EP0441909B1 - Ventilsteuervorrichtung mit magnetventil für brennkraftmaschinen - Google Patents

Ventilsteuervorrichtung mit magnetventil für brennkraftmaschinen Download PDF

Info

Publication number
EP0441909B1
EP0441909B1 EP90910571A EP90910571A EP0441909B1 EP 0441909 B1 EP0441909 B1 EP 0441909B1 EP 90910571 A EP90910571 A EP 90910571A EP 90910571 A EP90910571 A EP 90910571A EP 0441909 B1 EP0441909 B1 EP 0441909B1
Authority
EP
European Patent Office
Prior art keywords
valve
reservoir
space
piston
valve control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90910571A
Other languages
English (en)
French (fr)
Other versions
EP0441909A1 (de
Inventor
Helmut Rembold
Ernst Linder
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0441909A1 publication Critical patent/EP0441909A1/de
Application granted granted Critical
Publication of EP0441909B1 publication Critical patent/EP0441909B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic
    • F01L9/11Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column
    • F01L9/12Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem
    • F01L9/14Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic in which the action of a cam is being transmitted to a valve by a liquid column with a liquid chamber between a piston actuated by a cam and a piston acting on a valve stem the volume of the chamber being variable, e.g. for varying the lift or the timing of a valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/34Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift
    • F01L1/344Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear
    • F01L1/3442Valve-gear or valve arrangements, e.g. lift-valve gear characterised by the provision of means for changing the timing of the valves without changing the duration of opening and without affecting the magnitude of the valve lift changing the angular relationship between crankshaft and camshaft, e.g. using helicoidal gear using hydraulic chambers with variable volume to transmit the rotating force
    • F01L2001/34423Details relating to the hydraulic feeding circuit
    • F01L2001/34446Fluid accumulators for the feeding circuit

Definitions

  • the invention relates to a valve control device with a solenoid valve for internal combustion engines according to the preamble of the main claim.
  • the liquid reservoir is integrated into the solenoid valve , wherein the valve member serves as a storage piston, which has a storage space separates from a magnetic space, the connection between the valve inlet and the storage space being controlled via the one end edge of the storage piston in cooperation with the valve seat.
  • the magnet counteracts the memory escape direction, since in the special exemplary embodiment the solenoid valve is to be de-energized, ie it is only to be blocked under voltage.
  • valve control device according to the preamble of claim 1 is also previously known.
  • the liquid store is provided as a separate store, which is arranged downstream of the solenoid valve.
  • the memory serves to receive quantities of pressure medium drawn from the stroke transmission chamber via the solenoid valve and, at the same time, also serves to supply lifting medium to the transmission chamber when the solenoid valve and the relieved stroke transmission chamber are closed, for which purpose a bypass line containing a check valve is provided in parallel with the solenoid valve.
  • the solenoid valve and the separate memory which are each assigned to a single engine valve, take up a relatively large amount of space.
  • the valve control device with the characterizing features of claim 1 has the Advantage that the combined storage valve unit is constructed much simpler, for example as a spring only has the storage spring.
  • the permissible tolerance range with regard to the forces and pressures is also expanded in that the storage piston no longer has to assume an intermediate position when the magnet is not excited, but is held in its end position by the storage spring.
  • the static pressure that can be generated by the accumulator piston due to the accumulator spring must be greater than the leakage-compensating supply pressure, but in any case must be less than the hydraulic pressure from the stroke transmission chamber of the engine inlet valve.
  • the magnet itself can advantageously be designed in a wide variety of ways - the only important thing is that when the solenoid coil is excited, the storage piston as a movable valve member is briefly lifted off its seat in order to then be moved further by the fluid pressure from the engine valve as a storage device. A trigger pulse is sufficient to effect this lifting.
  • Another advantage is that the control of the valve is not dependent on a mechanical spring, the force of which must be limited to a relatively low value due to the force ratio described above, so that a certain inertia of this control is the result, but that Driven by the electromagnet, with the resulting high response speed.
  • the storage piston is pot-shaped and has a pot bottom facing the storage space, the edge of which cooperates with a valve seat between the valve inlet and the storage space and which is guided radially on an inner wall of the control valve housing and with a central housing-fixed pin as a magnetic yoke dives into the pot opening.
  • the magnet coil is arranged in the magnet space formed between the peg and the inner wall, as a result of which the assembly of the storage magnet valve unit can be simplified, but the construction volume can also be minimized.
  • a central bore for relieving the magnetic space is present in the journal, which brings considerable connection advantages.
  • a throttle opening is present in the pot base separating the magnet space and the storage space. to ensure that the accumulator piston comes back to the valve seat after sealing the engine valve pressure.
  • the storage space is connected to the crankcase via a throttle bore and a check valve opening towards the storage space.
  • the pin can serve as a stroke stop of the storage piston and also have a blind bore into which the storage spring partially dips.
  • This blind bore can be at least so deep that it fully absorbs the spring when it is compressed into a block. This also saves additional space that benefits the volume of the storage space.
  • the magnetic coil is electrically switched off after the storage piston has been lifted off the valve seat. This saves considerable electrical energy, since only one pulse is sufficient for the actual actuation of the solenoid valve, because the further opening, if there is any possibility of control, is effected by the engine valve pressure.
  • the most Control variables attacking the storage piston in the form of the engine valve pressure and the storage spring force are not additionally superimposed by magnetic forces.
  • FIG. 1 shows a longitudinal section through a valve control device with an uncut storage-solenoid valve unit
  • FIG. 2 shows a longitudinal section through the storage-solenoid valve unit on an enlarged scale.
  • valve control device shown in FIG. 1 for an intake or exhaust valve 10 of an internal combustion engine is arranged between a valve stem 12 carrying a valve member 11 and a valve control cam 14 rotating with a camshaft 13.
  • the valve stem 12 is axially displaceably guided in a valve housing 15 and lies with the valve member 11 under the action of two valve closing springs 16, 17 on a valve seat 18 in the valve housing 15, which surrounds a valve inlet or valve outlet opening 19.
  • the valve control device has a control housing 20 placed on the valve housing 15, in which a housing chamber 21 is arranged coaxially with a spring chamber 22 in the valve housing 15, in which the valve closing springs 16, 17 are accommodated coaxially to one another.
  • a housing block 23 having a central axially continuous housing bore 24 is inserted from below into the housing chamber 21.
  • a valve piston 25 connected to the valve stem 12 and a piston part 26 of a cam piston 27 arranged above it are axially displaceable.
  • the cam piston 27 is pressed against the valve control cam 14 by a return spring 28 which is supported in the housing block 23.
  • the piston part 26 is pressed positively against the cam piston 27 via the return spring 28.
  • the valve piston 25 and the piston part 26 delimit an oil-filled stroke transmission chamber 29, the axial length effective between the cam piston 27 and the valve piston 25 can be changed by relative movement of the pistons.
  • the stroke transfer chamber 29 is connected via a line 30 to a cylindrical magnetic control valve 31, which is shown in an uncut form in FIG.
  • any leakage quantities of oil flowing out of the valve control device are discharged from a reservoir 32 via a delivery line 33 compensated by means of a feed pump 34, the line 33 being branched into a line 35 which opens into the line 30 connecting the stroke transmission chamber 29 and the solenoid control valve 31 and into a line 36 which leads to the solenoid control valve 31, to the lower end thereof.
  • a check valve 37 and 38 opening in the direction of the solenoid control valve 31 is arranged.
  • the maximum delivery pressure of the delivery pump 34 is limited by a pressure relief valve 39, so that a certain supply pressure of the oil is not exceeded.
  • the amount of oil present in the stroke transmission chamber 29 can be controlled by the solenoid control valve 31, which is shown in section in FIG. 2.
  • a pot-shaped storage piston 41 is arranged axially displaceably and radially sealing in the solenoid valve housing 40.
  • This storage piston 41 separates an inlet space 42 from a storage space 43 and a magnet space 44 in the illustrated closed position of the solenoid valve.
  • the storage piston 41 is loaded by a storage spring 45 which also acts as a closing spring and has a throttle bore 46 on the piston head through which the storage space 43 and the magnet space 44 are connected to one another.
  • a throttle bore 56 is provided between the storage space 43 and the check valve 38.
  • the storage spring 45 is supported on the side facing away from the storage piston 41 from a pin 47 of a housing cover 48 arranged axially with the storage piston 41, a blind bore 49 being provided for receiving a section of the storage spring 45 at the free end of the pin 47.
  • a leak channel 50 is present in the pin 47, which leads to the oil container 32 via a leak line 51.
  • a magnetic coil 52 is arranged in the annular space of the magnetic space 44 formed by the magnetic valve housing 40 and the pin 47.
  • this annular space into which the storage piston 41 dips with its annular walls when displaced against the storage spring 45, is connected to the leakage channel 50 via a leak hole 53 in order to avoid, when immersed, that a liquid jam occurs between the magnet coil 52 and the storage piston 41 within the magnet space 44 .
  • valve control device works as follows: for the operation of the internal combustion engine, the valve control cam 14 lifts the valve plate 11 down from the valve seat at the given time and the inlet channel to the combustion chamber is opened.
  • the piston part 26, which is filled with oil is displaced into the housing bore 24 via the cam piston 27 and counter to the force of the return spring 28.
  • the valve piston 25 is displaced downward by the oil as an almost inelastic force transmitter and thereby displaces the valve stem 12 including the valve plate 11 against the force of the valve closing springs 16 and 17.
  • the opening stroke of the engine valve 10 corresponds to the height of the valve control cam 14, since the piston part 26 and the valve piston 25 have the same working diameter.
  • This working stroke of the valve stem 12 is changed by the solenoid control valve 31 when the time cross section between the valve plate 11 and the valve seat 18 is sufficiently large, for example if the engine speed is to be reduced by reducing this time cross section. In this case, the amount of fuel / air mixture drawn into the combustion chamber is reduced in accordance with the time cross section.
  • the solenoid valve 31 is selectively opened from a certain working stroke, in that the coil 52 is excited and at least the valve edge 54 of the accumulator piston 41 lifts off the valve seat 55 by the first current pulse, so that the pressure prevailing in the stroke transmission chamber 29 overcomes the line 30 transmits into the storage space 43 in order to push it upward against the force of the storage spring 45 by acting on the lower face of the storage piston 41.
  • the volume in the stroke transmission chamber 29 is reduced by this volume swallowed by the memory. Due to the action of the springs 16 and 17, the valve plate 11 closes prematurely.
  • valve control cam 14 As valve control cam 14 continues to rotate, it reaches the basic circle position shown, in which piston part 26 is pushed all the way up again by return spring 28. During this movement, the accumulator piston 41 of the solenoid control valve 31, driven by the accumulator spring 45, displaces the oil in front of it via the line 30 back into the stroke transmission chamber 29 until the accumulator piston 41 rests with its valve edge 54 on the valve seat 55.
  • any cavities in the valve inlet space 42 of the line 30 or the stroke transmission chamber 29 are filled with oil via the feed pump 34 and the feed line 33, with backflow through the check valve 37 being prevented, so that when the valve control cams 14 drive again, the initial situation is reached again.
  • the throttle bore 46 in the bottom of the accumulator piston 41 ensures that there is no back pressure in the accumulator space 43, ie it is achieved that the accumulator piston 41 lies snugly on the valve seat 55.
  • oil flows continuously from the feed pump 34 into the storage space 43 and from there via the throttle bore 46 into the magnet space 44 and back into the oil container 32, so that here a constant filling of the storage space 43 under constant low pressure is guaranteed.
  • the preferably provided throttle 56 between the check valve 38 and the storage space 43 is smaller in diameter than the throttle 46 and causes Changes in the engine oil pressure serving as system pressure only have an attenuated effect on the pressure in the storage space.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

Hydraulische Ventilsteuervorrichtung für Brennkraftmaschinen mit einem Speicher-Magnetventil (31) zur Steuerung des Volumens in einer Hubübertragungskammer (29), um dadurch den Zeitquerschnitt des Motorventils (10) zu steuern, wobei das Magnetventil (31) stromlos geschlossen ist und das als Speicherkolben (41) ausgebildete Ventilglied durch eine als Schliessfeder dienende Speicherfeder (45) belastet ist.

Description

    Stand der Technik
  • Die Erfindung geht aus von einer Ventilsteuervorrichtung mit Magnetventil für Brennkraftmaschinen nach der Gattung des Hauptanspruchs.
  • Bei einer bereits vorgeschlagenen Ventilsteuervorrichtung zum Steuern der Schließ- und Öffnungszeit eines von einem Ventilsteuernocken einer Nockenwelle über einen axial verschiebbaren Ventilschaft betätigen Motorventils (EP-A 0 341 440) (Stand der Technik gemäß Art. 54.3 EPÜ) ist der Flüssigkeitsspeicher in das Magnetventil integriert, wobei das Ventilglied als Speicherkolben dient, der einen Speicherraum von einem Magnetraum trennt, wobei die Verbindung zwischen Ventileinlaß und Speicherraum über die eine Stirnkante des Speicherkolbens in Zusammenwirkung mit dem Ventilsitz gesteuert wird. Der Magnet wirkt der Speicherausweichrichtung entgegen, da bei dem speziellen Ausführungsbeispiel das Magnetventil stromlos, offen d. h. nur unter Spannung gesperrt sein soll. Hierdurch soll sichergestellt werden, daß bei Steckerabfall am Magnetventil der Motor nicht durchgehen kann. Die Folge ist jedoch, daß der Motor bei einem solchen Steckerabfall stehen bleibt. Um obere vorgeschlagene Ausgestaltung der Erfindung zu erhalten, bei der einerseits der Flüssigkeitsspeicher im Magnetventil integriert ist und bei dem andererseits das Magnetventil stromlos geöffnet sein soll, ist ein nicht unerheblicher, insbesondere konstruktiver Aufwand erforderlich, vor allem deshalb, weil die mechanischen Verstellkräfte - einerseits die Speicherkraft und andererseits die Öffnungskraft - des Magnetventils einander entgegenwirken, so daß mindestens zwei Federn am als Ventilglied dienenden Speicherkolben angreifen müssen. Es muß nicht nur der dafür erforderliche Raum vorhanden sein, sondern es müssen auch diese beiden Federn sehr genau aufeinander abgestimmt sein, was vor allem deshalb aufwendig ist, weil bei dieser Abstimmung auch die durch die hydraulischen Drücke bewirkten Kräfte berücksichtigt werden müssen. So ist es erforderlich, daß der statische Druck, der durch die Speicherfeder am Speicherkolben angreift kleiner sein muß als der Hydraulikdruck, der durch das Motorventil bewirkt wird und am Speicherkolben angreift. Nur so ist die gewünschte Speicherwirkung möglich. Andererseits muß dieser statische Druck aber größer sein als der Ölversorgungsdruck mit dem Leck- und Abschlußverluste des Hydrauliköls aus der Ventilsteuervorrichtung ausgeglichen werden. Nur so ist gewährleistet, daß der Speicherkolben bei Abbau des Motorventildruckes wieder in die Ausgangsstellung gelangt, aus der er bei Erregung des Magnets in die Ventilschließstellung gefahren werden kann oder umgekehrt, bei Abbau der Erregung und Aufbau des Stößeldruckes ausweichen kann.
  • Um den Sicherheits- und Komfortanforderungen bei einem Kraftfahrzeug zu genügen, reicht obengenannte Abstellsicherung bei Steckerabfall am Magnetventil nicht aus. Ein solcher Steckerabfall kann nämlich den Fall nicht vermeiden, bei dem das Magnetventil im erregten Zustand festklemmt und der Motor dann möglicherweise durchgehen könnte. Es sind also zusätzliche die Kraftstoffzufuhr oder -zündung abschaltende Einrichtungen unabdingbar.
  • Durch die US-A-4 765 288 ist ferner eine Ventilsteuervorrichtung gemäß der Gattung des Patentanspruchs 1 vorbekannt. Bei dieser Ventilsteuereinrichtung ist der Flüssigkeitsspeicher als separater Speicher vorgesehen, der stromabwärts des Magnetventils angeordnet ist. Der Speicher dient der Aufnahme von der Hubübertragungskammer über das Magnetventil entnommenen Druckmittelmengen und dient zugleich auch bei geschlossenem Magnetventil und entlasteter Hubübertragungskammer der Zuführung von Hubmittel zur Übertragungskammer, wozu parallel zum Magnetventil eine ein Rückschlagventil enthaltende Bypassleitung vorgesehen ist. Das Magnetventil und der separate Speicher, die jeweils einem einzelnen Motorventil zugeordnet sind, nehmen einen verhältnismäßig großen Bauraum ein.
  • Vorteile der Erfindung
  • Die erfindungsgemäße Ventilsteuervorrichtung, mit den kennzeichnenden Merkmalen des Patentanspruches 1 hat den Vorteil, daß die kombinierte Speicherventileinheit wesentlich einfacher aufgebaut ist, beispielsweise als Feder nur noch die Speicherfeder aufweist. Der zulässige Toleranzbereich bezüglich der Kräfte und Drücke ist auch dadurch erweitert, daß der Speicherkolben bei nicht erregtem Magnet nicht mehr eine Zwischenstellung einnehmen muß, sondern in seiner Endstellung durch die Speicherfeder gehalten wird. Natürlich gilt auch hier, daß der vom Speicherkolben aufgrund der Speicherfeder erzeugbare statische Druck größer sein muß als der leckagenausgleichende Versorgungsdruck, in jedem Fall aber kleiner sein muß als der Hydraulikdruck von der Hubübertragungskammer des Motoreinlaßventils her. Der Magnet selbst kann vorteilhafterweise in der unterschiedlichsten Art gestaltet sein - maßgebend ist nur, daß bei Erregung der Magnetspule der Speicherkolben als bewegliches Ventilglied kurz von seinem Sitz abgehoben wird um dann durch den Flüssigkeitsdruck vom Motorventil als Speicher weiterverschoben zu werden. Hierzu genügt bereits ein Ansteuerimpuls, um dieses Abheben zu bewirken. Ein weiterer Vorteil besteht darin, daß die Aufsteuerung des Ventils nicht in Abhängigkeit von einer mechanischen Feder erfolgt, deren Kraft aufgrund des oben beschriebenen Kräfteverhältnisses auf einen verhältnismäßig niederen Wert begrenzt sein muß, so daß eine gewisse Trägheit dieser Aufsteuerung die Folge ist, sondern daß der Antrieb durch den Elektromagneten erfolgt, mit der dadurch möglichen hohen Ansprechschnelligkeit.
  • Nach einer vorteilhaften Ausgestaltung der Erfindung ist der Speicherkolben topfförmig ausgebildet und weist einen, dem Speicherraum zugewandten Topfboden auf, dessen Kante mit einem zwischen Ventileinlaß und Speicherraum vorhandenen Ventilsitz zusammenwirkt und der radial an einer Innenwand des Steuerventilgehäuses geführt ist und wobei ein zentraler gehäusefester Zapfen als Magnetjoch in die Topföffnung taucht. Durch die entsprechende Gestaltung der Zapfenaußenfläche und der Topfinnenfläche ist eine Optimierung des Magnetflusses und damit der Magnetkräfte erzielbar. Außerdem wird eine günstige Raumaufteilung erreicht, was einer Verkleinerung der Speicher-Magnetventileinheit entgegenkommt.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist in dem zwischen Zapfen und Innenwand gebildeten Magnetraum die Magnetspule angeordnet, wodurch die Montage der Speicher-Magnetventileinheit vereinfachbar ist, aber auch das Bauvolumen minimierbar ist.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist im Zapfen eine zentrale Bohrung zur Entlastung des Magnetraums vorhanden, was erhebliche Anschlußvorteile mit sich bringt.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist in dem Magnetraum und Speicherraum trennenden Topfboden eine Drosselöffnung vorhanden, um sicherzustellen, daß der Speicherkolben nach Abbau des Motorventildruckes wieder dichtend auf den Ventilsitz gelangt.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung ist der Speicherraum über eine Drosselbohrung und ein zum Speicherraum hin öffnendes Rückschlagventil mit dem Kurbelgehäuse verbunden. Durch die Drossel wirken sich Änderungen bei dem als Systemdruck verwendeten Motoröldruck nur noch in abgeschwächter Form auf den Druck im Speicherraum aus.
  • Nach einer weiteren vorteilhaften Ausgestaltung der Erfindung kann der Zapfen als Hubanschlag des Speicherkolbens dienen und außerdem eine Sackbohrung aufweisen, in die die Speicherfeder teilweise taucht. Diese Sackbohrung kann mindestens so tief sein, daß sie die Speicherfeder voll aufnimmt, wenn diese zu einem Block zusammengedrückt ist. Außerdem wird dadurch weiterer Raum gespart, der dem Volumen des Speicherraums zugutekommt.
  • Nach einer weiteren Ausgestaltung der Erfindung wird die Magnetspule nach Abheben des Speicherkolbens vom Ventilsitz elektrisch abgestellt. Hierdurch wird erhebliche elektrische Energie eingespart, da zur tatsächlichen Betätigung des Magnetventils nur ein Impuls genügt, weil das weitere Öffnen sofern überhaupt eine Steuermöglichkeit besteht, durch den Motorventildruck erfolgt. Hinzu kommt der Vorteil, daß die am Speicherkolben angreifenden Steuergrößen in Form des Motorventildrucks und der Speicherfederkraft nicht zusätzlich von Magnetkräften überlagert werden.
  • Weitere Vorteile und vorteilhafte Ausgestaltungen der Erfindung sind der nachfolgenden Beschreibung, der Zeichnung und den Ansprüchen entnehmbar.
  • Zeichnung
  • Ein Ausführungsbeispiel des Gegenstandes der Erfindung ist in der Zeichnung dargestellt und im folgenden näher beschrieben. Es zeigen Fig. 1 einen Längsschnitt durch eine Ventilsteuervorrichtung mit ungeschnittener Speicher-Magentventileinheit und Fig. 2 einen Längsschnitt durch die Speicher-Magnetventileinheit in vergrößertem Maßstab.
  • Beschreibung des Ausführungsbeispiels
  • Die in Fig. 1 dargestellte Ventilsteuervorrichtung für ein Ein- oder Auslaßventil 10 einer Brennkraftmaschine ist zwischen einem ein Ventilglied 11 tragenden Ventilschaft 12 und einem mit einer Nockenwelle 13 umlaufenden Ventilsteuernocken 14 angeordnet. Der Ventilschaft 12 ist in einem Ventilgehäuse 15 axial verschiebbar geführt und liegt mit dem Ventilglied 11 unter der Wirkung zweier Ventilschließfedern 16, 17 auf einem Ventilsitz 18 im Ventilgehäuse 15 auf, der eine Ventilein- bzw. Ventilauslaßöffnung 19 umgibt. Die Ventilsteuervorrichtung weist ein auf das Ventilgehäuse 15 aufgesetztes Steuergehäuse 20 auf, in welchem eine Gehäusekammer 21 achsgleich zu einer Federkammer 22 im Ventilgehäuse 15 angeordnet ist, in der die Ventilschließfedern 16, 17 koaxial zueinander untergebracht sind. In die Gehäusekammer 21 ist von unten her ein Gehäuseblock 23 eingeschoben, der eine zentrale axial durchgehende Gehäusebohrung 24 aufweist. In der Gehäusebohrung 24 ist ein, mit dem Ventilschaft 12 verbundener Ventilkolben 25 und ein darüber angeordneter Kolbenteil 26 eines Nockenkolbens 27 axial verschiebbar. Der Nockenkolben 27 wird von einer im Gehäuseblock 23 sich abstützenden Rückstellfeder 28 an den Ventilsteuernocken 14 angepreßt. Der Kolbenteil 26 wird über die Rückstellfeder 28 formschlüssig an den Nockenkolben 27 gepreßt. Der Ventilkolben 25 und der Kolbenteil 26 begrenzen eine mit Öl gefüllte Hubübertragungskammer 29, deren zwischen Nockenkolben 27 und Ventilkolben 25 wirksame axiale Länge durch Relativbewegung der Kolben zueinander verändert werden kann. Die Hubübertragskammer 29 steht über eine Leitung 30 mit einem zylindrisch ausgebildeten Magnetsteuerventil 31 in Verbindung, welches in Fig. 1 ungeschnitten dargestellt ist und wobei die Leitung 30 radial auf das Magnetsteuerventil 31 stößt. Irgendwelche, aus der Ventilsteuereinrichtung abströmenden Leckmengen des Öls werden von einem Vorratsbehälter 32 aus über eine Förderleitung 33 mittels einer Förderpumpe 34 ausgeglichen, wobei die Leitung 33 aufgezweigt wird in eine Leitung 35, welche in die die Hubübertragungskammer 29 und das Magnetsteuerventil 31 verbindende Leitung 30 mündet und in eine Leitung 36, die zum Magnetsteuerventil 31 führt und zwar zu dessen unterer Stirnseite. In den Leitungen 35 und 36 ist jeweils ein, in Richtung zum Magnetsteuerventil 31 hin, öffnendes Rückschlagventil 37 und 38 angeordnet. Der maximale Förderdruck der Förderpumpe 34 wird durch ein Druckbegrenzungsventil 39 nach oben begrenzt, so daß ein bestimmter Versorgungsdruck des Öles nicht überschritten wird.
  • Durch das Magnetsteuerventil 31, das in Fig. 2 im Schnitt dargestellt ist, kann die, in der Hubübertragungskammer 29 vorhandene Ölmenge gesteuert werden. Hierfür ist im Magnetventilgehäuse 40 ein topfförmig ausgebildeter Speicherkolben 41 axial verschiebbar und radial dichtend angeordnet. Dieser Speicherkolben 41 trennt in der dargestellten Schließstellung des Magnetventils einen Einlaßraum 42 von einem Speicherraum 43 und einem Magnetraum 44. Der Speicherkolben 41 ist durch eine auch als Schließfeder wirkende Speicherfeder 45 belastet und weist am Kolbenboden eine Drosselbohrung 46 auf, durch die der Speicherraum 43 und der Magnetraum 44 miteinander verbunden sind. Nach einer bevorzugten Ausgestaltung ist zwischen Speicherraum 43 und Rückschlagventil 38 eine Drosselbohrung 56 vorgesehen. Die Speicherfeder 45 stützt sich auf der dem Speicherkolben 41 abgewandten Seite an einem achsgleich zum Speicherkolben 41 angeordneten Zapfen 47 eines Gehäusedeckels 48 ab, wobei zur Aufnahme eines Abschnitts der Speicherfeder 45 am freien Ende des Zapfens 47 eine Sackbohrung 49 vorgesehen ist. Außerdem ist im Zapfen 47 ein Leckkanal 50 vorhanden, der über eine Leckleitung 51 zum Ölbehälter 32 führt. In dem durch das Magnetventilgehäuse 40 und den Zapfen 47 gebildeten Ringraum des Magnetraums 44 ist eine Magnetspule 52 angeordnet. Außerdem ist dieser Ringraum, in den der Speicherkolben 41 bei Verschieben gegen die Speicherfeder 45 mit seinen Ringwänden taucht über eine Leckbohrung 53 mit dem Leckkanal 50 verbunden um bei dem Eintauchen zu vermeiden, daß zwischen Magnetspule 52 und Speicherkolben 41 innerhalb des Magnetraums 44 ein Flüssigkeitsstau entsteht.
  • Die beschriebene Ventilsteuervorrichtung arbeitet wie folgt:
    für den Betrieb der Brennkraftmaschine wird durch den Ventilsteuernocken 14 zu dem gegebenen Zeitpunkt der Ventilteller 11 vom Ventilsitz nach unten abgehoben und der Einlaßkanal zum Brennraum geöffnet. Hierfür wird über den Nockenkolben 27 und entgegen der Kraft der Rückstellfeder 28 der Kolbenteil 26 in die Gehäusebohrung 24 verschoben, welcher mit Öl gefüllt ist. Durch das Öl als nahezu unelastischer Kraftüberträger wird der Ventilkolben 25 nach unten verdrängt und verschiebt dabei den Ventilschaft 12 einschließlich Ventilteller 11 und zwar entgegen der Kraft der Ventilschließfedern 16 und 17. Bei unverändertem Flüssigkeitsvolumen in der Hubübertragungskammer 29 entspricht der Öffnungshub des Motorenventils 10 der Höhe des Ventilsteuernockens 14, da der Kolbenteil 26 und der Ventilkolben 25 den gleichen Arbeitsdurchmesser aufweisen. Dieser Arbeitshub des Ventilschafts 12 wird durch das Magnetsteuerventil 31 dann geändert, wenn der Zeitquerschnitt zwischen Ventilteller 11 und Ventilsitz 18 ausreichend groß ist, beispielsweise wenn durch Verkleinern dieses Zeitquerschnitts die Motordrehzahl verringert werden soll. Hierbei wird entsprechend dem Zeitquerschnitt die in den Brennraum gesaugte Kraftstoffluftgemischmenge verringert. Um diesen Zeitquerschnitt zu verringern wird gezielt ab einem bestimmten Arbeitshub das Magnetventil 31 geöffnet, indem die Spule 52 erregt wird und mindestens durch den ersten Stromimpuls die Ventilkante 54 des Speicherkolbens 41 vom Ventilsitz 55 abhebt, so daß sich der in der Hubübertragungskammer 29 herrschende Druck über die Leitung 30 in den Speicherraum 43 überträgt, um dort durch Beaufschlagung der unteren Stinseite des Speicherkolbens 41 diesen entgegen der Kraft der Speicherfeder 45 nach oben zu schieben. Um dieses vom Speicher geschluckte Volumen wird jenes in der Hubübertragungskammer 29 reduziert. Durch die Wirkung der Federn 16 und 17 schließt der Ventilteller 11 dadurch vorzeitig. Außerdem wird bei diesem Speichervorgang im kombinierten Speicher-Magnetventil 31 im Magnetraum 44 vorhandene Flüssigkeit über die Leckbohrung 53 bzw. den Leckkanal 50 und die Leckleitung 51 zum Ölbehälter 32 geleitet. Beim Weiterdrehen des Ventilsteuernockens 14 gelangt er in die gezeigte Grundkreisstellung, in der der Kolbenteil 26 durch die Rückstellfeder 28 wieder ganz nach oben geschoben wird. Bei dieser Bewegung verdrängt der Speicherkolben 41 des Magnetsteuerventils 31, durch die Speicherfeder 45 angetrieben, das ihm vorgelagerte Öl über die Leitung 30 zurück in die Hubübertragungskammer 29 bis der Speicherkolben 41 mit seiner Ventilkante 54 auf dem Ventilsitz 55 aufliegt. Irgendwelche sich in Ventileinlaßraum 42 der Leitung 30 oder der Hubübertragungskammer 29 einstellende Hohlräume, werden über die Förderpumpe 34 und die Förderleitung 33 mit Öl aufgefüllt, wobei ein Zurückfliessen durch das Rückschlagventil 37 verhindert wird, so daß bei einem neuerlichen Antrieb durch den Ventilsteuernocken 14 die Ausgangssituation wieder erreicht ist. Über die Drosselbohrung 46 im Boden des Speicherkolbens 41 wird erreicht, daß im Speicherraum 43 kein Staudruck entsteht d. h. es wird erreicht, daß der Speicherkolben 41 satt auf dem Ventilsitz 55 aufliegt. Über die Leitung 36 und das Rückschlagventil 38 strömt von der Förderpumpe 34 kontinuierlich Öl in den Speicherraum 43 und von dort über die Drosselbohrung 46 in den Magnetraum 44 und zurück in den Ölbehälter 32, so daß hier eine stetige Füllung des Speicherraums 43 unter konstantem niederen Druck gewährleistet ist. Die bevorzugt vorgesehene Drossel 56 zwischen Rückschlagventil 38 und Speicherraum 43 ist im Durchmesser kleiner als die Drossel 46 und bewirkt, daß sich Änderungen des als Systemdruck dienenden Motoröldrucks nur in abgeschwächter Form auf den Druck im Speicherraum auswirken.

Claims (8)

  1. Ventilsteuervorrichtung zum Steuern der Schließ- und Öffnungszeit eines von einem Ventilsteuernocken (14) einer Nockenwelle (13) über einen axial verschiebbaren Ventilschaft (12) betätigten Motorventils (10) einer Brennkraftmaschine, mit einer zwischen dem Ventilsteuernocken (14) und dem Ventilschaft (12) angeordneten, flüssigkeitsgefüllten Hubübertragungskammer (29), die zur Änderung ihrer zwischen Ventilsteuernocken (14) und Ventilschaft (12) wirksamen Axialausdehnung einen durch ein Magnetventil (31) steuerbaren Kanal (30) zum Ablassen und Zuführen der Flüssigkeit aufweist, der anderen Ends in einen Flüssigkeitsspeicher (43, 41) mündet, dadurch gekennzeichnet, daß der Flüssigkeitsspeicher (43, 41) in das Magnetventil (31) integriert ist und sich durch Zurückweichen des Ventilglieds als Speicherkolben (41) in Öffnungsrichtung über die eine Durchflußöffnung freigebende Stellung hinaus ausbildet, das Magnetsteuerventil (31) stromlos geschlossen ist und daß das als Speicherkolben (41) ausgebildete Ventilglied durch eine als Schließfeder dienende Speichfeder (45) belastet ist.
  2. Ventilsteuervorrichtung nach Anspruch 1 dadurch gekennzeichnet, daß der Speicherkolben (41) topfförmig ausgebildet ist und einen dem Speicherraum (43) zugewandten Topfboden aufweist, dessen Kante (54) mit einem zwischen Ventileinlaßraum (42) und Speicherraum (43) vorhandenen Ventilsitz (55) zusammenwirkt und der radial an einer Innenwand des Steuerventilgehäuses (40) geführt ist und daß ein zentraler gehäusefester Zapfen (47) als Magnetjoch in die Topföffnung des Speicherkolbens (41) taucht.
  3. Ventilsteuervorrichtung nach Anspruch 2, dadurch gekennzeichnet, daß in dem zwischen Zapfen (47) und Innenwand des Gehäuses (40) gebildeten Ringraum des Magnetraums (44) die Magnetspule (52) angeordnet ist.
  4. Ventilsteuervorrichtung nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß im Zapfen (47) eine zentrale Bohrung (50) zur Entlastung des Magnetraums (44) vorhanden ist.
  5. Ventilsteuervorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in den Magnetraum (44) und Speicherraum (43) trennenden Mitteln (Boden des Speichkolbens 41) eine Drosselöffnung (46) vorhanden ist.
  6. Ventilsteuervorrichtung nach einem der Ansprüche 2-5, dadurch gekennzeichnet, daß der Speicherraum (43) über eine Drosselbohrung (56) und ein zum Speicherraum (43) hin öffnendes Rückschlagventil (38) mit dem Kurbelgehäuse verbunden ist.
  7. Ventilsteuervorrichtung nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, daß der Zapfen (47) als Hubanschlag des Speicherkolbens (41) dient und daß die Speicherfeder (45) teilweise in eine Sackbohrung (49) des Zapfens (47) taucht.
  8. Ventilsteuervorrichtung nach einem der vorhergenden Ansprüche, dadurch gekennzeichnet, daß die Stromzufuhr zur Magnetspule (52) nach Abheben des Speicherkolbens (41) vom Sitz (54) unterbrechbar ist.
EP90910571A 1989-09-01 1990-07-28 Ventilsteuervorrichtung mit magnetventil für brennkraftmaschinen Expired - Lifetime EP0441909B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3929072 1989-09-01
DE3929072A DE3929072A1 (de) 1989-09-01 1989-09-01 Ventilsteuervorrichtung mit magnetventil fuer brennkraftmaschinen

Publications (2)

Publication Number Publication Date
EP0441909A1 EP0441909A1 (de) 1991-08-21
EP0441909B1 true EP0441909B1 (de) 1993-09-29

Family

ID=6388437

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90910571A Expired - Lifetime EP0441909B1 (de) 1989-09-01 1990-07-28 Ventilsteuervorrichtung mit magnetventil für brennkraftmaschinen

Country Status (5)

Country Link
US (1) US5113812A (de)
EP (1) EP0441909B1 (de)
JP (1) JP3142555B2 (de)
DE (2) DE3929072A1 (de)
WO (1) WO1991003627A1 (de)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5275136A (en) * 1991-06-24 1994-01-04 Ford Motor Company Variable engine valve control system with hydraulic damper
EP0614507B1 (de) * 1991-11-29 1996-09-25 Caterpillar Inc. Hydraulischer brennkraftmaschinenventilsitzdaempfer
AU1338892A (en) * 1992-01-13 1993-08-03 Caterpillar Inc. Engine valve seating velocity hydraulic snubber
US5451029A (en) * 1992-06-05 1995-09-19 Volkswagen Ag Variable valve control arrangement
US5540201A (en) 1994-07-29 1996-07-30 Caterpillar Inc. Engine compression braking apparatus and method
US5647318A (en) 1994-07-29 1997-07-15 Caterpillar Inc. Engine compression braking apparatus and method
US5526784A (en) 1994-08-04 1996-06-18 Caterpillar Inc. Simultaneous exhaust valve opening braking system
US5619965A (en) * 1995-03-24 1997-04-15 Diesel Engine Retarders, Inc. Camless engines with compression release braking
EP1031706A1 (de) * 1995-08-08 2000-08-30 Diesel Engine Retarders, Inc. Verfahren zum Betreiben einer Brennkraftmaschine
US5829397A (en) * 1995-08-08 1998-11-03 Diesel Engine Retarders, Inc. System and method for controlling the amount of lost motion between an engine valve and a valve actuation means
US5746175A (en) * 1995-08-08 1998-05-05 Diesel Engine Retarders, Inc. Four-cycle internal combustion engines with two-cycle compression release braking
US5537976A (en) * 1995-08-08 1996-07-23 Diesel Engine Retarders, Inc. Four-cycle internal combustion engines with two-cycle compression release braking
JP4711581B2 (ja) 1999-09-16 2011-06-29 ジェイコブス ビークル システムズ、インコーポレイテッド バルブ着座速度制御の方法および装置
ITTO20010660A1 (it) * 2001-07-06 2003-01-06 Fiat Ricerche Motore diesel pluricilindrico con azionamento variabile delle valvole.
US6694933B1 (en) * 2002-09-19 2004-02-24 Diesel Engine Retarders, Inc. Lost motion system and method for fixed-time valve actuation
EP1623100A4 (de) * 2003-05-06 2008-11-26 Jacobs Vehicle Systems Inc System und verfahren zur verbesserung der leistung von hydraulischen betätigungssystemen
DE102008049181A1 (de) * 2008-09-26 2010-04-01 Schaeffler Kg Elektrohydraulische Ventilsteuerung
EP2204566B1 (de) * 2008-12-29 2011-06-29 Fiat Group Automobiles S.p.A. Adaptives Steuersystem des Luft-Kraftstoff-Verhältnisses einer Brennkraftmaschine mit einem variablen Ventilsteuerungssystem
DE102009042544A1 (de) 2009-09-22 2011-03-31 Schaeffler Technologies Gmbh & Co. Kg Elektrohydraulischer Ventiltrieb
KR20120017982A (ko) * 2010-08-20 2012-02-29 현대자동차주식회사 전기-유압 가변 밸브 리프트 장치
CN103061845B (zh) * 2013-01-18 2017-04-12 浙江吉利汽车研究院有限公司杭州分公司 一种气门机构
DE102013220555B4 (de) * 2013-10-11 2015-05-13 Schaeffler Technologies AG & Co. KG Hydraulische Ventilsteuerung einer Brennkraftmaschine
JP6254245B2 (ja) * 2016-12-05 2017-12-27 三菱重工業株式会社 排気弁駆動装置およびこれを備えた内燃機関
DE102017005069A1 (de) * 2017-05-22 2018-11-22 Bernd Niethammer Einrichtung zur Verstellung des Hubes eines Ventils von Verbrennungsmotoren

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341440A1 (de) * 1988-05-07 1989-11-15 Robert Bosch Gmbh Ventilsteuervorrichtung mit Magnetventil für Brennkraftmaschinen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4203397A (en) * 1978-06-14 1980-05-20 Eaton Corporation Engine valve control mechanism
DE3135650A1 (de) * 1981-09-09 1983-03-17 Robert Bosch Gmbh, 7000 Stuttgart "ventilsteuerung fuer hubkolben-brennkraftmaschinen mit mechanisch-hydraulischen bewegungsuebertragungsmitteln"
JPH0612058B2 (ja) * 1984-12-27 1994-02-16 トヨタ自動車株式会社 可変バルブタイミング・リフト装置
DE3511820A1 (de) * 1985-03-30 1986-10-02 Robert Bosch Gmbh, 7000 Stuttgart Ventilsteuervorrichtung fuer eine hubkolben-brennkraftmaschine
DE3511819A1 (de) * 1985-03-30 1986-10-09 Robert Bosch Gmbh, 7000 Stuttgart Ventilsteuervorrichtung
DE3532549A1 (de) * 1985-09-12 1987-03-19 Bosch Gmbh Robert Ventilsteuervorrichtung
US4982706A (en) * 1989-09-01 1991-01-08 Robert Bosch Gmbh Valve control apparatus having a magnet valve for internal combustion engines

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0341440A1 (de) * 1988-05-07 1989-11-15 Robert Bosch Gmbh Ventilsteuervorrichtung mit Magnetventil für Brennkraftmaschinen

Also Published As

Publication number Publication date
US5113812A (en) 1992-05-19
DE59002946D1 (de) 1993-11-04
JPH04501594A (ja) 1992-03-19
WO1991003627A1 (de) 1991-03-21
EP0441909A1 (de) 1991-08-21
DE3929072A1 (de) 1991-03-07
JP3142555B2 (ja) 2001-03-07

Similar Documents

Publication Publication Date Title
EP0441909B1 (de) Ventilsteuervorrichtung mit magnetventil für brennkraftmaschinen
EP0341440B1 (de) Ventilsteuervorrichtung mit Magnetventil für Brennkraftmaschinen
EP0196438B1 (de) Ventilsteuervorrichtung für eine Hubkolben-Brennkraftmaschine
EP0196441B1 (de) Ventilsteuervorrichtung
EP1029158A1 (de) Vorrichtung zur steuerung eines gaswechselventils für brennkraftmaschinen
DE3929134C2 (de)
DE19757475C2 (de) Servogesteuertes Magnetventil
DE3728817A1 (de) Kraftstoff-einspritzpumpe fuer eine brennkraftmaschine
DE2836226A1 (de) Brennstoffeinspritzeinrichtung fuer brennkraftmaschinen
DE3532549A1 (de) Ventilsteuervorrichtung
EP0455761B1 (de) Hydraulische ventilsteuervorrichtung für brennkraftmaschinen
WO2011009879A1 (de) Verfahren zur fördermengenregelung und hubkolben-kompressor mit fördermengenregelung
DE4337070A1 (de) Solenoidventil
EP0149598B1 (de) Einspritzdüse für Einspritzbrennkraftmaschinen
EP0451227B1 (de) Kraftstoffeinspritzpumpe
EP0455763B1 (de) Hydraulische ventilsteuervorrichtung für eine mehrzylinder-brennkraftmaschine
WO1991008382A1 (de) Hydraulische ventilsteuervorrichtung für brennkraftmaschinen
EP0282508B1 (de) Brennstoffeinspritzvorrichtung für eine dieselbrennkraftmaschine mit voreinspritzung
DE2647744A1 (de) Elektromagnetisches einspritzventil fuer brennkraftmaschinen mit einem elektromagnetisch gesteuerten wegeventil fuer die be- und entlastung der duesennadelrueckseite
DE3604233A1 (de) Ventilsteuervorrichtung fuer eine hubkolben-brennkraftmaschine
EP1247983B1 (de) Kolbenpumpe für Hydrauliksysteme
WO2000039460A1 (de) Brennstoffdosierpumpe für ein heizgerät, insbesondere für einen zuheizer oder eine standheizung eines kraftfahrzeugs
DE3016543A1 (de) Kraftstoffeinspritzanlage
DE3929073A1 (de) Ventilsteuervorrichtung mit magnetventil fuer brennkraftmaschinen
DE19755276A1 (de) Elektromagnetischer Aktuator zur Steuerung eines Gaswechselventils einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19901219

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920817

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59002946

Country of ref document: DE

Date of ref document: 19931104

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931015

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030825

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040716

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040819

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050728

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050728

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060331

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060331