EP0442019B1 - Verfahren zum Betreiben einer elektrostatischen Druckluft-Farbspritzpistole - Google Patents

Verfahren zum Betreiben einer elektrostatischen Druckluft-Farbspritzpistole Download PDF

Info

Publication number
EP0442019B1
EP0442019B1 EP90103066A EP90103066A EP0442019B1 EP 0442019 B1 EP0442019 B1 EP 0442019B1 EP 90103066 A EP90103066 A EP 90103066A EP 90103066 A EP90103066 A EP 90103066A EP 0442019 B1 EP0442019 B1 EP 0442019B1
Authority
EP
European Patent Office
Prior art keywords
paint
air
compressed
compressed air
outlet opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90103066A
Other languages
English (en)
French (fr)
Other versions
EP0442019A1 (de
Inventor
Gerhard Dipl.-Ing. Gebauer (Fh)
Johann Ing. Htl Gruber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
J Wagner GmbH
Original Assignee
J Wagner GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by J Wagner GmbH filed Critical J Wagner GmbH
Priority to DE90103066T priority Critical patent/DE59004556D1/de
Priority to EP90103066A priority patent/EP0442019B1/de
Priority to DK90103066.8T priority patent/DK0442019T3/da
Priority to US07/654,342 priority patent/US5188290A/en
Publication of EP0442019A1 publication Critical patent/EP0442019A1/de
Application granted granted Critical
Publication of EP0442019B1 publication Critical patent/EP0442019B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/03Discharge apparatus, e.g. electrostatic spray guns characterised by the use of gas, e.g. electrostatically assisted pneumatic spraying

Definitions

  • the invention relates to a method for operating an electrostatic compressed air paint spray gun according to the preamble of patent claim 1.
  • electrostatic compressed air paint spray guns have been known for decades and, based on the basic structure mentioned, in a wide variety of designs on the market. An example is shown in FR-A-2 522 991.
  • air at a pressure of between 0.3 and 1.5 bar is mixed with paint in a mixing chamber in front of the gun mouth, and the mixture is mixed by means of a jacket air flow, the air of which is at least equal to high pressure as the mixture is driven out of the gun muzzle.
  • the compressed air is provided by a compressed air network or by a compressor.
  • electrostatic compressed air paint spray guns are comparatively simple. This means that no rotary drive and no rotating parts are required, as is the case with the electrostatic rotary paint spray guns.
  • the ink-carrying parts, valves and seals are not exposed to high pressures, because one color print is sufficient to ensure perfect delivery of the paint liquid to the paint outlet nozzle;
  • the compressed air atomizes and transports the paint.
  • the compressed air supply can be made by connecting to the usually existing compressed air network; the pressure of around 6 to 8 bar, which usually prevails in these compressed air networks, is fully sufficient.
  • the high voltage is either supplied by a cable from a separate high voltage generator or generated by means of so-called high voltage cascades in the gun itself.
  • the invention is based on the knowledge gained from numerous test series that the disadvantages mentioned of the previous electrostatic compressed air atomizing guns are mainly due to the fact that the compressed air emerging from the perforated ring or the annular gap has considerable turbulence.
  • This turbulence means that even if the middle path of the kinetic energy of the atomized paint particles or their average speed remains within limits, individual areas of the spray jet and thus parts of the paint particles get such a high speed that the particles in question not only as a result of their high kinetic energy tend to bounce back from the workpiece or fly past it (lack of color change), but especially due to its short dwell time within of the corona area of the electrode arrangement are only insufficiently charged, as a result of which the first-mentioned effect (rebound, lack of wrap) is significantly increased.
  • the invention now ensures that the compressed air emerges from its outlet opening in an essentially laminar flow, that is to say as a calmed and uniform air flow. This is achieved by working below the specified limit for the ratio between the pressure before and after the compressed air outlet openings, that is to say in the so-called subsonic flow area. Of course, one will remain close to this limit in order to ensure sufficient atomization of the paint and proper transport of the atomized paint particles to the workpiece, and in particular an amount of air (air throughput through the outlet openings) is required which is at least as high as and possibly higher than that of the previously known, with a pressure ratio of, for example, 6: 1 electrostatic compressed air atomizing guns.
  • the front end of the spray gun on the spray side also called the spray head, has a paint feed pipe 10, which ends at its spray end in a central paint outlet nozzle 11.
  • the ink outlet opening 11 is concentrically surrounded by a compressed air outlet in the form of an annular gap 12 which is delimited by the edge of a so-called air cap 13.
  • the air cap 13 is made of insulating material; the ink supply pipe 10 with nozzle 11 is preferably also made of insulating material, but could also consist of metal.
  • Needle electrodes 17 protrude from the spray-side end face of the air cap 13, specifically as a needle ring concentric with the paint outlet nozzle 11.
  • the needle electrodes 17 are conductively connected via lines 17a running in the air cap 13 to a contact ring 18 located on the rear end of the air cap 13.
  • the spray head shown in the drawing sits at the front end of the - not shown - pistol tube of the paint spray gun, the paint being supplied via the paint supply pipe 10, the compressed air through the bores 15 and the high voltage via the contact ring 18.
  • the drawn and described spray head corresponds completely to the usual state of the art in terms of structure and mode of operation.
  • the pressure p 1 of the compressed air in the air chamber 16 that is to say immediately upstream of the annular gap 12, is limited to a specific maximum value, namely such that the ratio V L of the pressure p 1 to Pressure p2 in front of the spray head, i.e. downstream of the annular gap 12, is between 1.3: 1 and 1.8: 1.
  • V L the ratio of the pressure p 1 to Pressure p2 in front of the spray head, i.e. downstream of the annular gap 12
  • the pressure p1 must remain below 1.8 bar absolute or below 0.8 bar overpressure. Is sprayed in a closed spray booth with suction, in which the pressure p2 is slightly below atmospheric pressure, the pressure p1 must be chosen accordingly lower.
  • This comparatively low pressure in the air chamber 16 is achieved in that the paint spray gun is driven by a motor-driven blower supplied with compressed air, which delivers compressed air corresponding to low pressures, namely a so-called “vacuum cleaner motor fan".
  • the blower air supplied experiences a temperature increase during operation.
  • a cooling element for example a cooling ring, as indicated at 19 in the drawing.
  • the amount of air is sufficient, ie the throughput of compressed air through the annular gap 12 in the unit of time. Practical tests have shown that the amount of air must be as large as or greater than the amount of air that is passed through with the usual compressed air guns with a supply pressure of the compressed air of about 6 bar. This requires a considerable size of the passage area of the annular gap 12, which must be considerably larger than in the case of the conventional compressed air paint spray guns, for example by a factor of 2 or 3.
  • the procedure is such that the pressure and quantity of the compressed air supplied and the size of the exit area of the annular gap are matched to the maximum paint throughput of the paint spray gun when using the toughest paints and by externally actuated air valves, namely a pressure reducing valve and / or a quantity reducing valve, the operator is given the opportunity to make an adjustment with a lower color throughput and / or with more atomizable colors.
  • the electrode arrangement can be designed in the usual way, but it is expedient to arrange the electrodes close to the paint outlet, for example also as a central needle electrode in the paint outlet nozzle, in order to ensure that all paint particles pass through the corona area, i.e. the area with the highest field strength. It is also important that part of the droplet transport energy is supplied by the electrostatic field. The level of the applied voltage is therefore also an important factor and must be included in the coordination, especially when spraying paints of different electrical conductivity (water-based paint).
  • color chosen here should of course include all electrostatically sprayable coating liquids, in particular varnishes of any consistency.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Betreiben einer elekrostatischen Druckluft-Farbspritzpistole gemäß dem Oberbegriff des Patentsanspruchs 1. Derartige elektrostatische Druckluft-Farbspritzpistolen sind seit Jahrzehnten bekannt und, aufbauend auf dem erwähnten Grundaufbau, in den verschiedensten Ausführungen auf dem Markt. Ein Beispiel zeigt die FR-A-2 522 991. Dort wird unter Überdruck zwischen 0,3 und 1,5 bar stehende Luft in einer Mischkammer vor der Pistolenmündung mit Farbe gemischt, und das Gemisch wird mittels eines Mantelluftstromes, dessen Luft mindestens unter gleich hohem Druck wie das Gemisch steht, aus der Pistolenmündung ausgetrieben. Die Druckluft wird dabei von einem Druckluftnetz oder von einem Kompressor bereitgestellt.
  • Der Aufbau solcher elektrostatischen Druckluft-Farbspritzpistolen ist vergleichsweise einfach. So sind kein Drehantrieb und keine sich drehenden Teile erforderlich, wie dies bei den elektrostatischen Rotations-Farbspritzpistolen der Fall ist. Die farbführenden Teile, Ventile und Dichtungen, werden im Gegensatz zur luftlosen Hochdruck-Farbzerstäubung keinen hohen Drücken ausgesetzt, weil ein Farbdruck genügt, der eine einwandfreie Förderung der Farbflüssigkeit bis zur Farbaustrittsdüse gewährleistet; Zerstäubung und Transport der Farbe erfolgen ja durch die Druckluft. Die Druckluftversorgung kann durch Anschluß an das überlicherweise vorhandene Druckluftnetz erfolgen; der in diesen Druckluftnetzen meist herrschende Druck von etwa 6 bis 8 bar ist voll ausreichend. Die Hochspannung schließlich wird entweder über ein Kabel von einem gesonderten Hochspannungsgenerator geliefert oder mittels sogenannter Hochspannungskaskaden in der Pistole selbst erzeugt.
  • Allgemein bekannt ist nun aber, daß mit den elektrostatischen Druckluft-Farbspritzpistolen nicht die ausgezeichneten Werte für den Niederschlagswirkungsgrad und insbesondere den Farbumgriff erreicht werden können, wie bei den elektrostatischen Rotations-Farbspritzpistolen. Die Fachwelt war sich wohl auch im klaren darüber, daß eine der Ursachen dafür in der gegenüber dem Rotations-Zerstäuber-Verfahren höheren kinetischen Energie der zerstäubten Farbtröpfchen liegt, hat jedoch die erwähnten Nachteile als systembedingt (Druckluft-Zerstäubung) hingenommen.
  • Aufgabe der vorliegenden Erfindung ist es nun, den Betrieb einer elektrostatischen Druckluft-Farbspritzpistole der eingangs erwähnten Art so zu verbessern, daß unter Beibehaltung der bisherigen Vorzüge, also der erwähnten konstruktiven Einfachheit, Werte für den Niederschlagswirkungsgrad und den Umgriff gewährleistet werden, wie sie bisher nur von den wesentlich aufwendigeren elektrostatischen Rotations-Farbspritzpistolen erreicht wurden. Die Lösung dieser Aufgabe ergibt sich aus Patentanspruch 1.
  • Die Erfindung geht von der durch zahlreiche Versuchsreihen gewonnenen Erkenntnis aus, daß die erwähnten Nachteile der bisherigen elektrostatischen Druckluft-Zerstäuberpistolen vor allem darauf zurückzuführen sind, daß die aus dem Lochkranz bzw. dem Ringspalt austretende Druckluft beträchtliche Turbulenzen aufweist. Diese Turbulenzen führen dazu, daß selbst dann, wenn der Mittelweg der kinetischen Energie der zerstäubten Farbpartikel bzw. deren mittlere Geschwindigkeit in Grenzen bleibt, einzelne Bereiche des Sprühstrahls und damit Teile der Farbpartikel eine derart hohe Geschwindigkeit erhalten, daß die betreffenden Partikel nicht nur infolge ihrer hohen kinetischen Energie dazu neigen, vom Werkstück zurückzuprallen oder an diesem vorbeizufliegen (mangelnder Farbumgriff), sondern insbesondere infolge ihrer kurzen Verweilzeit innerhalb des Koronabereichs der Elektrodenanordnung nur ungenügend aufgeladen werden, wodurch der erstgenannte Effekt (Rückprall, mangelnder Umgriff) noch wesentlich verstärkt wird. Mit der Erfindung wird nun dafür Sorge getragen, daß die Druckluft in einer im wesentlichen laminaren Strömung aus ihrer Austrittsöffnung austritt, also als beruhigter und gleichmäßiger Luftstrom. Erreicht wird dies dadurch, daß unter dem angegebenen Grenzwert für das Verhältnis zwischen dem Druck vor und nach den Druckluft-Austrittsöffnungen gearbeitet wird, also im sogenannten subsonischen Strömungsbereich. Freilich wird man nahe diesem Grenzwert bleiben, um eine ausreichende Zerstäubung der Farbe und einen einwandfreien Transport der zerstäubten Farbpartikel zum Werkstück zu gewährleisten, und insbesondere ist eine Luftmenge (Luftdurchsatz durch die Austrittsöffnungen) erforderlich, die zumindest so hoch wie und gegebenenfalls höher ist als bei den vorbekannten, mit einem Druckverhältnis von beispielsweise 6:1 arbeitenden elektrostatischen Druckluft-Zerstäuberpistolen.
  • Zweckmäßige Ausgestaltungen des Verfahrens nach der Erfindung sind in den Unteransprüchen gekennzeichnet.
  • In der Zeichnung ist eine Ausführungsform der Erfindung dargestellt, und zwar zeigt die einzige Figur schematisch das sprühseitige Vorderende der elektrostatischen Druckluft-Farbspritzpistole.
  • Gemäß der Zeichnung weist das sprühseitige Vorderende der Spritzpistole, auch Spritzkopf genannt, ein Farb-Zuführrohr 10 auf, das an seinem Sprühende in eine zentrale Farbaustrittsdüse 11 ausläuft. Die Farbaustrittsöffnung 11 ist von einem Druckluftauslaß in Form eines Ringspalts 12 konzentrisch umgeben, der von der Randkante einer sogenannten Luftkappe 13 begrenzt wird. Ein Flansch 14 des Farbzuführrohrs 10, der mit Bohrungen 15 versehen ist, schließt eine Luftkammer 16 zwischen Farbzuführrohr 10 und Luftkappe 13 nach hinten ab. Die Luftkappe 13 besteht aus Isolierstoff; das Farbzuführrohr 10 mit Düse 11 ist vorzugsweise ebenfalls aus Isolierstoff gefertigt, könnte aber auch aus Metall bestehen. Von der sprühseitigen Stirnfläche der Luftkappe 13 stehen Nadelelektroden 17 ab, und zwar als zur Farbaustrittsdüse 11 konzentrischer Nadelkranz. Die Nadelelektroden 17 sind über in der Luftkappe 13 verlaufende Leitungen 17a mit einem an der Rückstirn der Luftkappe 13 befindlichen Kontaktring 18 leitend verbunden. Der auf der Zeichnung dargestellte Sprühkopf sitzt am Vorderende des - nicht gezeichneten - Pistolenrohrs der Farbspritzpistole, wobei über das Farbzuführrohr 10 die Farbe, durch die Bohrungen 15 hindurch die Druckluft und über den Kontaktring 18 die Hochspannung zugeführt werden. Insoweit entspricht der gezeichnete und beschriebene Sprühkopf in Aufbau und Funktionsweise völlig dem üblichen Stand der Technik.
  • Erfindungsgemäß wird nun aber dafür Sorge getragen, daß bei in Betrieb befindlicher Farbspritzpistole der Druck p₁ der Druckluft in der Luftkammer 16, also unmittelbar stromaufwärts des Ringspalts 12, auf einen bestimmten Höchstwert begrenzt ist, nämlich derart, daß das Verhältnis VL des Drucks p₁ zum Druck p₂ vor dem Sprühkopf, also stromabwärts des Ringspalts 12, Zwischen 1,3:1 und 1,8:1 ist. Dies bedeutet, daß dann, wenn "im Freien" gespritzt wird, der Druck p₂ also 1 bar beträgt, der Druck p₁ unter 1,8 bar absolut bzw. unter 0,8 bar Überdruck bleiben muß. Wird in einer geschlossenen Spritzkabine mit Absaugung gespritzt, in welcher der Druck p₂ etwas unter Atmosphärendruck liegt, muß der Druck p₁ entsprechend niedriger gewählt werden. Erreicht wird dieser vergleichsweise niedrige Druck in der Luftkammer 16 dadurch, daß man die Farbspritzpistole durch ein motorgetriebenes Gebläse mit Druckluft versorgt, das von Hause aus Druckluft entsprechend niedrigen Drucks liefert, nämlich ein sogenanntes "Staubsauger-Motorgebläse". Die gelieferte Gebläseluft erfährt im Betrieb eine Temperatuerhöhung. Um zu vermeiden, daß die zerstäubten Farbpartikel durch die erwärmte Luft vor Erreichen des Werkstücks "eintrocknen", ist es zweckmäßig, ein Kühlelement vorzusehen, etwa einen Kühlring, wie er bei 19 in der Zeichnung angedeutet ist.
  • Wesentlich ist, daß die im Rohr 10 zugeführte Farbe trotz des vergleichsweise geringen Drucks und der damit vergleichsweise geringen Strömungsgeschwindigkeit der Druckluft aus der Düse 11 herausgerissen, fein zerstäubt und zum Werkstück transportiert wird. Man wird deshalb im allgemeinenen nahe dem angegebenen oberen Grenzwert arbeiten, also mit einem Verhältnis VL nahe 1,8:1.
  • Von ausschlaggebender Bedeutung ist dabei aber, daß die Luftmenge ausreichend ist, also der Durchsatz an Druckluft durch den Ringspalt 12 in der Zeiteinheit. Praktische Versuche haben ergeben, daß die Luftmenge genauso groß wie oder größer als die Luftmenge sein muß, die bei den üblichen Druckluftpistolen mit einem Zuführdruck der Druckluft von etwa 6 bar durchgesetzt wird. Dies erfordert eine beträchtliche Größe der Durchtrittsfläche des Ringspalts 12, die wesentlich größer sein muß als bei den üblichen Druckluft-Farbspritzpistolen, beispielsweise um den Faktor 2 oder 3. Es ist dabei wenig sinnvoll, Absolutwerte für die Luft-Durchsatzmenge und/oder die Austrittsfläche des Ringspalts 12 anzugeben, weil diese Werte abhängig sind vom gewünschten Farbdurchsatz und von der Viskosität der zu versprühenden Farbe; je höher der gewünschte Farbdurchsatz und je zäher die zu versprühende Farbe ist, umso mehr Energie muß für die Zerstäubung und den Transport der Farbe bereitgestellt werden, und nachdem die Energieerhöhung nicht durch eine Erhöhung des Drucks der Druckluft erfolgen soll, zumindest nicht über den angegebenen Grenzwert, wird dies durch die Erhöhung des Luftdurchsatzes erreicht. In der Praxis geht man dabei so vor, daß Druck und Menge der zugeführten Druckluft sowie Größe der Austrittsfläche des Ringspalts auf den maximalen Farbdurchsatz der Farbspritzpistole bei Verwendung zähester Farben abgestimmt werden und durch von außen betätigbare Luftventile, nämlich ein Druckminderventil und/oder ein Mengenminderventil, der Bedienungsperson die Möglichkeit gegeben wird, bei geringerem Farbdurchsatz und/oder bei leichter zerstäubbaren Farben eine Anpassung vorzunehmen. Die Elektrodenanordnung kann in üblicher Weise ausgebildet sein, jedoch ist es zweckmäßig, die Elektroden nahe benachbart dem Farbaustritt anzuordnen, etwa auch als zentrale Nadelelektrode in der Farbaustrittsdüse, um sicherzustellen, daß alle Farbpartikel den Koronabereich, also den Bereich höchster Feldstärke, durchlaufen. Von Bedeutung ist dabei noch, daß ein Teil der Tröpfchen-Transportenergie vom elektrostatischen Feld geliefert wird. Auch die Höhe der angelegten Spannung ist deshalb ein wesentlicher Faktor und ist in die Abstimmung einzubeziehen, insbesondere beim Versprühen von Farben unterschiedlicher elektrischer Leitfähigkeit (Wasserlack).
  • Praktische Versuche haben ergeben, daß mit der erfindungsgemäßen elekrostatischen Druckluft-Farbspritzpistole ein ungewöhnlich hoher Niederschlagswirkungsgrad erreicht wird, was nicht nur zu einer Kostenersparnis führt, sondern auch die Umweltverschmutzung wesentlich vermindert. Darüber hinaus wird ein ausgezeichneter Farbumgriff erzielt, etwa beim Spritzen von Rohren, wie er bisher nur mit elektrostatischen Rotations-Farbspritzpistolen möglich war.
  • Der hier gewählte Begriff Farbe soll selbstverständlich alle elektrostatisch versprühbaren Beschichtungsflüssigkeiten umfassen, insbesondere Lacke jeglicher Konsistenz.

Claims (3)

  1. Verfahren zum Betreiben einer elektrostatischen Druckluft-Farbspritzpistole mit einer an eine Farbzuführleitung (10) angeschlossenen Farbaustrittsdüse (11), einer an eine Druckluftzuführleitung angeschlossenen, benachbart der Farbaustrittsdüse ausmündenden Druckluft-Austrittsöffnung (12) in Form eines die Farbaustrittsdüse konzentrisch umgebenden Lochkranzes oder Ringspalts und einer an eine Hochspannungszuführung (18) angeschlossenen Elektrodenanordnung (17), dadurch gekennzeichnet, daß das Verhältnis (VL) des unmittelbar stromaufwärts der Druckluft-Austrittsöffnung (12) herrschenden Luftdrucks (p1) zum stromabwärts der Druckluft-Austrittsöffnung (12) herrschenden Luftdruck (p2) zwischen 1,3 : 1 und 1,8 : 1 beträgt und daß die Druckluft von einem Staubsauger-Motorgebläse geliefert wird.
  2. Verfahren nach Anspruch 1, wobei die zugeführte Druckluft eine über Raumtemperatur liegende Temperatur aufweist, dadurch gekennzeichnet, daß die Druckluft vor Austritt aus der Druckluft-Austrittsöffnung (12) auf eine Temperatur gleich oder unter Raumtemperatur mittels einer Kühleinrichtung (9) abgekühlt wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Elektrodenanordnung aus in oder unmittelbar benachbart der Farbaustrittsöffnung (11) angeordneten Elektrodennadeln (17) besteht.
EP90103066A 1990-02-16 1990-02-16 Verfahren zum Betreiben einer elektrostatischen Druckluft-Farbspritzpistole Expired - Lifetime EP0442019B1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
DE90103066T DE59004556D1 (de) 1990-02-16 1990-02-16 Verfahren zum Betreiben einer elektrostatischen Druckluft-Farbspritzpistole.
EP90103066A EP0442019B1 (de) 1990-02-16 1990-02-16 Verfahren zum Betreiben einer elektrostatischen Druckluft-Farbspritzpistole
DK90103066.8T DK0442019T3 (da) 1990-02-16 1990-02-16 Fremgangsmåde til drift af en elektrostatisk trykluftfarvesprøjtepistol
US07/654,342 US5188290A (en) 1990-02-16 1991-02-12 Electrostatic compressed air paint spray gun

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP90103066A EP0442019B1 (de) 1990-02-16 1990-02-16 Verfahren zum Betreiben einer elektrostatischen Druckluft-Farbspritzpistole

Publications (2)

Publication Number Publication Date
EP0442019A1 EP0442019A1 (de) 1991-08-21
EP0442019B1 true EP0442019B1 (de) 1994-02-09

Family

ID=8203660

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90103066A Expired - Lifetime EP0442019B1 (de) 1990-02-16 1990-02-16 Verfahren zum Betreiben einer elektrostatischen Druckluft-Farbspritzpistole

Country Status (4)

Country Link
US (1) US5188290A (de)
EP (1) EP0442019B1 (de)
DE (1) DE59004556D1 (de)
DK (1) DK0442019T3 (de)

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5409162A (en) * 1993-08-09 1995-04-25 Sickles; James E. Induction spray charging apparatus
US5704554A (en) * 1996-03-21 1998-01-06 University Of Georgia Reseach Foundation, Inc. Electrostatic spray nozzles for abrasive and conductive liquids in harsh environments
US5765761A (en) * 1995-07-26 1998-06-16 Universtiy Of Georgia Research Foundation, Inc. Electrostatic-induction spray-charging nozzle system
US5873523A (en) * 1996-02-29 1999-02-23 Yale University Electrospray employing corona-assisted cone-jet mode
US6116516A (en) * 1996-05-13 2000-09-12 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
US6405936B1 (en) 1996-05-13 2002-06-18 Universidad De Sevilla Stabilized capillary microjet and devices and methods for producing same
US6595202B2 (en) 1996-05-13 2003-07-22 Universidad De Sevilla Device and method for creating aerosols for drug delivery
US5947377A (en) * 1997-07-11 1999-09-07 Nordson Corporation Electrostatic rotary atomizing spray device with improved atomizer cup
US6244522B1 (en) * 1999-05-10 2001-06-12 Nordson Corporation Nozzle assembly for dispensing head
CN1898437A (zh) * 2002-12-26 2007-01-17 曼泰克株式会社 向造纸机帆布喷洒抗污剂的方法及滑动喷洒装置和抗污剂
US6915966B2 (en) * 2003-01-29 2005-07-12 Specialty Minerals (Michigan) Inc. Apparatus for the gunning of a refractory material and nozzles for same
US20060078893A1 (en) 2004-10-12 2006-04-13 Medical Research Council Compartmentalised combinatorial chemistry by microfluidic control
GB0307403D0 (en) * 2003-03-31 2003-05-07 Medical Res Council Selection by compartmentalised screening
GB0307428D0 (en) * 2003-03-31 2003-05-07 Medical Res Council Compartmentalised combinatorial chemistry
US7128283B1 (en) 2004-02-02 2006-10-31 Shahin Yousef A Paint spraying nozzle assembly
US20050221339A1 (en) * 2004-03-31 2005-10-06 Medical Research Council Harvard University Compartmentalised screening by microfluidic control
WO2005102101A1 (ja) * 2004-04-23 2005-11-03 Matsushita Electric Works, Ltd. 静電霧化器を備えた加熱送風装置
US7968287B2 (en) 2004-10-08 2011-06-28 Medical Research Council Harvard University In vitro evolution in microfluidic systems
US7913938B2 (en) * 2004-11-12 2011-03-29 Mystic Tan, Inc. Electrostatic spray nozzle with adjustable fluid tip and interchangeable components
US7854397B2 (en) * 2005-01-21 2010-12-21 Specialty Minerals (Michigan) Inc. Long throw shotcrete nozzle
US7886990B2 (en) * 2005-04-22 2011-02-15 Ingo Werner Scheer Atomizing device with precisely aligned liquid tube and method of manufacture
US7700016B2 (en) * 2005-08-02 2010-04-20 Solidscape, Inc. Method and apparatus for fabricating three dimensional models
EP2363205A3 (de) 2006-01-11 2014-06-04 Raindance Technologies, Inc. Mikrofluidische Vorrichtungen Und Verfahren Zur Verwendung Bei Der Bildung Und Kontrolle Von Nanoreaktoren
EP3335782B1 (de) 2006-05-11 2020-09-09 Bio-Rad Laboratories, Inc. Mikrofluidische vorrichtungen
US9562837B2 (en) 2006-05-11 2017-02-07 Raindance Technologies, Inc. Systems for handling microfludic droplets
EP2077912B1 (de) 2006-08-07 2019-03-27 The President and Fellows of Harvard College Fluorkohlenstoffemulsionsstabilisierende tenside
US7735748B1 (en) * 2006-10-10 2010-06-15 Ingo Werner Scheer Spray nozzle with improved tip and method of manufacture
WO2008097559A2 (en) 2007-02-06 2008-08-14 Brandeis University Manipulation of fluids and reactions in microfluidic systems
US8592221B2 (en) 2007-04-19 2013-11-26 Brandeis University Manipulation of fluids, fluid components and reactions in microfluidic systems
US12038438B2 (en) 2008-07-18 2024-07-16 Bio-Rad Laboratories, Inc. Enzyme quantification
EP4047367A1 (de) 2008-07-18 2022-08-24 Bio-Rad Laboratories, Inc. Verfahren zum nachweis von zielanalyten unter verwendung von tropfenbibliotheken
US8528589B2 (en) 2009-03-23 2013-09-10 Raindance Technologies, Inc. Manipulation of microfluidic droplets
US10520500B2 (en) 2009-10-09 2019-12-31 Abdeslam El Harrak Labelled silica-based nanomaterial with enhanced properties and uses thereof
WO2011079176A2 (en) 2009-12-23 2011-06-30 Raindance Technologies, Inc. Microfluidic systems and methods for reducing the exchange of molecules between droplets
US9366632B2 (en) 2010-02-12 2016-06-14 Raindance Technologies, Inc. Digital analyte analysis
US9399797B2 (en) 2010-02-12 2016-07-26 Raindance Technologies, Inc. Digital analyte analysis
CA2789425C (en) 2010-02-12 2020-04-28 Raindance Technologies, Inc. Digital analyte analysis with polymerase error correction
US10351905B2 (en) 2010-02-12 2019-07-16 Bio-Rad Laboratories, Inc. Digital analyte analysis
EP2622103B2 (de) 2010-09-30 2022-11-16 Bio-Rad Laboratories, Inc. Sandwichassays in tröpfchen
EP2673614B1 (de) 2011-02-11 2018-08-01 Raindance Technologies, Inc. Verfahren zur bildung gemischter tröpfchen
EP3736281A1 (de) 2011-02-18 2020-11-11 Bio-Rad Laboratories, Inc. Zusammensetzungen und verfahren für molekulare etikettierung
US8841071B2 (en) 2011-06-02 2014-09-23 Raindance Technologies, Inc. Sample multiplexing
EP3216872B1 (de) 2011-06-02 2020-04-01 Bio-Rad Laboratories, Inc. Enzymquantifizierung
US8658430B2 (en) 2011-07-20 2014-02-25 Raindance Technologies, Inc. Manipulating droplet size
JP6006597B2 (ja) 2012-02-27 2016-10-12 住友化学株式会社 静電噴霧装置、および配置方法
US9138760B2 (en) 2012-10-22 2015-09-22 Steven C. Cooper Electrostatic liquid spray nozzle having an internal dielectric shroud
CN103263988A (zh) * 2013-06-03 2013-08-28 江苏大学 农用气力式静电雾化喷枪
US11901041B2 (en) 2013-10-04 2024-02-13 Bio-Rad Laboratories, Inc. Digital analysis of nucleic acid modification
US9944977B2 (en) 2013-12-12 2018-04-17 Raindance Technologies, Inc. Distinguishing rare variations in a nucleic acid sequence from a sample
US11193176B2 (en) 2013-12-31 2021-12-07 Bio-Rad Laboratories, Inc. Method for detecting and quantifying latent retroviral RNA species
US10647981B1 (en) 2015-09-08 2020-05-12 Bio-Rad Laboratories, Inc. Nucleic acid library generation methods and compositions
US10010895B2 (en) * 2016-09-21 2018-07-03 Tritech Industries Inc. System and method for the thermal monitoring and protection of an electrically powered airless paint sprayer
US11950677B2 (en) 2019-02-28 2024-04-09 L'oreal Devices and methods for electrostatic application of cosmetics
CN110180693B (zh) * 2019-07-24 2019-10-22 常州江苏大学工程技术研究院 一种感应静电雾化喷头

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1577859B2 (de) * 1965-08-26 1978-05-03 Ernst Mueller Kg, 7151 Hoefen Spritzpistole
US3599038A (en) * 1969-07-28 1971-08-10 Hipotronics Apparatus and systems for high-voltage electrostatic charging of particles
SE386841B (sv) * 1973-04-19 1976-08-23 Atlas Copco Ab Elektrostatisk fergspruta
DE2418604A1 (de) * 1973-04-19 1974-12-12 Atlas Copco Ab Elektrostatische spruehpistole
US4033506A (en) * 1974-08-06 1977-07-05 Franz Braun Electrostatic coating guns
US4290091A (en) * 1976-12-27 1981-09-15 Speeflo Manufacturing Corporation Spray gun having self-contained low voltage and high voltage power supplies
CH623489A5 (de) * 1977-12-08 1981-06-15 Gema Ag
GB2020200B (en) * 1978-03-08 1982-09-15 Air Ind Electrostatic spraying
FR2424068A1 (fr) * 1978-04-28 1979-11-23 Wagner J Ag Pistolet pulverisateur electrostatique
US4323947A (en) * 1979-08-13 1982-04-06 J. Wagner Ag. Electrostatic gun with improved diode-capacitor multiplier
US4441656A (en) * 1982-01-29 1984-04-10 J. Wagner Ag Electrostatic disabling switch for electrostatic spray guns
FR2522991A1 (fr) * 1982-03-08 1983-09-16 G2M Lepetit Appareil de pulverisation pneumatique de liquide sous forme d'un jet
DE3214314A1 (de) * 1982-04-19 1983-10-20 J. Wagner AG, 9450 Altstätten Elektrostatische spruehvorrichtung
DE3412266A1 (de) * 1984-04-02 1985-10-03 J. Wagner AG, Altstätten Elektrostatische farbspritzpistole
DE3412507A1 (de) * 1984-04-03 1985-10-17 J. Wagner AG, Altstätten Elektrostatische handspritzpistole
DE3545885C1 (de) * 1985-12-23 1993-03-04 Kopperschmidt Mueller & Co Elektrostatische Spruehpistole
DE3644840A1 (de) * 1986-04-04 1987-10-15 Wagner Int Elektrostatische pulver-spruehpistole

Also Published As

Publication number Publication date
US5188290A (en) 1993-02-23
EP0442019A1 (de) 1991-08-21
DK0442019T3 (da) 1995-03-13
DE59004556D1 (de) 1994-03-24

Similar Documents

Publication Publication Date Title
EP0442019B1 (de) Verfahren zum Betreiben einer elektrostatischen Druckluft-Farbspritzpistole
DE3505618C2 (de)
EP2337688B1 (de) Beschichtungseinrichtung und zugehöriges beschichtungsverfahren
EP2566627B1 (de) Beschichtungseinrichtung mit zertropfenden beschichtungsmittelstrahlen
DE69516792T2 (de) Sprühdüse mit interner Luftmischung
DE1777329A1 (de) Vorrichtung zum elektrostatischen UEberziehen von Gegenstaenden
DE204437T1 (de) Pulverspritzpistolen.
CH713716A1 (de) Gebläsesprühvorrichtung mit einstellbarer Luftströmungsgeschwindigkeit.
CH641062A5 (de) Zerstaeuberkopf an einer farbspritzpistole.
DE690797C (de) Verfahren und Vorrichtung zum Auftragen von Farben und Lacken
DE4208500C2 (de) Spritzvorrichtung zum Aufbringen eines flüssigen Mediums wie Farbe
DE2209896C2 (de) Zerstäubungsverfahren für niederzuschlagende flüssige Überzugsmaterialien und Vorrichtung zur Durchführung des Zerstäubungsverfahrens
DE69009201T2 (de) Hochdurchfluss-Niederdruck-Luftspritzpistole.
EP0104395B1 (de) Farbmischverfahren und Farbmischeinrichtung zur Verfahrensdurchführung
DE3613348C2 (de)
DE69723757T2 (de) Rotierende elektrostatische Sprühvorrichtung
DE69208048T2 (de) Nebelfreie Niederdruck-Spritzpistole
DE69402762T2 (de) Pneumatischer Flachstrahlzerstauber zum Versprühen von Beschichtungsmaterialien
DE3007990C2 (de)
DE3336053A1 (de) 2-komponenten-aussenmisch-spruehpistole mit airless- und druckluftzerstaeubung
DD262817A5 (de) Elektrostatische farbspritzpistole
WO1999041016A1 (de) Nebelgeneratorkopf
DE519222C (de) Zerstaeubungsverfahren nebst Vorrichtung dazu
DE922692C (de) Farbspritzpistole zum Betrieb mit niedrig gespannter Druckluft mit einer Druckluftturbine zum Antrieb des Farbverteilers
DE954748C (de) Mit Verbrennungskraftmaschine und Ventilator ausgeruestetes tragbares Geraet zum Verspruehen von Fluessigkeiten fuer die Pflanzenbehandlung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901217

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE DK FR GB IT SE

17Q First examination report despatched

Effective date: 19920715

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO MILANO S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE DK FR GB IT SE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940316

Year of fee payment: 5

REF Corresponds to:

Ref document number: 59004556

Country of ref document: DE

Date of ref document: 19940324

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19940331

Year of fee payment: 5

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940429

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EAL Se: european patent in force in sweden

Ref document number: 90103066.8

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Effective date: 19950216

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950217

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

EUG Se: european patent has lapsed

Ref document number: 90103066.8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19960125

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19960207

Year of fee payment: 7

Ref country code: DE

Payment date: 19960207

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19970216

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19970216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19971030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19971101

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050216