EP0442510B1 - Verfahren und Einrichtung für die Ultraschall-Flüssigkeits-Zerstäubung - Google Patents

Verfahren und Einrichtung für die Ultraschall-Flüssigkeits-Zerstäubung Download PDF

Info

Publication number
EP0442510B1
EP0442510B1 EP91102120A EP91102120A EP0442510B1 EP 0442510 B1 EP0442510 B1 EP 0442510B1 EP 91102120 A EP91102120 A EP 91102120A EP 91102120 A EP91102120 A EP 91102120A EP 0442510 B1 EP0442510 B1 EP 0442510B1
Authority
EP
European Patent Office
Prior art keywords
frequency
signal
ultrasonic transducer
control
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91102120A
Other languages
English (en)
French (fr)
Other versions
EP0442510A1 (de
Inventor
Martin Rüttel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0442510A1 publication Critical patent/EP0442510A1/de
Application granted granted Critical
Publication of EP0442510B1 publication Critical patent/EP0442510B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0223Driving circuits for generating signals continuous in time
    • B06B1/0238Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave
    • B06B1/0246Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal
    • B06B1/0253Driving circuits for generating signals continuous in time of a single frequency, e.g. a sine-wave with a feedback signal taken directly from the generator circuit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B2201/00Indexing scheme associated with B06B1/0207 for details covered by B06B1/0207 but not provided for in any of its subgroups
    • B06B2201/70Specific application
    • B06B2201/77Atomizers

Definitions

  • the invention relates to a method for triggering an ultrasonic transducer for atomizing a liquid, a trigger signal having an adjustable trigger frequency being fed to the ultrasonic transducer. It also relates to a device for controlling an ultrasonic transducer for atomizing a liquid with a controllable oscillator and a frequency tracking branch, the oscillator emitting a trigger signal with an adjustable trigger frequency and connected on the output side to the ultrasonic converter via a power amplifier, and the frequency tracking branch on the output side is connected to the frequency control input of the oscillator.
  • Piezoceramic ultrasonic transducers for atomizing liquids are used in various facilities, for example in inhalation devices or in humidifiers. In the latter, water is used to humidify the air. With all these devices, it is of crucial importance that the excitation or control frequency for the ultrasound transducer is optimally adapted to it.
  • the optimum operating point is understood to be the operating state with regard to the feed current, feed voltage and drive frequency, in which the volume of liquid atomized per unit of time is the greatest for a given electrical power. This optimal operating point is normally at a resonance frequency of the ultrasound transducer. Due to the installation geometry or due to deviations of the ultrasonic transducer from an ideal predefined design, the point of greatest efficiency can be shifted slightly. This can only be insufficiently recognized and corrected by the previously known control principles for the ultrasound transducer.
  • the first method involves the ultrasound transducer itself as a frequency-determining element in an oscillating circuit, for example in a power oscillator.
  • This principle is implemented, for example, in a commercially available ultrasonic liquid atomizer (ultrasonic atomizer EFE-HMV1R7M6E from Matsushita Electric, specification from Quick-Ohm GmbH, D-5600 Wuppertal).
  • a pulse-code-modulated transmitter with its own oscillator is used, which emits ultrasonic waves with a frequency of 1.7 MHz onto a water surface via the ultrasonic transducer.
  • the impact of the ultrasonic waves on the boundary layer between water and air causes the liquid to rise, which manifests itself as fine water dust or mist.
  • the ultrasonic transducer is attached to the lower part of a water tank.
  • One possibility for using the ultrasonic transducer as a frequency-determining element is, for example, the arrangement of the ultrasonic transducer in the feedback line of an oscillator. This is described for example in EP-A-0,240,360.
  • the amplitude and phase frequency response of the ultrasound transducer is then used to pull the drive frequency emitted by the oscillator to the resonance frequency of the ultrasound transducer.
  • This method has the disadvantage that the operating frequency obtained in this way is also influenced by other circuit components and can therefore be noticeably adjacent to the optimum operating frequency of the ultrasonic transducer.
  • a certain vibration quality of the ultrasonic transducer is required for reliable functioning, which places high demands on the manufacturing accuracy in the manufacture of the ultrasonic transducer.
  • a stable operating frequency is applied to the ultrasound transducer via a power amplifier with the aid of a separate oscillator, the frequency of which is set once.
  • the optimal working frequency can now be determined and set once on the device's own oscillator for the ultrasonic transducer.
  • the optimal working frequency is when the sound pressure has reached its maximum. If you run the device's own oscillator as a quartz-stabilized frequency synthesizer, you get a relatively stable control system with good efficiency.
  • the disadvantage is the high manufacturing effort, which is caused by the tuning process described. Due to the fixed frequency setting, frequency deviations due to aging of the ultrasonic transducer are not compensated for. This can cause the efficiency to deteriorate over the lifetime.
  • the present invention is based on the object of designing a method and a device of the type mentioned at the outset in such a way that it is possible to work at the optimum operating point, without being influenced by other circuit components and by signs of aging of the ultrasound transducer.
  • tracking of the control frequency of the ultrasound transducer should be made possible during operation in such a way that the point of greatest atomization efficiency is always maintained.
  • the signal tapped at the ultrasound transducer is thus demodulated and then filtered, after which a frequency control signal is formed from the demodulated and filtered signal, which is used to set the control frequency.
  • direction information that is to say information about whether the current working frequency is above or below the optimal working frequency (at which optimum atomization is obtained), is obtained at least when the operation is started. This is important because the drive frequency must be reduced or increased accordingly.
  • the control frequency is experimentally tuned up or down from a predetermined frequency value, and that the test obtained in the course of time -Mean value signal is examined for the presence of a maximum. If a maximum is present, the "directional information" is obtained, and the drive frequency is then tracked in the frequency range of the maximum, taking into account the "directional information” in accordance with the frequency control signal.
  • the aforementioned tuning and searching for the maximum as well as the change in the control frequency is preferably carried out here with the aid of a microcomputer or microprocessor.
  • the present method and the present device are based on the control of the ultrasound transducer with a control frequency that can be corrected during operation.
  • a frequency is used for frequency tuning, which is directly related to the atomizing power and contains all parasitic influences.
  • This is the mentioned signal tapped at the ultrasound transducer, which reflects the reflection of the ultrasound waves on the liquid surface.
  • the ultrasound transducer a piezoelectric, preferably a piezoceramic ultrasound transducer, is used both for sending and for receiving.
  • FIG. 1 there is a liquid 4 to be atomized in a vessel 2, in front of lying water.
  • the liquid surface is designated 6.
  • a piezoelectric, preferably a piezoceramic, ultrasonic transducer 8 is arranged on the bottom of the vessel 2. During operation, it emits ultrasonic waves 10 in the direction of the water surface 6.
  • the radiation surface of the ultrasonic transducer 8 is curved. It is used for transmitting the ultrasonic waves 10, but at the same time also for receiving the ultrasonic waves reflected on the liquid surface 6.
  • the device for controlling the ultrasound transducer 8 comprises a controllable oscillator 12, which emits a control signal s with an adjustable control frequency f. It is preferably a sine wave oscillator.
  • the control frequency f is in the range from 0.5 to 5 MHz, preferably in the middle range from 2.5 MHz.
  • the control frequency f can be influenced by a control signal p at the frequency control input 14 of the oscillator 10.
  • the oscillator 12 is connected on the output side to the input of a power amplifier 16. Its output 18 is in turn connected to the ultrasonic transducer 8.
  • a frequency tracking branch 20 is also provided, which connects the output 18 of the power amplifier 16 and thus the input of the ultrasound converter 8 to the frequency control input 14 of the oscillator 12.
  • this frequency tracking branch 20 comprises an amplitude demodulator 22 connected to the output 18, a downstream band filter 24 and a microprocessor 26 connected downstream thereof, the output of which is connected to the frequency control input 14 of the oscillator 12.
  • the frequency range of the bandpass filter 14 is in the range from 50 Hz to 10 kHz. It is intended to filter out the area below the useful frequency of approximately 2.5 MHz in which the maximum noise lies when sputtering occurs.
  • the demodulator 22 is a rectifier circuit, in particular a diode circuit.
  • the ultrasonic transducer 8 is supplied via the power stage 16 with the control signal s of the adjustable control frequency f from the controllable oscillator 12.
  • the ultrasound transducer 8 then sends sound waves 10 through the liquid 4 to the surface 6 thereof.
  • the ultrasound waves are reflected there, and some of these reflected ultrasound waves return to the ultrasound transducer 8, where they are converted into electrical signals.
  • These signals are superimposed on the control signal from the power amplifier 16 at the output 18 to the signal U.
  • the signal U tapped here arrives at the amplitude demodulator 22 and from there to the downstream band filter 24.
  • the envelope becomes of the output signal U, which is shown in FIGS.
  • a measuring voltage or a “current mean value signal” m is obtained.
  • This current mean signal m is used to control the oscillator 12. If there is "directional information" which is determined by the microprocessor 26, the signal p can be formed therefrom and from the signal m and applied to the frequency control input 14.
  • the control frequency f is experimentally changed with the aid of the microprocessor 26 from a predetermined frequency value fo upwards or downwards (test run).
  • a test mean signal m ' is then obtained as signal m in the course of time t. This is examined by the microprocessor 26 for the presence of a maximum.
  • the microprocessor 26 also determines whether the originally specified frequency value fo is above or below the frequency f * at which the maximum of the test mean signal m 'occurs. This is the "directional information" mentioned above.
  • the microprocessor 26 changes the control signal p such that the said maximum - which corresponds to the point of the greatest atomization efficiency - occurs and is then recorded.
  • the control frequency f is tracked in the frequency range of the maximum in accordance with the current mean value signal m.
  • the microprocessor 26 is thus able to determine that the maximum has been exceeded and is set up in such a way that the control signal p guides the control frequency f in the direction of the optimum frequency f *.
  • the liquid surface 6 remains calm.
  • the wave field 10 is then not disturbed, and the signal U is not subject to any change over time.
  • the amplitude demodulator 22 supplies a pure DC voltage, and the measurement voltage m behind the bandpass filter 24 is almost zero.
  • the signal s - in deviation from the preferred sinusoidal design - is shown as a triangular signal.
  • the liquid surface 6 becomes increasingly uneasy.
  • the wave field 10 is disturbed by this movement on the liquid surface 6.
  • the reflected signal component is thereby modulated with a low-frequency noise, which is in particular in the range from 50 Hz to 10 kHz.
  • This noise is illustrated by the envelopes h1 and h2 in FIG. 3. From this noisy signal U, the current average signal m is formed via the demodulator 22 and the bandpass filter 24, which is now no longer zero, but has a measurable value. It could be called a "noise signal”.
  • this mean or measurement signal m becomes larger.
  • the bandwidth of this noise signal m also increases in addition to the amplitude.
  • maximum noise occurs.
  • the current mean value signal or noise signal m is used by the microprocessor 26 as a control signal p for frequency control of the oscillator 12.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Special Spraying Apparatus (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zur Ansteuerung eines Ultraschallwandlers zur Zerstäubung einer Flüssigkeit, wobei ein Ansteuersignal mit einstellbarer Ansteuerfrequenz dem Ultraschallwandler zugeleitet wird. Sie bezieht sich weiterhin auf eine Einrichtung zur Ansteuerung eines Ultraschallwandlers zur Zerstäubung einer Flüssigkeit mit einem steuerbaren Oszillator und einem Frequenz-Nachführungszweig, wobei der Oszillator ein Ansteuersignal mit einstellbarer Ansteuerfrequenz abgibt und ausgangsseitig über einen Leistungsverstärker an den Ultraschallwandler angeschlossen ist und der Frequenz-Nachführungszweig ausgangsseitig mit dem Frequenzsteuereingang des Oszillators verbunden ist.
  • Ein solches Verfahren und eine solche Einrichtung sind aus EP-A-0 303 944 bekannt.
  • Piezokeramische Ultraschallwandler zur Zerstäubung von Flüssigkeiten werden in verschiedenen Einrichtungen eingesetzt, zum Beispiel in Inhalationsgeräten oder in Luftbefeuchtern. In letzteren wird Wasser zur Luftbefeuchtung herangezogen. Bei all diesen Einrichtungen ist es von entscheidender Bedeutung, daß die Anregungs- oder Ansteuerfrequenz für den Ultraschallwandler optimal an diesen angepaßt ist. Als optimaler Betriebspunkt wird dabei der Betriebszustand bezüglich Speisestrom, Speisespannung und Ansteuerfrequenz verstanden, in dem bei einer bestimmten zugeführten elektrischen Leistung das pro Zeiteinheit zerstäubte Flüssigkeitsvolumen am größten ist. Normalerweise liegt dieser optimale Betriebspunkt auf einer Resonanzfrequenz des Ultraschallwandlers. Bedingt durch die Einbaugeometrie oder durch Abweichungen des Ultraschallwandlers von einer idealen vorgegebenen Bauform kann jedoch der genannte Punkt des größten Wirkungsgrades leicht verschoben sein. Dies kann durch die bisher bekannten Ansteuerprinzipien für den Ultraschallwandler nur unzureichend erkannt und korrigiert werden.
  • Bisher sind zwei Verfahren zur Frequenzabstimmung gebräuchlich:
    Das erste Verfahren bezieht den Ultraschallwandler selbst als frequenzbestimmendes Element in eine Schwingschaltung, zum Beispiel in einen Leistungsoszillator, ein. Dies Prinzip ist beispielsweise in einem käuflich erhältlichen Ultraschall-Flüssigkeits-Zerstäuber realisiert (Ultraschall-Zerstäuber EFE-HMV1R7M6E der Firma Matsushita Electric, Spezifikation der Firma Quick-Ohm GmbH, D-5600 Wuppertal). Hier wird ein puls-code-modulierter Sender mit eigenem Oszillator verwendet, der über den Ultraschallwandler Ultraschallwellen der Frequenz 1,7 MHz auf eine Wasseroberfläche strahlt. Das Auftreffen der Ultraschallwellen auf die Grenzschicht zwischen Wasser und Luft verursacht ein Aufsteigen der Flüssigkeit, was sich als feiner Wasserstaub oder Nebel bemerkbar macht. Der Ultraschallwandler wird hierbei am Unterteil eines Wassertanks befestigt. - Eine Möglichkeit zur Verwendung des Ultraschallwandlers als frequenzbestimmendes Element ist zum Beispiel auch die Anordnung des Ultraschallwandlers in der Rückkopplungsleitung eines Oszillators. Dies ist beispielsweise in der EP-A-0,240,360 beschrieben. Danach wird der Amplituden- und Phasenfrequenzgang des Ultraschallwandlers dazu benutzt, die vom Oszillator abgegebene Ansteuerfrequenz auf die Resonanzfrequenz des Ultraschallwandlers zu ziehen. Dieses Verfahren hat den Nachteil, daß die so erhaltene Arbeitsfrequenz auch von anderen Schaltungsbauteilen beeinflußt wird und somit merklich neben der optimalen Arbeitsfrequenz des Ultraschallwandlers liegen kann. Auch ist hier für eine sichere Funktion eine gewisse Schwinggüte des Ultraschallwandlers erforderlich, was an die Fertigungsgenauigkeit bei der Herstellung des Ultraschallwandlers hohe Anforderungen stellt.
  • Bei dem zweiten Verfahren (dies wurde bisher von der Anmelderin praktiziert) wird mit Hilfe eines separaten Oszillators, der in seiner Frequenz einmalig eingestellt wird, eine stabile Arbeitsfrequenz über einen Leistungsverstärker auf den Ultraschallwandler gegeben. Durch eine Messung des vom Ultraschallwandler erzeugten Schalldrucks kann nun die optimale Arbeitsfrequenz ermittelt und am geräteeigenen Oszillator für den Ultraschallwandler einmalig fest eingestellt werden. Die optimale Arbeitsfrequenz liegt dabei vor, wenn der Schalldruck maximal geworden ist. Führt man den geräteeigenen Oszillator als quarzstabilisierten Frequenzsynthesizer aus, erhält man ein relativ stabiles Ansteuersystem mit gutem Wirkungsgrad. Nachteilig ist jedoch der hohe Aufwand in der Fertigung, der durch den geschilderten Abstimmvorgang verursacht ist. Bedingt durch die feste Frequenzeinstellung werden hierbei auch Frequenzabweichungen durch Alterung des Ultraschallwandlers nicht kompensiert. Dies kann eine Verschlechterung des Wirkungsgrades über die Lebensdauer bewirken.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren und eine Vorrichtung der eingangs genannten Art so auszugestalten, daß ein Arbeiten am optimalen Betriebspunkt möglich ist, und zwar unbeeinflußt von anderen Schaltungsbauteilen und von Alterungserscheinungen des Ultraschallwandlers. Insbesondere soll eine Nachführung der Ansteuerfrequenz des Ultraschallwandlers während des Betriebs ermöglicht werden derart, daß der Punkt des größten Zerstäubungs-Wirkungsgrades stets eingehalten wird.
  • Die genannte Aufgabe wird bei dem Verfahren der eingangs genannten Art erfindungsgemäß durch die im kennzeichnenden Teil des Anspruchs 1 genannten Merkmale gelöst.
  • Das am Ultraschallwandler abgegriffene Signal wird also demoduliert und anschließend gefiltert, wonach aus dem demodulierten und gefilterten Signal ein Frequenzansteuersignal gebildet wird, das zur Einstellung der Ansteuerfrequenz verwendet wird.
  • Von Bedeutung ist, daß eine "Richtungsinformation", das heißt eine Information darüber, ob die aktuelle Arbeitsfrequenz oberhalb oder unterhalb der optimalen Arbeitsfrequenz (bei der sich optimale Zerstäubung ergibt) liegt, zumindest bei Betriebsaufnahme erhalten wird. Dies ist wichtig, weil ja die Ansteuerfrequenz entsprechend reduziert bzw. vergrößert werden muß. Um die "Richtungsinformation" zu erhalten und zu berücksichtigen, ist nach einer besonders vorteilhaften Weiterbildung vorgesehen, daß zumindest zu Beginn eines Zerstäubungsvorgangs versuchsweise die Ansteuerfrequenz von einem vorgegebenen Frequenzwert aus nach oben oder unten durchgestimmt wird, und daß das hierbei im Verlaufe der Zeit erhaltene Test-Mittelwertsignal auf das Vorliegen eines Maximums untersucht wird. Bei Vorliegen eines Maximums wird die "Richtungsinformation" erhalten, und die Ansteuerfrequenz wird dann unter Berücksichtigung der "Richtungsinformation" nach Maßgabe des Frequenzansteuersignals im Frequenzbereich des Maximums nachgeführt. Das genannte Durchstimmen und Aufsuchen des Maximums sowie die Veränderung der Ansteuerfrequenz wird hierbei vorzugsweise mit Hilfe eines Mikro-Computers oder Mikroprozessors durchgeführt.
  • Die genannte Aufgabe wird bei der Einrichtung zur Ansteuerung eines Ultraschallwandlers der eingangs genannten Art erfindungsgemäß durch die im kennzeichnenden Teil des Anspruchs 4 genannten Merkmale gelöst.
  • Weitere vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
  • Das vorliegende Verfahren und die vorliegende Einrichtung basieren auf der Ansteuerung des Ultraschallwandlers mit einer Ansteuerfrequenz, die im Betrieb korrigiert werden kann. Das Wesentliche dabei ist, daß zur Frequenzabstimmung ein Signal benutzt wird, das direkt mit der Zerstäubungsleistung zusammenhängt und alle parasitären Einflüsse beinhaltet. Es ist dies das erwähnte, am Ultraschallwandler abgegriffene Signal, das die Reflektion der Ultraschallwellen an der Flüssigkeits-Oberfläche widerspiegelt. Der Ultraschallwandler, ein piezoelektrischer, vorzugsweise ein piezokeramischer Ultraschallwandler, wird ja sowohl zum Senden als auch zum Empfangen verwendet.
  • Ausführungsbeispiele der Erfindung werden im folgenden anhand von drei Figuren näher erläutert. Es zeigen:
  • FIG 1
    eine Ultrasachall-Flüssigkeits-Zerstäubungseinheit, die zur Luftbefeuchtung vorgesehen ist,
    FIG 2
    das am Ultraschallwandler abgegriffene Signal bei Fehlabstimmung, das heißt ohne Zerstäubung, und
    FIG 3
    das am Ultraschallwandler abgegriffene Signal bei optimaler Zerstäubung.
  • Nach Figur 1 befindet sich in einem Gefäß 2 eine zu zerstäubende Flüssigkeit 4, vor liegend Wasser. Die Flüssigkeitsoberfläche ist mit 6 bezeichnet. Am Boden des Gefäßes 2 ist ein piezoelektrischer, vorzugsweise ein piezokeramischer Ultraschallwandler 8 angeordnet. Er sendet im Betrieb Ultraschallwellen 10 in Richtung auf die Wasseroberfläche 6 aus. Die Abstrahlfläche des Ultraschallwandlers 8 ist gekrümmt. Er wird zum Aussenden der Ultraschallwellen 10, gleichzeitig aber auch zum Empfangen der an der Flüssigkeitsoberfläche 6 reflektierten Ultraschallwellen eingesetzt.
  • Die Einrichtung zur Ansteuerung des Ultraschallwandlers 8 umfaßt einen steuerbaren Oszillator 12, der ein Ansteuersignal s mit einstellbarer Ansteuerfrequenz f abgibt. Es handelt sich bevorzugt um einen Sinusoszillator. Die Ansteuerfrequenz f liegt vorliegend im Bereich Von 0,5 bis 5 MHz, vorzugsweise im mittleren Bereich von 2,5 MHz. Die Ansteuerfrequenz f kann durch ein Ansteuersignal p am Frequenzsteuereingang 14 des Oszillators 10 beeinflußt werden. Der Oszillator 12 ist ausgangsseitig an den Eingang eines Leistungsverstärkers 16 angeschlossen. Dessen Ausgang 18 wiederum ist an den Ultraschallwandler 8 angeschlossen.
  • Gemäß Figur 1 ist weiterhin ein Frequenz-Nachführzweig 20 vorgesehen, der den Ausgang 18 des Leistungsverstärkers 16 und damit den Eingang des Ultraschallwandlers 8 mit dem Frequenzsteuereingang 14 des Oszillators 12 verbindet. Dieser Frequenz-Nachführzweig 20 umfaßt vorliegend einen mit dem Ausgang 18 verbundenen Amplituden-Demodulator 22, ein nachgeschaltetes Bandfilter 24 und einen diesem nachgeschalteten Mikroprozessor 26, dessen Ausgang mit dem Frequenzsteuereingang 14 des Oszillators 12 verbunden ist. Der Frequenzbereich des Bandfilters 14 liegt dabei im Bereich von 50 Hz bis 10 kHz. Es ist dazu vorgesehen, denjenigen Bereich unterhalb der Nutzfrequenz von etwa 2,5 MHz herauszufiltern, in dem das maximale Rauschen liegt, wenn Zerstäubung eintritt. Bei dem Demodulator 22 handelt es sich um eine Gleichrichterschaltung, insbesondere um eine Dioden-Schaltung.
  • Im Betrieb wird der Ultraschallwandler 8 über die Leistungsstufe 16 mit dem Ansteuersignal s der einstellbaren Ansteuerfrequenz f aus dem steuerbaren Oszillator 12 versorgt. Der Ultraschallwandler 8 sendet dann Schallwellen 10 durch die Flüssigkeit 4 an deren Oberfläche 6. Dort werden die Ultraschallwellen reflektiert, und ein Teil dieser reflektierten Ultraschallwellen gelangt wieder zurück auf den Ultraschallwandler 8, wo sie in elektrische Signale umgesetzt werden. Diese Signale werden dem Steuersignal vom Leistungsverstärker 16 am Ausgang 18 zum Signal U überlagert. Das hier abgegriffene Signal U gelangt auf den Amplituden-Demodulator 22 und von dort auf das nachgeschaltete Bandfilter 24. Hier wird aus der Hüllkurve des Ausgangssignals U, das in den Figuren 2 und 3 bei Fehlabstimmung bzw. optimaler Abstimmung in Abhängigkeit der Zeit t dargestellt ist, eine Meßspannung oder ein "aktuelles Mittelwertsignal" m gewonnen. Dieses aktuelle Mittelwertsignal m wird zur Steuerung des Oszillators 12 verwendet. Liegt eine "Richtungsinformation" vor, welche vom Mikroprozessor 26 ermittelt wird, so kann daraus und aus dem Signal m das Signal p gebildet und dem Frequenzsteuereingang 14 aufgeschaltet werden.
  • Zu Beginn eines Zerstäubungsvorgangs wird versuchsweise die Ansteuerfrequenz f mit Hilfe des Mikroprozessors 26 von einem vorgegebenen Frequenzwert fo aus nach oben oder unten zeitlich verändert (Testlauf). Als Signal m erhält man dann im Verlaufe der Zeit t ein Test-Mittelwertsignal m'. Dieses wird vom Mikroprozessor 26 auf das Vorliegen eines Maximums untersucht. Der Mikroprozessor 26 ermittelt dabei auch, ob der ursprünglich vorgegebene Frequenzwert fo oberhalb oder unterhalb derjenigen Frequenz f* liegt, bei der das Maximum des Test-Mittelwertsignals m' auftritt. Dies ist die oben erwähnte "Richtungsinformation". Abhängig von dieser Information und vom Signal m verändert der Mikroprozessor 26 das Ansteuersignal p so, daß das genannte Maximum - diesem entspricht der Punkt des größten ZerstäubungsWirkungsgrades -eintritt und anschließend festgehalten wird. Mit anderen Worten: Bei Vorliegen des Maximums in der gewählten Richtung (nach oben oder unten) wird die Ansteuerfrequenz f nach Maßgabe des aktuellen Mittelwertsignals m im Frequenzbereich des Maximums nachgeführt. Der Mikroprozessor 26 ist also imstande festzustellen, daß das Maximum überschritten wurde, und er ist so eingerichtet, daß das Ansteuersignal p die Ansteuerfrequenz f in Richtung auf die optimale Frequenz f* führt.
  • Es wurde bereits erwähnt, daß ein Teil der an der Oberfläche 6 reflektierten Ultraschallwellen wieder auf den Ultraschallwandler 8 zurückgelangt. In der Flüssigkeit 4 bilden sich stehende Wellen aus. Da der Ultraschallwandler 8 nicht nur elektrische Energie in Ultraschall, sondern auch umgekehrt Ultraschall in elektrische Energie umwandeln kann, wirkt sich der reflektierte Ultraschall unmittelbar auf das Ausgangssignal am Ausgang 18 aus. Je nach Amplitude und Phasenlage der Reflektionen ergibt sich am Innenwiderstand des Leistungsverstärkers 16 ein Spannungsabfall U, der sich aus der Addition des Ausgangssignals des Verstärkers 16 mit dem reflektierten Signal ergibt.
  • Solange die Ansteuerfrequenz f weit vom optimalen Arbeitspunkt f* des Ultraschallwandlers 8 entfernt liegt, bleibt die Flüssigkeitsoberfläche 6 ruhig. Das Wellenfeld 10 wird dann nicht gestört, und das Signal U unterliegt keiner zeitlichen Änderung. Dies ist in Figur 2 gezeigt. In diesem Fall liefert der Amplituden-Demodulator 22 eine reine Gleichspannung, und die Meßspannung m hinter dem Bandpaßfilter 24 ist nahezu Null. In Figur 2 ist das Signal s - abweichend von der bevorzugten sinusförmigen Ausbildung - als Dreieckssignal gezeigt.
  • Wird nun vom Mikroprozessor 26 die Ansteuerfrequenz f des Ansteuersignals s in Richtung auf die optimale Arbeitsfrequenz f* des Ultraschallwandlers 8 verschoben, wird die Flüssigkeitsoberfläche 6 zunehmend unruhiger. Durch diese Bewegung an der Flüssigkeitsoberfläche 6 wird das Wellenfeld 10 gestört. Der reflektierte Signalanteil wird dadurch mit einem niederfrequenten Rauschen moduliert, das insbesondere im Bereich von 50 Hz bis 10 kHz liegt. Dieses Rauschen ist durch die Hüllkurven h1 und h2 in Figur 3 verdeutlicht. Aus diesem so verrauschten Signal U wird über den Demodulator 22 und das Bandpaßfilter 24 das aktuelle Mittelwertsignal m gebildet, das nun nicht mehr Null ist, sondern einen durchaus meßbaren Wert aufweist. Es könnte als "Rauschsignal" bezeichnet werden.
  • Bei weiterer Annäherung an den optimalen Arbeitspunkt f* (Punkt des größten Wirkungsgrades) wird dieses Mittelwert- oder Meßsignal m größer. Bei Einsetzen der Zerstäubung nimmt neben der Amplitude dieses Rauschsignals m auch dessen Bandbreite zu. Im optimalen Arbeitspunkt, der charakterisiert wird durch die Arbeitsfrequenz f*, tritt maximales Rauschen auf. Bei passender Dimensionierung des Bandpaßfilters 24 kann ein sehr genaues Abstimmverhalten erzielt werden. Das aktuelle Mittelwertsignal oder Rauschsignal m wird dabei vom Mikroprozessor 26 als Steuersignal p zur Frequenzsteuerung des Oszillators 12 verwendet.

Claims (7)

  1. Verfahren zur Ansteuerung eines Ultraschallwandlers (8) zur Zerstäubung einer Flüssigkeit (4), wobei dem Ultraschallwandler (8) ein Ansteuersignal (s) mit einstellbarer Ansteuerfrequenz (f) zugeleitet wird,
    dadurch gekennzeichnet, daß
    a) ein elektrisches Signal (U) am Eingang des Ultraschallwandlers (8) abgegriffen wird, wobei sich das Signal (U) aus einer Überlagerung des Ansteuersignals (s) und eines Reflexionssignals (r) ergibt, und sich das Reflexionssignal (r) aus dem vom Ultraschallwandler (8) empfangenen, an der Flüssigkeitsoberfläche reflektierten Schallwellen ergibt,
    b) das Signal (U) demoduliert und anschließend gefiltert wird, um ein aktuelles demoduliertes und gefiltertes Mittelwertsignal (m) zu bilden;
    c) aus dem Signal (m) ein Frequenzansteuersignal (p) gebildet wird; und
    d) mittels des Frequenzansteuersignals (p) die Ansteuerfrequenz (f) nachgeführt wird.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, daß
    zumindest zu Beginn eines Zerstäubungsvorgangs versuchsweise die Ansteuerfrequenz (f) von einem vorgegebenen Frequenzwert aus nach oben oder unten durchgestimmt wird, daß das hierbei im Verlaufe der Zeit (t) erhaltene Test-Mittelwertsignal auf das Vorliegen eines Maximums untersucht wird, um eine Richtungs-Information zu erhalten, daß bei Vorliegen eines Maximums aus dem aktuellen demodulierten und gefilterten Signal (m) und aus der Richtungs-Information das Frequenzansteuersignal (p) gebildet wird, und daß die Ansteuerfrequenz (f) dann nach Maßgabe des Frequenzansteuersignals (p) im Frequenzbereich des Maximums nachgeführt wird.
  3. Verfahren nach Anspruch 1 oder 2
    dadurch gekennzeichnet, daß
    das am Ultraschallwandler (8) zugeleitete Ansteuersignal (s) sinsusförmig ist.
  4. Einrichtung zur Ansteuerung eines Ultraschallwandlers (8) zur Zerstäubung einer Flüssigkeit mit einem steuerbaren Oszillator (12) und einem Frequenz-Nachführungszweig (20), wobei der Oszillator (12) ein Ansteuersignal (s) mit einstellbarer Ansteuerfrequenz (f) abgibt und ausgangsseitig über einen Leistungsverstärker (16) an den Ultraschallwandler (8) angeschlossen ist und der Frequenz-Nachführungszweig ausgangsseitig mit dem Frequenzsteuereingang (14) des Oszillators (12) verbunden ist,
    dadurch gekennzeichnet, daß
    das verstärkte Ansteuersignal (s) mit einem Reflexionssignal (r) zu einem elektrischen Signal (U) überlagerbar ist, wobei sich das Reflexionssignal (r) aus den vom Ultraschallwandler empfangenen, an der Flüssigkeitsoberfläche reflektierten Schallwellen ergibt und daß der Frequenz-Nachführungszweig (20) der Reihe nach einen Amplituden-Demodulator (22), einen Bandfilter (24) und einen Mikroprozessor (26) umfaßt und eingangsseitig das Signal (U) abgreift.
  5. Einrichtung nach Anspruch 4,
    dadurch gekennzeichnet, daß
    der Ultraschallwandler (8) ein piezoelektrischer, vorzugsweise ein piezokeramischer Ultraschallwandler ist.
  6. Einrichtung nach Anspruch 4 oder 5,
    dadurch gekennzeichnet, daß
    der Oszillator (12) ein Sinusoszillator ist.
  7. Einrichtung nach einem der Ansprüche 4 bis 6,
    dadurch gekennzeichnet, daß
    die vom Oszillator (12) abgegebene Frequenz im Bereich von 0,5 bis 5 MHz und daß der Frequenzbereich des Bandfilters (24) im Bereich von 50 Hz bis 10 KHz liegt.
EP91102120A 1990-02-14 1991-02-14 Verfahren und Einrichtung für die Ultraschall-Flüssigkeits-Zerstäubung Expired - Lifetime EP0442510B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4004541 1990-02-14
DE4004541A DE4004541A1 (de) 1990-02-14 1990-02-14 Verfahren und einrichtung fuer die ultraschall-fluessigkeits-zerstaeubung

Publications (2)

Publication Number Publication Date
EP0442510A1 EP0442510A1 (de) 1991-08-21
EP0442510B1 true EP0442510B1 (de) 1995-01-25

Family

ID=6400130

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91102120A Expired - Lifetime EP0442510B1 (de) 1990-02-14 1991-02-14 Verfahren und Einrichtung für die Ultraschall-Flüssigkeits-Zerstäubung

Country Status (3)

Country Link
EP (1) EP0442510B1 (de)
AT (1) ATE117599T1 (de)
DE (2) DE4004541A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11131000B1 (en) 2020-06-01 2021-09-28 Shaheen Innovations Holding Limited Infectious disease screening device
US11181451B1 (en) 2020-06-01 2021-11-23 Shaheen Innovations Holding Limited Infectious disease screening system
US12016380B2 (en) 2020-04-06 2024-06-25 Shaheen Innovations Holding Limited Hookah device

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2686805A1 (fr) * 1992-02-04 1993-08-06 Kodak Pathe Dispositif permettant de dissoudre des bulles gazeuses contenues dans une composition liquide utilisable notamment pour les produits photographiques.
US5563811A (en) * 1993-04-29 1996-10-08 Humonics International Inc. Microprocessor controlled drive circuit for a liquid nebulizer having a plurality of oscillators
DE19962280A1 (de) * 1999-12-23 2001-07-12 Draeger Medizintech Gmbh Ultraschallvernebler
DE102006054826A1 (de) * 2006-11-21 2008-05-29 Health & Life Co., Ltd., Chung Ho Piezoelektrisches Erzeugungssystem und Erzeugungsverfahren dafür
DE102007002315A1 (de) * 2007-01-16 2008-07-24 Health & Life Co., Ltd., Chung Ho Piezoelektrisches Antriebssystem
ATE523262T1 (de) 2007-10-10 2011-09-15 Ep Systems Sa Adaptives steuersystem für einen piezoelektrischen aktor
TWI572412B (zh) 2015-02-16 2017-03-01 台達電子工業股份有限公司 噴霧驅動裝置及噴霧系統
US11589610B2 (en) 2019-12-15 2023-02-28 Shaheen Innovations Holding Limited Nicotine delivery device having a mist generator device and a driver device
US11666713B2 (en) 2019-12-15 2023-06-06 Shaheen Innovations Holding Limited Mist inhaler devices
US11730191B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Hookah device
JP7445015B2 (ja) 2019-12-15 2024-03-06 シャヒーン イノベーションズ ホールディング リミテッド 超音波ミスト吸入器
JP7480338B2 (ja) 2019-12-15 2024-05-09 シャヒーン イノベーションズ ホールディング リミテッド 超音波ミスト吸入器
US11730193B2 (en) 2019-12-15 2023-08-22 Shaheen Innovations Holding Limited Hookah device
KR20220141281A (ko) 2019-12-15 2022-10-19 샤힌 이노베이션즈 홀딩 리미티드 초음파 미스트 흡입장치
HUE060002T2 (hu) 2019-12-15 2023-01-28 Shaheen Innovations Holding Ltd Pára inhalációs eszközök
US20230188901A1 (en) 2021-12-15 2023-06-15 Shaheen Innovations Holding Limited Apparatus for transmitting ultrasonic waves

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53127709A (en) * 1977-04-13 1978-11-08 Morita Mfg Driving system for transducer with resonance circuit
US4338576A (en) * 1978-07-26 1982-07-06 Tdk Electronics Co., Ltd. Ultrasonic atomizer unit utilizing shielded and grounded elements
JPS5836684A (ja) * 1981-08-28 1983-03-03 有限会社大岳製作所 超音波発振法およびマイクロコンピユ−タ−内蔵超音波発振器
US4687962A (en) * 1986-12-15 1987-08-18 Baxter Travenol Laboratories, Inc. Ultrasonic horn driving apparatus and method with active frequency tracking
CS550488A3 (en) * 1987-08-17 1992-11-18 Satronic Ag Ultrasonic generator circuitry
US4808948A (en) * 1987-09-28 1989-02-28 Kulicke And Soffa Indusries, Inc. Automatic tuning system for ultrasonic generators

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12016380B2 (en) 2020-04-06 2024-06-25 Shaheen Innovations Holding Limited Hookah device
US12016381B2 (en) 2020-04-06 2024-06-25 Shaheen Innovations Holding Limited Hookah device
US11131000B1 (en) 2020-06-01 2021-09-28 Shaheen Innovations Holding Limited Infectious disease screening device
US11181451B1 (en) 2020-06-01 2021-11-23 Shaheen Innovations Holding Limited Infectious disease screening system
US11274352B2 (en) 2020-06-01 2022-03-15 Shaheen Innovations Holding Limited Infectious disease screening device
US11385148B2 (en) 2020-06-01 2022-07-12 Shaheen Innovations Holding Limited Infectious disease screening system
US11667979B2 (en) 2020-06-01 2023-06-06 Shaheen Innovations Holding Limited Infectious disease screening device
US11946844B2 (en) 2020-06-01 2024-04-02 Shaheen Innovations Holding Limited Infectious disease screening system
US11959146B2 (en) 2020-06-01 2024-04-16 Shaheen Innovations Holding Limited Infectious disease screening device

Also Published As

Publication number Publication date
DE59104350D1 (de) 1995-03-09
DE4004541A1 (de) 1991-08-22
ATE117599T1 (de) 1995-02-15
EP0442510A1 (de) 1991-08-21

Similar Documents

Publication Publication Date Title
EP0442510B1 (de) Verfahren und Einrichtung für die Ultraschall-Flüssigkeits-Zerstäubung
DE2641901C2 (de) Verfahren und Vorrichtung zum Untersuchen von Objekten mittels Ultraschall
DE3807004C2 (de)
DE19962280A1 (de) Ultraschallvernebler
DE3331896C2 (de)
EP1558315A1 (de) Inhalationstherapievorrichtung
DE2600890B2 (de) Ultraschallgenerator mit einem Ultraschallwandler
DE3390293T1 (de) Ultraschallwandler
EP2737287B1 (de) Verfahren zur berechnung der schwingungsamplitude einer sonotrode
CH678404A5 (de)
DE3828591A1 (de) Einspritzventil fuer brennkraftmaschinen
EP0340470A1 (de) Verfahren und Schaltung zur Anregung eines Ultraschallschwingers und deren Verwendung zur Zerstäubung einer Flüssigkeit
DE102006032542A1 (de) Verfahren zur Abstandsmessung und Ultraschallabstandssensor
CH700508B1 (de) Hornanordnung zur Verwendung beim Ultraschallschweissen.
WO2002045045A1 (de) Elektronische messvorrichtung zur erfassung einer prozesswvariablen, und verfahren zum betreiben einer solchen messvorrichtung
EP2311427B1 (de) Ultraschallbehandlungsgerät und Verfahren zu dessen Betrieb
DE2415481A1 (de) Ultraschallgenerator
EP1684046A1 (de) Verfahren und Einrichtung zum Bestimmen des Abstands zwischen einer Sensorelektrode und einem Werkstück
DE3314609A1 (de) Verfahren zum betrieb eines ultraschall-schwingers zur fluessigkeitszerstaeubung
EP0303944A1 (de) Verfahren und Schaltung zur Anregung eines Ultraschallschwingers, und deren Verwendung zur Zerstäubung einer Flüssigkeit
DE102005030777B4 (de) Verfahren und Schaltungsanordnung zum Betreiben eines Ultraschall-Schwingers
EP3174644A1 (de) Vorrichtung zum ultraschallbearbeiten von materialien mit triggereinrichtung
DE3013964C2 (de) Ultraschallgenerator
DE3241814C2 (de) Ultraschallmikroskop
EP0997747B1 (de) Verfahren zur Betriebsoptimierung eines Ultraschall-Näherungsschalters und Ultraschall-Näherungsschalters mit Betriebsoptimierung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19910917

17Q First examination report despatched

Effective date: 19931027

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19950125

Ref country code: BE

Effective date: 19950125

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19950125

Ref country code: FR

Effective date: 19950125

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19950125

Ref country code: GB

Effective date: 19950125

Ref country code: NL

Effective date: 19950125

REF Corresponds to:

Ref document number: 117599

Country of ref document: AT

Date of ref document: 19950215

Kind code of ref document: T

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19950214

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19950228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19950228

Ref country code: LI

Effective date: 19950228

REF Corresponds to:

Ref document number: 59104350

Country of ref document: DE

Date of ref document: 19950309

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950425

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19950125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19951101

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed