684953A (en) * 1984-01-09 1987-08-04 Mcdonnell Douglas Corporation Reduced height monopole/crossed slot antenna
JPS60244103A (ja) * 1984-05-18 1985-12-04 Nec Corp アンテナ
GB8501225D0 (en) * 1985-01-17 1985-02-20 Cossor Electronics Ltd Antenna
CA1257694A (fr) * 1985-08-05 1989-07-18 Hisamatsu Nakano Systeme d'antenne
US5099249A (en) * 1987-10-13 1992-03-24 Seavey Engineering Associates, Inc. Microstrip antenna for vehicular satellite communications

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2629502A1 (de) * 1976-06-30 1978-01-05 Siemens Ag Mehrfachrundstrahlantenne
US4118706A (en) * 1977-09-29 1978-10-03 The United States Of America As Represented By The Secretary Of The Army Microstrip-fed parasitic array
US4218682A (en) * 1979-06-22 1980-08-19 Nasa Multiple band circularly polarized microstrip antenna
GB2180407A (en) * 1985-09-09 1987-03-25 Elta Electronics Ind Ltd Microstrip antenna
JPH0651008A (ja) * 1992-12-18 1994-02-25 Tomoegawa Paper Co Ltd トナーの電荷量測定方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 9, no. 178 (E-330)(1901), 23 juillet 1985; & JP - A - 6051008 (FUJITSU TEN) 22.03.1985 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1826868A3 (fr) * 1998-09-09 2007-10-03 Qualcomm, Incorporated Antenne de résonateur diélectrique polarisée circulairement

Also Published As

Publication number Publication date
CA1295732C (fr) 1992-02-11
EP0327965A3 (fr) 1991-05-08
JPH01296703A (ja) 1989-11-30
FR2627330B1 (fr) 1990-11-30
US5220334A (en) 1993-06-15
FR2627330A1 (fr) 1989-08-18

Similar Documents

Publication Publication Date Title
CA1295732C (fr) Antenne multifrequence, utilisable notamment dans le domaine des telecommunications spatiales
EP3547450B1 (fr) Element rayonnant a polarisation circulaire mettant en oeuvre une resonance dans une cavite de fabry perot
EP0372451B1 (fr) Dispositif rayonnant multifréquence
EP0426972B1 (fr) Antenne plane
EP0825673B1 (fr) Antenne plane à éléments superposés court-circuités
EP0899814B1 (fr) Structure rayonnante
EP2047558B1 (fr) Antenne isotrope et capteur de mesure associe
EP1407512B1 (fr) Antenne
EP1690317B1 (fr) Antenne en reseau multi-bande a double polarisation
EP2441119A1 (fr) Élément rayonnant d&#39;antenne
EP0542595A1 (fr) Dispositif d&#39;antenne microruban perfectionné, notamment pour transmissions téléphoniques par satellite
EP2625741B1 (fr) Antenne de grande dimension à ondes de surface et à large bande
FR2863111A1 (fr) Antenne en reseau multi-bande a double polarisation
EP2710676B1 (fr) Element rayonnant pour antenne reseau active constituee de tuiles elementaires
EP2643886B1 (fr) Antenne planaire a bande passante elargie
EP1181744B1 (fr) Antenne a polarisation verticale
EP0642189B1 (fr) Antenne pour appareil radio portatif
CA2683048C (fr) Antenne a elements rayonnants inclines
EP0463263B1 (fr) Antenne omnidirective en polarisation circulaire transversale à maximum de gain sous l&#39;horizon
FR2641133A1 (fr)
FR2724491A1 (fr) Antenne plaquee miniaturisee, a double polarisation, a tres large bande
FR2980647A1 (fr) Antenne ultra-large bande
EP0831550B1 (fr) Antenne-réseau polyvalente
WO2016139403A1 (fr) Structure antennaire omnidirectionnelle large bande
FR2842025A1 (fr) Dispositif rayonnant bi-bande a polarisations coplanaires

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19911104

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

17Q First examination report despatched

Effective date: 19921229

18W Application withdrawn

Withdrawal date: 19921221