EP0423627B1 - Process for preparing microcrystalline to amorphous metal- or metal alloy powder and metals or alloys dissolved in organic solvents without a protective colloid - Google Patents

Process for preparing microcrystalline to amorphous metal- or metal alloy powder and metals or alloys dissolved in organic solvents without a protective colloid Download PDF

Info

Publication number
EP0423627B1
EP0423627B1 EP90119546A EP90119546A EP0423627B1 EP 0423627 B1 EP0423627 B1 EP 0423627B1 EP 90119546 A EP90119546 A EP 90119546A EP 90119546 A EP90119546 A EP 90119546A EP 0423627 B1 EP0423627 B1 EP 0423627B1
Authority
EP
European Patent Office
Prior art keywords
thf
metal
metals
amorphous
microcrystalline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90119546A
Other languages
German (de)
French (fr)
Other versions
EP0423627A1 (en
Inventor
Helmut Dr. Bönnemann
Werner Dr. Brijoux
Thomas Joussen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Studiengesellschaft Kohle gGmbH
Original Assignee
Studiengesellschaft Kohle gGmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Studiengesellschaft Kohle gGmbH filed Critical Studiengesellschaft Kohle gGmbH
Publication of EP0423627A1 publication Critical patent/EP0423627A1/en
Application granted granted Critical
Publication of EP0423627B1 publication Critical patent/EP0423627B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/002Making metallic powder or suspensions thereof amorphous or microcrystalline

Definitions

  • the present invention relates to a process for the production of finely divided, microcrystalline to amorphous metal or alloy powders or highly disperse colloids by reduction of metal salts with alkali or alkaline earth metal hydrides which are kept in solution in organic solvents by means of special complexing agents. Also wildly claims the use of the powders produced according to the invention in powder technology (Ullmanns Encycl. Techn. Chemistry, 4th edition Vol. 19, p. 563) or as catalysts in pure or supported form (Ullmanns Encycl. Techn. Chemistry, 9. Edition, vol. 13, p. 517; further: Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 19, p. 28 f.).
  • the colloids produced according to the invention can be used to apply metals in the form of fine cluster particles to surfaces (JS Bradley, E. Hill, ME Leonowicz. HJ Witzke, J. Mol. Catal. 1987, 41, 59 and cited therein ) or use as homogeneous catalysts. (JP Picard, J. Dunogues, A. Elyusufi, Synth. Commun. 1984, 14, 95; F. Freeman, JC Kappos, J. Am. Chem. Soc. 1985, 107, 6628; WF Maier, SJ Chertle, RS Rai, G. Thomas, J. Am. Chem. Soc. 1986, 108, 2608; PL Burk, RL Pruett, KS Campo, J. Mol. Catal. 1985, 33, 1 ).
  • EP-0 379 062 A2 published on July 25, 1990, describes a process for producing acicular, non-sintered iron-metal pigments.
  • These iron-metal pigments are produced by reducing iron oxide compounds in organic solvents with metal hydrides of metals from the first and second groups of the Periodic Table of the Elements, the metal hydrides being solvated with a carrier in the form of a carrier complex. This reaction becomes smooth at temperatures between 20 and 150 ° C in the presence of hydrogen from 1 to 200 bar to iron metal pigments.
  • the present invention relates to colloidal solutions of metals and / or alloys which can be obtained by the process described above.
  • Another aspect of the present invention comprises metal powders with a grain size of 0.01-200 »m, which can be obtained by the above method, which, according to their X-ray diffractogram, are microcrystalline to amorphous and have a boron content of less than 1% by weight.
  • the invention also includes metal alloy powders and the use of the microcrystalline to amorphous metal or alloy powders in powder technology.
  • metal hydrides of the first or second group of the PSE can be used with the help of organic boron or gallium complexing agents in the organic phase as reducing agents for metal salts without the use of a reducing H2 atmosphere, with boride- or gallium-free metals or metal alloys can be obtained in powder or colloidal form.
  • the advantages of the process according to the invention are that the reduction process can be carried out under very mild conditions (-30 ° C. to + 150 ° C.) in organic solvents, and furthermore in the good separability of the metal or alloy powders from the generally soluble ones By-products, as well as in the microcrystallinity of the powder and the fact that the particle size distribution can be controlled depending on the reaction temperature.
  • Another advantage arises from the fact that, under certain conditions (use of donor metal salt complexes and / or ammonium triorganohydroborates), colloidal solutions of metals or alloys are obtained in ethers or even pure hydrocarbons without the addition of further protective colloids.
  • the elements of groups 5 to 12 and 14 of the PSE are preferably used as metals of the metal salts.
  • metals of the mentioned groups of PSE are Sn, Cu, Ag, Au, Zn, Cd, Hg, Ta, Cr, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt.
  • Metal salts or compounds used are those which contain either inorganic or organic anions, preferably those which are solvated in the systems used as solvents, such as halides, cyanides, cyanates, thiocyanates and alcoholates and salts of organic acids.
  • M-hydroxides, alcoholates, cyanides, cyanates and thiocyanates form, with the boron and gallium organic complexing agents, -at complexes of the type M [BR3 (anion)], M [BR n (OR ') 3 which are soluble in organic solvents -n (anion)] or M [GaR3 (anion)], M [GaR n (OR ') 3-n (anion)].
  • the metal or alloy powder can be isolated according to the invention with particular advantage by simple filtration from the clear organic solution in pure form after the reaction has ended.
  • M-halides generally do not form any such complexes; however, in many cases they remain dissolved in the organic solvent, for example THF, after the reaction. This applies in particular to CsF, LiCl, MgCl2, LiBr, MgBr2, LiI, NaI, and MgI2.
  • the choice of the cation in the hydride is therefore decisive for the production of metal and alloy powders from corresponding metal halide compounds according to the invention.
  • M-halides which precipitate from the organic solvent after the reaction according to the invention for example NaCl
  • M-halides which precipitate from the organic solvent after the reaction according to the invention can be separated from the metal or alloy powder by washing with, for example, water.
  • a characteristic of the process carried out according to the invention is that the organic boron or gallium complexing agent can be recovered in free form after the reaction or after the complexes by-products M (anion) x have been decomplexed.
  • Powder metals with a grain size of 0.01 »m (example) to 200» m are obtained by the process according to the invention.
  • the particle size distribution can be controlled by the reaction parameters. Given a combination of starting materials and The lower the reaction temperature, the finer the metal particles obtained according to the invention.
  • the reaction of PtCl2 with Li (BEt3H) in THF at 80 ° C provides a platinum powder with a relatively broad particle size distribution from 5 to 100 »m (see Fig. 1).
  • the same reaction at 0 ° C (Tab 2, No. 44) results in a platinum powder with a much narrower grain size distribution and a pronounced maximum at 15 »m (see Fig. 2).
  • the metal powders produced according to the invention are microcrystalline to amorphous.
  • Fig. 3 shows the powder diffractograms of Fe powder produced according to the invention (Tab. 2, No. 3) measured by CoK ⁇ radiation before and after thermal treatment of the sample at 450 ° C.
  • the untreated original sample shows only a very broad line (Fig.3a), proof of the presence of microcrystalline to amorphous phases (HP Klug, LE Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn., Wiley, New York, 1974).
  • a simple reduction of salts of various metals by the process according to the invention provides fine-particle two-metal and multi-metal alloys under mild conditions.
  • the reduction of FeSO4 and CoCl2 with tetrahydroborate in aqueous solution describe J. v. Wontherghem, St. Morup et al. ( Nature, 1986, 322, p. 622 ).
  • the result of this procedure is, according to the elementary composition and the saturation magnetization of 89 JT ⁇ 1kg ⁇ 1, an Fe / Co / B alloy with the composition Fe44Co19B37.
  • single-phase two-component and multi-component systems in microcrystalline to amorphous form can be freely combined by reducing the salts of main and sub-group elements, non-ferrous and / or noble metals.
  • it is possible according to the invention with particular advantage by reducing metal salts and / or which have been drawn onto carrier materials insofar as they do not react with hydroethyl borates (for example Al2O3, SiO2 or organic polymers)
  • hydroethyl borates for example Al2O3, SiO2 or organic polymers
  • metals and / or alloys in organic solvents can be obtained with particular advantage under certain conditions without the addition of a protective colloid in colloidal solution.
  • the conversion of non-ferrous or noble metal salts (individually or as a mixture) with the tetraalkylammonium triorganohydroborates accessible according to German patent application P 39 01 027.9 (EP-A 0 379 062) leads to stable, transparent red, colloidal solutions of the metals at room temperature in THF .
  • the metal salts are used in the form of donor complexes, the colloidal metals can also be prepared according to the invention with alkali metal or alkaline earth metal triorganohydroborates in THF or hydrocarbons (see Table 6, No. 15, 16).
  • metal alloy powder It is washed again with 200 ml each of THF and pentane and, after drying in a high vacuum (10 ⁇ 3 mbar), 2.45 g of metal alloy powder are obtained (see Table 5, No. 4).
  • Metal content of the sample 47.0% Fe, 47.1% Co Boron content of the sample: 0.0%
  • the solution is removed and the Al2O3 carrier again dried in a high vacuum (10 ⁇ 3 mbar) for three hours.
  • the impregnation is carried out again overnight with 330 ml FeCl3 / CoCl2 solution.
  • the color of the solution no longer occurs.
  • the solution is removed and the Al2O3 pellets are treated with 63.6 g (600 mmol) of LiBEt3H in 400 ml of THF at 23 ° C for 16 hours, the pellets turning black with evolution of H2.
  • the reaction solution is removed and the pellets are washed with 300 ml of THF, THF / ethanol (2: 1), THF and dried in a high vacuum (10 -3 mbar) for four hours.
  • Al2O3 pellets are obtained which are coated with an Fe / Co alloy only on the surface of the shell. Elemental analysis: 1.13% Fe, 0.50% Co
  • 270 g of spherical, neutral aluminum oxide are swirled for 45 min at room temperature in a solution of 150 g (631.3 mmol) of NiCl2 ⁇ 6 H2O in 500 ml of ethanol, freed from the supernatant solution and at 24 h in a high vacuum (10 ⁇ 3 mbar) 250 ° C dried. After cooling, 1 l of 1.5 molar LiBEt3H solution in THF is added under a protective gas, and the clear reaction solution is separated off after 16 hours of swirling.

Abstract

The invention relates to a process for the preparation of finely divided microcrystalline-to-amorphous metal and/or alloy powders and of metals and/or alloys in the form of colloidal solutions in organic solvents, which is process is characterized in that in inert organic solvents metal salts individually or in admixture are reacted with alkaline metal or alkaline earth metal hydrides which are maintained in solution by means of organoboron or organogallium complexing agents, or with tetraalkylammonium triorganoborohydrate, respectively.

Description

Vorliegende Erfindung betrifft ein Verfahren zur Herstellung von feinverteilten, mikrokristallinen bis amorphen Metall- bzw. Legierungspulvern oder hochdispersen Kolloiden durch Reduktion von Metallsalzen mit Alkali- oder Erdalkalimetallhydriden, die mittels spezieller Komplexbildner in organischen Solventien in Lösung gehalten werden. Beansprucht wild ferner die Anwendung der erfindungsgemäß hergestellten Pulver in der Pulvertechnologie (Ullmanns Encycl. Techn. Chemie, 4. Aufl. Bd. 19, S. 563) oder als Katalysatoren in reiner oder geträgerter Form (Ullmanns Encycl. Techn. Chemie, 9. Auflage, Bd. 13, S. 517; ferner: Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 19, S. 28 f.). Die erfindungsgemäß hergestellten Kolloide lassen sich verwenden, um Metalle in Form feiner Clusterpartikel auf Oberflächen aufzubringen (J.S. Bradley, E. Hill, M.E. Leonowicz. H.J. Witzke, J. Mol. Catal. 1987, 41, 59 und dort zit. Lit.) oder als homogene Katalysatoren einsetzen. (J.P. Picard, J. Dunogues, A. Elyusufi, Synth. Commun. 1984, 14, 95; F. Freeman, J.C. Kappos, J. Am. Chem. Soc. 1985, 107, 6628; W.F. Maier, S.J. Chertle, R.S. Rai, G. Thomas, J. Am. Chem. Soc. 1986, 108, 2608; P.L. Burk, R.L. Pruett, K.S. Campo, J. Mol. Catal. 1985, 33, 1).The present invention relates to a process for the production of finely divided, microcrystalline to amorphous metal or alloy powders or highly disperse colloids by reduction of metal salts with alkali or alkaline earth metal hydrides which are kept in solution in organic solvents by means of special complexing agents. Also wildly claims the use of the powders produced according to the invention in powder technology (Ullmanns Encycl. Techn. Chemistry, 4th edition Vol. 19, p. 563) or as catalysts in pure or supported form (Ullmanns Encycl. Techn. Chemistry, 9. Edition, vol. 13, p. 517; further: Kirk-Othmer, Encyclopedia of Chemical Technology, Vol. 19, p. 28 f.). The colloids produced according to the invention can be used to apply metals in the form of fine cluster particles to surfaces (JS Bradley, E. Hill, ME Leonowicz. HJ Witzke, J. Mol. Catal. 1987, 41, 59 and cited therein ) or use as homogeneous catalysts. (JP Picard, J. Dunogues, A. Elyusufi, Synth. Commun. 1984, 14, 95; F. Freeman, JC Kappos, J. Am. Chem. Soc. 1985, 107, 6628; WF Maier, SJ Chertle, RS Rai, G. Thomas, J. Am. Chem. Soc. 1986, 108, 2608; PL Burk, RL Pruett, KS Campo, J. Mol. Catal. 1985, 33, 1 ).

Neuere Methoden zur Darstellung feinster Metallpartikel bestehen in der Metallverdampfung (S.C. Davis und K.J. Klabunde, Chem. Rev. 1982, 82, 153 - 208), elektrolytischen Verfahren (N. Ibl, Chem. Ing. -Techn. 1964. 36, 601 - 609) sowie der Reduktion von Metallhalogeniden mit Alkalimetallen (R.D. Rieke, Organometallics, 1983, 2, 377) oder Anthracen-aktiviertem Magnesium (DE 35 41 633). Bekannt ist ferner die Reduktion von Metallsalzen mit Alkalimetallborhydriden in wäßriger Phase zu Metallboriden (N.N. Greewood, A. Earnshaw, Chemistry of the Elements, Pergamon Press 1986, S. 190). Die Korreduktion von Eisen- und Cobaltsalzen in Wasser führt zu einer Fe/Co/B-Legierung der Zusammensetzung Fe₄₄Co₁₉B₃₇ (J. v. Wonterghem, St. Morup, C.J.W. Koch, St.W. Charles, St. Wells, Nature, 1986, 322, 622).More recent methods for producing the finest metal particles consist of metal evaporation (SC Davis and KJ Klabunde, Chem. Rev. 1982, 82, 153 - 208 ), electrolytic processes (N. Ibl, Chem. Ing. -Techn. 1964. 36, 601 - 609 ) and the reduction of metal halides with alkali metals (RD Rieke, Organometallics, 1983, 2, 377 ) or anthracene-activated magnesium (DE 35 41 633). The reduction of metal salts with alkali metal borohydrides in the aqueous phase to metal borides is also known (NN Greewood, A. Earnshaw, Chemistry of the Elements, Pergamon Press 1986, p. 190). The reduction of iron and cobalt salts in water leads to an Fe / Co / B alloy with the composition Fe₄₄Co₁₉B₃₇ (J. v. Wonterghem, St. Morup, CJW Koch, St.W. Charles, St. Wells, Nature, 1986, 322, 622 ).

In der am 25. Juli 1990 veröffentlichten EP-0 379 062 A2 wird ein Verfahren zur Herstellung von nadelförmigen, unversinterten Eisen-Metallpigmenten beschrieben. Die Herstellung dieser Eisen-Metallpigmente erfolgt durch Reduktion von Eisenoxidverbindungen in organischen Solventien mit Metallhydriden von Metallen der ersten und zweiten Gruppe des Periodensystems der Elemente, wobei die Metallhydride mit einem Träger in Form eines Trägerkomplexes solvatisiert sind. Diese Reaktion wird bei Temperaturen zwischen 20 und 150°C in Anwesenheit von Wasserstoff von 1 bis 200 bar glatt zu Eisen-Metallpigmenten.EP-0 379 062 A2, published on July 25, 1990, describes a process for producing acicular, non-sintered iron-metal pigments. These iron-metal pigments are produced by reducing iron oxide compounds in organic solvents with metal hydrides of metals from the first and second groups of the Periodic Table of the Elements, the metal hydrides being solvated with a carrier in the form of a carrier complex. This reaction becomes smooth at temperatures between 20 and 150 ° C in the presence of hydrogen from 1 to 200 bar to iron metal pigments.

Gegenstand der Erfindung ist in einer ersten Ausführungsform ein Verfahren zur Herstellung von hochdispersen, mikrokristallinen bis amorphen Metallen und/oder Legierungen in Form von Pulvern, dadurch gekennzeichnet, daß man in einem wasserfreien inerten organischen Lösungsmittel, ausgewählt aus THF, Diglyme und Kohlenwasserstoffen, Metallsalze mit Metall-Hydriden der 1. und 2. Gruppe des Periodensystems der Elemente (PSE), die mit Komplexbildnern der allgemeinen Formel BR₃, BRn(OR')3-n bzw. GaR₃, GaRn(OR')3-n, wobei R, R' für C₁ bis C₆-Alkyl, Phenyl oder Aralkyl und n für 0, 1 oder 2 steht, in Lösungen gehalten werden, oder mit Tetraalkylammoniumtriorganoboraten der Formel NR''₄ (BR₃H) oder NR''₄(BRn(OR')3-n) (R = C₁-C₆-Alkyl, Ar-C₁-C₆-alkyl; R' = C₁-C₆-Alkyl, Aryl, Aryl-C₁-C₆-alkyl; R'' = C₁-C₆-Alkyl, Aryl, Aryl-C₁-C₆-alkyl, Tri-C₁-C₆-alkylsilyl, n = 0, 1, 2) ohne Anwendung von Wasserstoff umsetzt.The invention relates in a first embodiment to a process for the production of highly disperse, microcrystalline to amorphous metals and / or alloys in the form of powders, characterized in that metal salts are used in an anhydrous inert organic solvent selected from THF, diglyme and hydrocarbons Metal hydrides of the 1st and 2nd group of the Periodic Table of the Elements (PSE) with complexing agents of the general formula BR₃, BR n (OR ') 3-n or GaR₃, GaR n (OR') 3-n , wherein R, R 'is C₁ to C₆-alkyl, phenyl or aralkyl and n is 0, 1 or 2, are kept in solutions, or with tetraalkylammonium triorganoborates of the formula NR''₄ (BR₃H) or NR''₄ (BR n ( OR ') 3-n ) (R = C₁-C₆-alkyl, Ar-C₁-C₆-alkyl; R' = C₁-C₆-alkyl, aryl, aryl-C₁-C₆-alkyl; R '' = C₁-C₆ -Alkyl, aryl, aryl-C₁-C₆-alkyl, tri-C₁-C₆-alkylsilyl, n = 0, 1, 2) without using hydrogen.

In einem weiteren Aspekt betrifft die vorliegende Erfindung kolloidale Lösungen von Metallen und/oder Legierungen, die nach dem oben bezeichneten Verfahren erhältlich sind. Ein weiterer Aspekt der vorliegenden Erfindung umfaßt Metallpulver mit einer Korngröße von 0.01 - 200 »m, die nach dem obigen Verfahren erhältlich sind, die ausweislich ihres Röntgendiffraktogramms mikrokristallin bis amorph sind und einen Borgehalt von weniger als 1 Gew.-% aufweisen. Analog zu den Metallpulvern umfaßt die Erfindung auch Metallegierungspulver sowie die Verwendung der mikrokristallinen bis amorphen Metall- bzw. Legierungspulver in der Pulvertechnologie.In a further aspect, the present invention relates to colloidal solutions of metals and / or alloys which can be obtained by the process described above. Another aspect of the present invention comprises metal powders with a grain size of 0.01-200 »m, which can be obtained by the above method, which, according to their X-ray diffractogram, are microcrystalline to amorphous and have a boron content of less than 1% by weight. Analogous to the metal powders, the invention also includes metal alloy powders and the use of the microcrystalline to amorphous metal or alloy powders in powder technology.

Bevorzugte Ausführungsformen sind den abhängigen Ansprüchen zu entnehmen.Preferred embodiments can be found in the dependent claims.

Es wurde nun überraschend gefunden, daß sich Metallhydride der ersten oder zweiten Gruppe des PSE mit Hilfe von bor- bzw. galliumorganischen Komplexbildnern in organischer Phase als Reduktionsmittel für Metallsalze ohne Verwendung von einer reduzierenden H₂-Atmosphäre einsetzen lassen, wobei borid- bzw. galliumfreie Metalle oder Metallegierungen in Pulver- oder kolloidaler Form erhalten werden.It has now surprisingly been found that metal hydrides of the first or second group of the PSE can be used with the help of organic boron or gallium complexing agents in the organic phase as reducing agents for metal salts without the use of a reducing H₂ atmosphere, with boride- or gallium-free metals or metal alloys can be obtained in powder or colloidal form.

Die Vorteile des erfindungsgemäßen Verfahrens bestehen darin, daß der Reduktionsprozeß unter sehr milden Bedingungen (-30°C bis +150°C) in organischen Solventien durchgeführt werden kann, ferner in der guten Abtrennbarkeit der Metall- bzw. Legierungspulver von den in der Regel löslichen Nebenprodukten, sowie in der Mikrokristallinität der Pulver und der Tatsache, daß sich die Teilchengrößenverteilung in Abhängigkeit von der Reaktionstemperatur steuern läßt. Ein weiterer Vorteil ergibt sich daraus, daß unter bestimmten Voraussetzungen (Einsatz von Donator-Metallsalzkomplexen und/oder Ammoniumtriorganohydroboraten) ohne Zusatz weiterer Schutzkolloide in Ethern oder sogar reinen Kohlenwasserstoffen kolloidale Lösungen von Metallen bzw. Legierungen erhalten werden.The advantages of the process according to the invention are that the reduction process can be carried out under very mild conditions (-30 ° C. to + 150 ° C.) in organic solvents, and furthermore in the good separability of the metal or alloy powders from the generally soluble ones By-products, as well as in the microcrystallinity of the powder and the fact that the particle size distribution can be controlled depending on the reaction temperature. Another advantage arises from the fact that, under certain conditions (use of donor metal salt complexes and / or ammonium triorganohydroborates), colloidal solutions of metals or alloys are obtained in ethers or even pure hydrocarbons without the addition of further protective colloids.

Als Metalle der Metallsalze werden bevorzugt die Elemente der Gruppen 5 bis 12 und 14 des PSE eingesetzt. Beispiele von Metallen der genannten Gruppen des PSE sind Sn, Cu, Ag, Au, Zn, Cd, Hg, Ta, Cr, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt.The elements of groups 5 to 12 and 14 of the PSE are preferably used as metals of the metal salts. Examples of metals of the mentioned groups of PSE are Sn, Cu, Ag, Au, Zn, Cd, Hg, Ta, Cr, Mn, Re, Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Pt.

Als Metallsalze bzw. -verbindungen verwendet man solche, die entweder anorganische oder organische Anionen erhalten, vorzugsweise jene, die in den als Lösungsmittel verwendeten Systemen solvatisiert werden wie Halogenide, Cyanide, Cyanate, Thiocyanate sowie Alkoholate und Salze organischer Säuren. Als Reduktionsmittel verwendet man Metallhydride der allgemeinen Formel MHx (x = 1,2) der 1. bzw. 2. Gruppe des PSE, welche mit einem Komplexbildner der allgemeinen Formel BR₃, BRn(OR')3-n bzw. GaR₃, GaRn(OR')3-n (R,R' = Alkyl C₁ bis C₆, Phenyl, Aralkyl; n = 0,1,2) umgesetzt sind (R. Köster in: Methoden der Organischen Chemie (Houben-Weyl-Müller) 4. Aufl., Bd. XIII/3b, S. 798 ff., Thieme, Stuttgart 1983). Soweit sie nicht ihrerseits mit Metallhydriden reagieren, eignen sich für das erfindungsgemäße Verfahren die genannten Arten organischer Solventien, z.B. Ether, Aliphaten, Aromaten sowie Mischungen verschiedener Lösungsmittel. Die Umsetzung der Metallhydride mit den Komplexbildnern zwecks Solvatisierung inorganischen Lösungsmitteln kann erfindungsgemäß mit besonderem Vorteil in situ, ggf. unter Einsatz eines stöchiometrischen Unterschusses an Komplexbildner, durchgeführt werden.Metal salts or compounds used are those which contain either inorganic or organic anions, preferably those which are solvated in the systems used as solvents, such as halides, cyanides, cyanates, thiocyanates and alcoholates and salts of organic acids. The reducing agents used are metal hydrides of the general formula MH x (x = 1.2) of the 1st or 2nd group of the PSE, which are combined with a complexing agent of the general formula BR₃, BR n (OR ') 3-n or GaR₃, GaR n (OR ') 3-n (R, R' = alkyl C₁ to C₆, phenyl, aralkyl; n = 0.1.2) are implemented (R. Köster in: Methods of Organic Chemistry (Houben-Weyl-Müller ) 4th ed., Vol. XIII / 3b, p. 798 ff., Thieme, Stuttgart 1983). If they do not in turn react with metal hydrides, the types of organic solvents mentioned, for example ethers, aliphatics, aromatics and mixtures of different solvents, are suitable for the process according to the invention. The implementation of the metal hydrides with the complexing agents for the purpose of solvation inorganic According to the invention, solvents can be carried out with particular advantage in situ, if appropriate using a stoichiometric deficit in complexing agents.

Während der Umsetzung der Metallsalze gehen die komplexgebundenen Hydride in Salze vom Typ M(Anion)x (M = Ammonium-, Alkali- oder Erdalkalikation; x = 1,2) über. M-Hydroxide, -Alkoholate, -Cyanide, -Cyanate und -Thiocyanate bilden mit den bor- und galliumorganischen Komplexbildnern in organischen Solventien lösliche -at-Komplexe vom Typ M[BR₃(Anion)], M[BRn(OR')3-n(Anion)] bzw. M[GaR₃(Anion)], M[GaRn(OR')3-n(Anion)]. Da die Umsetzungsprodukte der Hydride vermöge dieser -at-Komplexbildung in Lösung bleiben, läßt sich erfindungsgemäß nach Beendigung der Reaktion das Metall- bzw. Legierungspulver mit besonderem Vorteil durch einfache Filtration von der klaren organischen Lösung in reiner Form isolieren. M-Halogenide bilden im Zuge der erfindungsgemäßen Umsetzung in der Regel keine solchen -at-Komplexe; sie bleiben jedoch nach der Reaktion in vielen Fällen im organischen Solvens, beispielsweise THF, gelöst. Dies gilt insbesondere für CsF, LiCl, MgCl₂, LiBr, MgBr₂, LiI, NaI, sowie MgI₂. Für die erfindungsgemäße Herstellung von Metall- und Legierungspulvern aus entsprechenden Metallhalogen-Verbindungen ist daher zur Vereinfachung der Aufarbeitung die Wahl des Kations im Hydrid ausschlaggebend. Es sollte so gewählt werden, daß es mit dem jeweiligen Halogen ein im organischen Solvens lösliches Halogenid bildet. Alternativ lassen sich M-Halogenide, die nach der erfindungsgemäßen Umsetzung aus dem organischen Solvens ausfallen, z.B. NaCl, durch Auswaschen mit z.B. Wasser vom Metall- bzw. Legierungspulver abtrennen. Kennzeichen des erfindungsgemäß durchgeführten Verfahrens ist, daß der bor- bzw. galliumorganische Komplexbildner nach der Umsetzung in freier Form oder nach Entkomplexierung der Nebenprodukte M(Anion)x wiedergewonnen werden kann.During the conversion of the metal salts, the complex-bound hydrides change into salts of the type M (anion) x (M = ammonium, alkali or alkaline earth metal; x = 1.2). M-hydroxides, alcoholates, cyanides, cyanates and thiocyanates form, with the boron and gallium organic complexing agents, -at complexes of the type M [BR₃ (anion)], M [BR n (OR ') 3 which are soluble in organic solvents -n (anion)] or M [GaR₃ (anion)], M [GaR n (OR ') 3-n (anion)]. Since the reaction products of the hydrides remain in solution by virtue of this complex formation, the metal or alloy powder can be isolated according to the invention with particular advantage by simple filtration from the clear organic solution in pure form after the reaction has ended. In the course of the reaction according to the invention, M-halides generally do not form any such complexes; however, in many cases they remain dissolved in the organic solvent, for example THF, after the reaction. This applies in particular to CsF, LiCl, MgCl₂, LiBr, MgBr₂, LiI, NaI, and MgI₂. In order to simplify the workup, the choice of the cation in the hydride is therefore decisive for the production of metal and alloy powders from corresponding metal halide compounds according to the invention. It should be chosen so that it forms a halide which is soluble in the organic solvent with the respective halogen. Alternatively, M-halides which precipitate from the organic solvent after the reaction according to the invention, for example NaCl, can be separated from the metal or alloy powder by washing with, for example, water. A characteristic of the process carried out according to the invention is that the organic boron or gallium complexing agent can be recovered in free form after the reaction or after the complexes by-products M (anion) x have been decomplexed.

Nach dem erfindungsgemäßen Verfahren erhält man Pulvermetalle der Korngröße 0,01 »m (Beispiel) bis 200 »m (Tab. 2, Nr. 45). Die Teilchengrößenverteilung läßt sich durch die Reaktionsparameter steuern. Bei gegebener Kombination von Ausgangsmaterialien und Lösungsmittel sind die erfindungsgemäß erhaltenen Metallpartikel umso feiner je tiefer die Reaktionstemperatur ist. So liefert die Umsetzung von PtCl₂ mit Li(BEt₃H) in THF bei 80°C (Tab. 2, Nr. 45) ein Platinpulver mit relativ breiter Korngrößenverteilung von 5 bis 100 »m (siehe Abb. 1). Die gleiche Umsetzung bei 0°C (Tab 2, Nr. 44) ergibt ein Platinpulver mit wesentlich engerer Korngrößenverteilung und einem ausgeprägtem Maximum bei 15 »m (vgl. Abb. 2).Powder metals with a grain size of 0.01 »m (example) to 200» m (Tab. 2, No. 45) are obtained by the process according to the invention. The particle size distribution can be controlled by the reaction parameters. Given a combination of starting materials and The lower the reaction temperature, the finer the metal particles obtained according to the invention. Thus, the reaction of PtCl₂ with Li (BEt₃H) in THF at 80 ° C (Tab. 2, No. 45) provides a platinum powder with a relatively broad particle size distribution from 5 to 100 »m (see Fig. 1). The same reaction at 0 ° C (Tab 2, No. 44) results in a platinum powder with a much narrower grain size distribution and a pronounced maximum at 15 »m (see Fig. 2).

Die erfindungsgemäß hergestellten Metallpulver sind ausweislich ihrer Röntgendiffraktogramme mikrokristallin bis amorph. Abb. 3 zeigt die mittels CoKα-Strahlung gemessenen Pulverdiffraktogramme von erfindungsgemäß hergestelltem Fe-Pulver (Tab. 2, Nr. 3) vor und nach thermischer Behandlung der Probe bei 450°C. Die unbehandelte Originalprobe zeigt lediglich eine sehr breite Linie (Abb. 3a), ein Beweis für das Vorliegen von mikrokristallinen bis amorphen Phasen (H.P. Klug, L.E. Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn., Wiley, New York, 1974). Nach 3-stündiger Behandlung der Probe bei 450°C beobachtet man infolge Rekristallisation eine scharfe Linie bei einem Streuwinkel 2 ϑ von 52,4° bei einem Netzgitterebenenabstand von D = 2,03 Å, der für das kubisch flächen-zentrierte Gitter von α-Fe charakteristisch ist. (Abb. 3b).According to their X-ray diffractograms, the metal powders produced according to the invention are microcrystalline to amorphous. Fig. 3 shows the powder diffractograms of Fe powder produced according to the invention (Tab. 2, No. 3) measured by CoK α radiation before and after thermal treatment of the sample at 450 ° C. The untreated original sample shows only a very broad line (Fig.3a), proof of the presence of microcrystalline to amorphous phases (HP Klug, LE Alexander, X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, 2nd edn., Wiley, New York, 1974). After treatment of the sample at 450 ° C for 3 hours, a sharp line is observed as a result of recrystallization at a scattering angle 2 ϑ of 52.4 ° with a mesh plane spacing of D = 2.03 Å, which is necessary for the face-centered cubic grid of α- Fe is characteristic. (Fig.3b).

Eine einfache Korreduktion von Salzen verschiedener Metalle nach dem erfindungsgemäßen Verfahren liefert unter milden Bedingungen feinteilige Zwei- und Mehrmetall-Legierungen. Die Korreduktion von FeSO₄ und CoCl₂ mit Tetrahydroborat in wäßriger Lösung beschreiben J. v. Wontherghem, St. Morup et al. (Nature, 1986, 322, S. 622). Das Resultat dieser Arbeitsweise ist laut Elementarzusammensetzung sowie Sättigungsmagnetisierung von 89 JT⁻¹kg⁻¹ eine Fe/Co/B - Legierung der Zusammensetzung Fe₄₄Co₁₉B₃₇. Nach Tempern dieses Produktes bei 452°C steigt die Sättigungsmagnetisierung zwar auf 166 JT⁻¹kg⁻¹ an, bleibt jedoch weit unterhalb des für eine Fe₇₀Co₃₀-Legierung erwarteten Wertes von 240 JT⁻¹kg⁻¹, was nach Angaben der Autoren auf die Anwesenheit von Bor in legierter oder separater Phase zurückzuführen ist. Die erfindungsgemäße Korreduktion von FeCl₃ mit CoCl₂ (Molverhältnis 1 : 1; siehe Beispiel Tab. 5, Nr. 4) in THF-Lösung mit LiH/BEt₃ liefert demgegenüber laut Elementaranalyse ein borfreies Pulver der Zusammensetzung Fe₅₀Co₅₀. Der Beweis für das Vorliegen einer mikrokristallinen bis amorphen Fe/Co-Legierung folgert aus Röntgendiffraktogrammen des erfindungsgemäß erhaltenen Pulvers vor und nach thermischer Behandlung (Abb. 4). Vor der Wärmebehandlung zeigt das Diffraktogramm nur eine sehr breite, diffuse Linie (a) was für schwach kristalline bis amorphe Phasen charakteristisch ist. Nach der Wärmebehandlung (3Std. bei 450°C) beobachtet man im Diffraktogramm eine schaffe Linie (b) bei einem Streuwinkel 2 ϑ von 52,7° bei einem Netzgitterebenenabstand von D = 2,02 Å, der einer kristallisierten Fe/Co-Legierung entspricht.A simple reduction of salts of various metals by the process according to the invention provides fine-particle two-metal and multi-metal alloys under mild conditions. The reduction of FeSO₄ and CoCl₂ with tetrahydroborate in aqueous solution describe J. v. Wontherghem, St. Morup et al. ( Nature, 1986, 322, p. 622 ). The result of this procedure is, according to the elementary composition and the saturation magnetization of 89 JT⁻¹kg⁻¹, an Fe / Co / B alloy with the composition Fe₄₄Co₁₉B₃₇. After tempering this product at 452 ° C, the saturation magnetization increases to 166 JT⁻¹kg⁻¹, but remains far below the expected value for a Fe₇₀Co₃₀ alloy of 240 JT⁻¹kg⁻¹, which, according to the authors, indicates the presence of boron in an alloyed or separate phase. The inventive reduction of FeCl₃ with CoCl₂ (molar ratio 1: 1; see example Tab. 5, No. 4) in THF solution with LiH / BEt₃ provides, in contrast, according to elemental analysis, a boron-free powder of the composition Fe₅₀Co₅₀. The evidence for the presence of a microcrystalline to amorphous Fe / Co alloy is deduced from X-ray diffractograms of the powder obtained according to the invention before and after thermal treatment (Fig. 4). Before the heat treatment, the diffractogram shows only a very broad, diffuse line (a), which is characteristic of weakly crystalline to amorphous phases. After the heat treatment (3 hours at 450 ° C), a clear line (b) is observed in the diffractogram at a scattering angle 2 ϑ of 52.7 ° with a mesh plane spacing of D = 2.02 Å, that of a crystallized Fe / Co alloy corresponds.

Um nachzuweisen, daß die Legierungsbildung bereits während des erfindungsgemäßen Reduktionsprozesses erfolgt und keinesfalls nachträglich durch die Wärmebehandlung induziert wird, wurde ein 1 : 1 -Gemenge von erfindungsgemäß hergestelltem, amorphem Fe- und Co-Pulver vor und nach der Wärmebehandlung bei 450°C vermessen (Abb. 5). Das unbehandelte Gemenge zeigt wiederum eine diffuse Linie (a). Nach 3 Std. bei 450°C erwächst jedoch daraus die Überlagerung zweier Sets von Linien (b) für kubisch raumzentriertes Fe (x) sowie hexagonales bzw. kubisch flächenzentriertes Co (o). Ein Vergleich von Abb. 4 und 5 belegt, daß bereits bei der erfindungsgemäßen Korreduktion eine mikrokristalline bis amorphe Legierung gebildet wird, die erst bei Wärmebehandlung rekristallisiert.In order to demonstrate that the alloy formation already takes place during the reduction process according to the invention and is in no case subsequently induced by the heat treatment, a 1: 1 amount of amorphous Fe and Co powder produced according to the invention was measured before and after the heat treatment at 450 ° C ( Fig. 5). The untreated batch again shows a diffuse line (a). After 3 hours at 450 ° C, however, this results in the superposition of two sets of lines (b) for cubic body-centered Fe (x) and hexagonal or cubic face-centered Co (o). A comparison of Figs. 4 and 5 shows that a microcrystalline to amorphous alloy is formed already in the reduction according to the invention, which recrystallizes only after heat treatment.

Erfindungsgemäß lassen sich einphasige Zwei- und Mehrstoffsysteme in mikrokristalliner bis amorpher Form durch Korreduktion der Salze von Haupt- und Nebengruppenelementen, Bunt- und/oder Edelmetallen frei kombinieren. Ebenso ist es erfindungsgemäß mit besonderem Vorteil möglich, durch Korreduktion von auf Trägermaterialien , soweit diese nicht mit Hydroethylboraten reagieren (z.B. Al₂O₃, SiO₂ oder organische Polymere) aufgezogenen Metallsalze und/oder Metallverbindungen oder Salzmischungen zu schalenförmigen amorphen Metallen und/oder Legierungen auf Trägern zu erzeugen. Amorphe Legierungen in reiner oder geträgerter Form sind als Katalysatoren von großem technischen Interesse.According to the invention, single-phase two-component and multi-component systems in microcrystalline to amorphous form can be freely combined by reducing the salts of main and sub-group elements, non-ferrous and / or noble metals. Likewise, it is possible according to the invention with particular advantage, by reducing metal salts and / or which have been drawn onto carrier materials insofar as they do not react with hydroethyl borates (for example Al₂O₃, SiO₂ or organic polymers) To produce metal compounds or salt mixtures to form shell-shaped amorphous metals and / or alloys on supports. Amorphous alloys in pure or supported form are of great technical interest as catalysts.

Mit besonderem Vorteil lassen sich sich erfindungsgemäß unter bestimmten Bedingungen Metalle und/oder Legierungen in organischen Lösungsmitteln ohne Zusatz eines Schutzkolloids in kolloidaler Lösung erhalten. Die Umsetzung von Bunt- oder Edelmetallsalzen (einzeln oder als Mischung) mit den nach der deutschen Patentanmeldung P 39 01 027.9 (EP-A 0 379 062) zugänglichen Tetraalkylammoniumtriorganohydroboraten führt bei Raumtemperatur in THF zu stabilen, in der Durchsicht roten, kolloidalen Lösungen der Metalle. Werden die Metallsalze in Form von Donatorkomplexen eingesetzt, lassen sich erfindungsgemäß die kolloidalen Metalle auch mit Alkali- bzw. Erdalkalimetalltriorganohydroboraten in THF- oder Kohlenwasserstoffen herstellen (siehe Tabelle 6, Nr. 15, 16).According to the invention, metals and / or alloys in organic solvents can be obtained with particular advantage under certain conditions without the addition of a protective colloid in colloidal solution. The conversion of non-ferrous or noble metal salts (individually or as a mixture) with the tetraalkylammonium triorganohydroborates accessible according to German patent application P 39 01 027.9 (EP-A 0 379 062) leads to stable, transparent red, colloidal solutions of the metals at room temperature in THF . If the metal salts are used in the form of donor complexes, the colloidal metals can also be prepared according to the invention with alkali metal or alkaline earth metal triorganohydroborates in THF or hydrocarbons (see Table 6, No. 15, 16).

Die Erfindung wird nachfolgend anhand von Beispielen näher erläutert.The invention is explained in more detail below with the aid of examples.

Beispiel 1example 1 Herstellung von Silberpulver aus AgCN, Ca(BEt₃H)₂ in DiglymeProduction of silver powder from AgCN, Ca (BEt₃H) ₂ in diglyme

1,34 g (10 mmol) AgCN werden in einem 500 ml-Kolben unter Schutzgas mit 2,38 g (10 mmol) Ca(BEt₃H)₂ gelöst in Diglyme (0,1 molar) versetzt und mit Diglyme auf ein Arbeitsvolumen von 250 ml aufgefüllt. Man rührt bei 23°C zwei Stunden und trennt das schwarze Metallpulver von der Reaktionslösung. Das Silberpulver wird mit je 200 ml THF, Ethanol, THF, Pentan gewaschen und im Hochvakuum (10⁻³ mbar) getrocknet. Man erhält 1,10 g Metallpulver (s. Tab. 1, Nr. 10).
Metallgehalt der Probe: 89,6% Ag
Oberfläche nach BET: 2,3 m²/g

Figure imgb0001
Figure imgb0002
1.34 g (10 mmol) AgCN are mixed in a 500 ml flask under protective gas with 2.38 g (10 mmol) Ca (BEt₃H) ₂ dissolved in diglyme (0.1 molar) and diglyme to a working volume of 250 ml filled up. The mixture is stirred at 23 ° C. for two hours and the black metal powder is separated from the reaction solution. The silver powder is washed with 200 ml of THF, ethanol, THF, pentane and dried in a high vacuum (10⁻³ mbar). 1.10 g of metal powder are obtained (see Tab. 1, No. 10).
Metal content of the sample: 89.6% Ag
BET surface area: 2.3 m² / g
Figure imgb0001
Figure imgb0002

Beispiel 2Example 2 Herstellung von Rheniumpulver aus ReCl₃, LiBEt₃H in THFProduction of rhenium powder from ReCl₃, LiBEt₃H in THF

Zu einer Lösung von 2,43 g (8,3 mmol) ReCl₃ in 200 ml THF in einem 500 ml-Kolben werden unter Schutzgas 3,8 g (36 mmol) LiBEt₃H gelöst in THF (1 molar) bei 23°C unter Rühren getropft. Nach zwei Stunden wird die klare Reaktionslösung vom Rheniumpulver getrennt und das Rheniumpulver mit je 200 ml THF, Ethanol, THF, Pentan gewaschen, und nach Trocknen im Hochvakuum (10⁻³ mbar) erhält man 1,50 g Metallpulver (s. Tab. 2, Nr. 35).
Metallgehalt der Probe: 95,4%
Oberfläche nach BET: 82,5 m²/g
To a solution of 2.43 g (8.3 mmol) of ReCl₃ in 200 ml of THF in a 500 ml flask, 3.8 g (36 mmol) of LiBEt₃H dissolved in THF (1 molar) at 23 ° C with stirring under protective gas dripped. After two hours, the clear reaction solution is separated from the rhenium powder and the rhenium powder is washed with 200 ml of THF, ethanol, THF, pentane, and after drying in a high vacuum (10⁻³ mbar), 1.50 g of metal powder is obtained (see Table 2 , No. 35).
Metal content of the sample: 95.4%
BET surface area: 82.5 m² / g

Beispiel 3Example 3 Herstellung eines Cobaltpulvers mit LiH, BEt₃ aus CoCl₂Production of a cobalt powder with LiH, BEt₃ from CoCl₂

In einem 500 ml-Kolben werden 3,32 g (25,6 mmol) CoCl₂ unter Schutzgas mit 0,5 g (63 mmol) LiH, 0,62 g (6,3 mmol) Triethylboran und 250 ml THF versetzt und 16 Stunden unter Rühren auf Rückflußtemperatur erhitzt. Nach Abkühlen auf Raumtemperatur wird das Cobaltpulver von der Reaktionslösung getrennt und mit je 200 ml THF, Ethanol, THF, Pentan gewaschen. Nach Trocknen im Hochvakuum (10⁻³ mbar) erhält man 1,30 g Metallpulver (s. Tab. 2, Nr. 10).
Metallgehalt der Probe: 95,8% Co
Oberfläche nach BET: 17,2 m²/g
In a 500 ml flask, 3.32 g (25.6 mmol) CoCl₂ under protective gas with 0.5 g (63 mmol) LiH, 0.62 g (6.3 mmol) triethylborane and 250 ml THF are added and 16 hours heated to reflux with stirring. After cooling to room temperature, the cobalt powder is separated from the reaction solution and washed with 200 ml of THF, ethanol, THF and pentane. After drying in a high vacuum (10⁻³ mbar), 1.30 g of metal powder is obtained (see Tab. 2, No. 10).
Metal content of the sample: 95.8% Co
BET surface area: 17.2 m² / g

Beispiel 4Example 4 Darstellung von Na[(Et₂GaOEt)H]Representation of Na [(Et₂GaOEt) H]

34,5 g (200 mmol) Diethylethoxigallium - Et₂GaOEt - werden in 400 ml THF mit 30,5 g (1270 mmol) NaH vier Stunden unter Schutzgas unter Rückfluß gekocht. Man erhält eine klare Lösung, die über eine D-4-Glasfritte vom überschüssigen NaH befreit wird.
Laut Protolyse mit Ethanol ergab sich eine 0,45 molare Lösung.
34.5 g (200 mmol) diethylethoxigallium - Et₂GaOEt - are boiled in 400 ml THF with 30.5 g (1270 mmol) NaH for four hours under protective gas under reflux. A clear solution is obtained which is freed from excess NaH via a D-4 glass frit.
Protolysis with ethanol resulted in a 0.45 molar solution.

Herstellung von Palladiumpulver aus PdCl₂ und Na[(Et₂GaOEt)H] in THFProduction of palladium powder from PdCl₂ and Na [(Et₂GaOEt) H] in THF

In eine Lösung von 1,91 g (10,76 mmol) PdCl₂ in 200 ml THF in einem 500 ml-Kolben werden unter Schutzgas 45 ml (20,25 mmol) der so erhaltenen Na(Et₂GaOEt)H-Lösung unter Rühren bei 40°C zugetropft. Nach zwei Stunden wird die klare Reaktionslösung vom Palladiumpulver abgetrennt, und das Palladiumpulver wird mit 2 x 200 ml H₂O, 200 ml THF und 200 ml Pentan gewaschen. Nach Trocknen im Hochvakuum (10⁻³ mbar) erhält man 1,2 g Metallpulver (s. Tab. 2, Nr. 29).
Metallgehalt des Pulvers: 92,7% Pd

Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006
In a solution of 1.91 g (10.76 mmol) of PdCl₂ in 200 ml of THF in a 500 ml flask, 45 ml (20.25 mmol) of the Na (Et₂GaOEt) H solution thus obtained are added with stirring at 40 ° C added dropwise. After two hours, the clear reaction solution is separated from the palladium powder, and the palladium powder is washed with 2 x 200 ml H₂O, 200 ml THF and 200 ml pentane. After drying in a high vacuum (10⁻³ mbar), 1.2 g of metal powder are obtained (see Tab. 2, No. 29).
Metal content of the powder: 92.7% Pd
Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006

Beispiel 5Example 5 Herstellung von Rhodiumpulver aus RhCl₃, NBu₄(BEt₃H) in THFProduction of rhodium powder from RhCl₃, NBu₄ (BEt₃H) in THF

Zu einer Lösung von 2,15 g (10,3 mmol) RhCl₃ in 200 ml THF in einem 500 ml-Kolben werden unter Schutzgas 11,6 g (34 mmol) NBu₄(BEt₃H) gelöst in THF (0,5 molar) bei 23°C unter Rühren getropft. Nach acht Stunden wird in die schwarze Lösung 100 ml Wasser getropft und anschließend das Rhodiumpulver von der Reaktionslösung getrennt. Das Rhodiumpulver wird mit je 200 ml THF, H₂O, THF, Pentan gewaschen und im Hochvakuum (10⁻³ mbar) getrocknet. Man erhält 1,1 g Metallpulver (s. Tab. 3, Nr. 3).
Metallgehalt der Probe: 90,6%
Oberfläche nach BET: 58,8 m²/g

Figure imgb0007
To a solution of 2.15 g (10.3 mmol) RhCl₃ in 200 ml THF in a 500 ml flask 11.6 g (34 mmol) NBu₄ (BEt₃H) dissolved in THF (0.5 molar) under protective gas Dropped 23 ° C with stirring. After eight hours, 100 ml of water is dripped into the black solution and then the rhodium powder is separated from the reaction solution. The rhodium powder is washed with 200 ml of THF, H₂O, THF, pentane and dried in a high vacuum (10⁻³ mbar). 1.1 g of metal powder are obtained (see Tab. 3, No. 3).
Metal content of the sample: 90.6%
BET surface area: 58.8 m² / g
Figure imgb0007

Beispiel 6Example 6 Herstellung eines Platinpulvers aus (NH₃)₂PtCl₂, NaBEt₃H in THFProduction of a platinum powder from (NH₃) ₂PtCl₂, NaBEt₃H in THF

Zu einer Lösung von 3,0 g (10 mmol) (NH₃)₂PtCl₂ in 200 ml THF in einem 500 ml-Kolben werden unter Schutzgas 3,05 g (25 mmol) NaBEt₃H gelöst in THF (1 molar) bei 23°C unter Rühren getropft. Nach zwei Stunden wird die klare Reaktionslösung vom Platinpulver getrennt und das Platinpulver mit je 200 ml THF, H₂O, THF, Pentan gewaschen, und nach Trocknen im Hochvakuum (10⁻³ mbar) erhält man 1,95 g Metallpulver (s. Tab. 4, Nr. 1).
Metallgehalt der Probe: 97,1% Pt

Figure imgb0008
To a solution of 3.0 g (10 mmol) (NH₃) ₂PtCl₂ in 200 ml THF in a 500 ml flask, 3.05 g (25 mmol) NaBEt₃H dissolved in THF (1 molar) at 23 ° C under protective gas Stir dripped. After two hours, the clear reaction solution is separated from the platinum powder and the platinum powder is washed with 200 ml of THF, H₂O, THF, pentane, and after drying in a high vacuum (10⁻³ mbar), 1.95 g of metal powder is obtained (see Table 4 , Number 1).
Metal content of the sample: 97.1% Pt
Figure imgb0008

Beispiel 7Example 7 Herstellung einer Cobalt-Platin-Legierung aus PtCl₂, CoCl₂, LiBEt₃H in THFProduction of a cobalt-platinum alloy from PtCl₂, CoCl₂, LiBEt₃H in THF

Zu einer unter Rückfluß kochenden Lösung von 2,04 g (15,7 mmol) CoCl₂ und 4,18 g (15,7 mmol) PtCl₂ in einem 500 ml-Kolben in 260 ml THF werden unter Schutzgas 9,54 g (90 mmol) LiBEt₃H, gelöst in 90 ml THF, unter Rühren getropft. Nach sieben Stunden Reaktionzeit läßt man auf 23°C abkühlen und trennt die klare Reaktionslösung von der Pulverlegierung, die mit je 250 ml THF, Ethanol, THF, Pentan gewaschen wird. Nach dem Trocknen im Hochvakuum (10⁻³ mbar) erhält man 3,96 g Metallegierungspulver (s. Tab. 5, Nr. 7).
Metallgehalt der Probe: 76,3% Pt, 21,6% Co
Borgehalt der Probe: 0,0%
Oberfläche nach BET: 18,3 m²/g
Röntgendiffraktogramm, gemessen mit CoKα-Strahlung und Fe-Filter
Reflexmaxima 2 ϑ: 55,4° (47,4°) bei Netzgitterebenenabstand D von 1,93 Å (2,23 Å)
To a refluxing solution of 2.04 g (15.7 mmol) of CoCl₂ and 4.18 g (15.7 mmol) of PtCl₂ in a 500 ml flask in 260 ml of THF, 9.54 g (90 mmol ) LiBEt₃H, dissolved in 90 ml THF, added dropwise with stirring. After a reaction time of seven hours, the mixture is allowed to cool to 23 ° C. and the clear reaction solution is separated from the powder alloy, which is washed with 250 ml of THF, ethanol, THF and pentane. After drying in a high vacuum (10⁻³ mbar), 3.96 g of metal alloy powder are obtained (see Tab. 5, No. 7).
Metal content of the sample: 76.3% Pt, 21.6% Co
Boron content of the sample: 0.0%
BET surface area: 18.3 m² / g
X-ray diffractogram, measured with CoK α radiation and Fe filter
Reflecting maxima 2 ϑ: 55.4 ° (47.4 °) with mesh spacing D of 1.93 Å (2.23 Å)

Beispiel 8Example 8 Herstellung einer Eisen-Cobalt-Legierung aus FeCl₃, CoCl₂, BEt₃, LiH in THFProduction of an iron-cobalt alloy from FeCl₃, CoCl₂, BEt₃, LiH in THF

2,97 g (22,9 mmol) CoCl₂ und 3,79 g (23,4 mmol) FeCl₃ werden unter Schutzgas in einem 500 ml-Kolben mit 1,01 g (127 mmol) LiH, 1,25 g (12,7 mmol) Triethylboran und 350 ml THF versetzt. Es wird sechs Stunden auf 67°C erhitzt. Nach Abkühlen auf Raumtemperatur wird die Eisen-Cobalt-Pulverlegierung von der Reaktionslösung abgetrennt und mit 2 x 200 ml THF gewaschen. Anschließend wird mit 150 ml THF sowie 100 ml Ethanol bis zum Ende des Ausgasens gerührt. Man wäscht erneut mit je 200 ml THF und Pentan und erhält nach Trocknen im Hochvakuum (10⁻³ mbar) 2,45 g Metallegierungspulver (s. Tab. 5, Nr. 4).
Metallgehalt der Probe: 47,0% Fe, 47,1% Co
Borgehalt der Probe: 0,0%
Oberfläche nach BET: 42,0 m²/g
Röntgendiffraktogramm, gemessen mit CoKα-Strahlung und Fe-Filter
Reflexmaxima 2 ϑ: 52,7° bei Netzgitterebenenabstand D von 2,02 Å
2.97 g (22.9 mmol) CoCl₂ and 3.79 g (23.4 mmol) FeCl₃ are under protective gas in a 500 ml flask with 1.01 g (127 mmol) LiH, 1.25 g (12, 7 mmol) triethylborane and 350 ml THF were added. It is heated to 67 ° C for six hours. After cooling to room temperature, the iron-cobalt powder alloy is separated from the reaction solution and washed with 2 x 200 ml THF. The mixture is then stirred with 150 ml of THF and 100 ml of ethanol until the outgassing has ended. It is washed again with 200 ml each of THF and pentane and, after drying in a high vacuum (10⁻³ mbar), 2.45 g of metal alloy powder are obtained (see Table 5, No. 4).
Metal content of the sample: 47.0% Fe, 47.1% Co
Boron content of the sample: 0.0%
BET surface area: 42.0 m² / g
X-ray diffractogram, measured with CoK α radiation and Fe filter
Reflecting maxima 2 ϑ: 52.7 ° with mesh spacing D of 2.02 Å

Beispiel 9Example 9 Herstellung einer Eisen-Cobalt-Legierung aus FeCl₃, CoCl₂, LiBEt₃H in THFProduction of an iron-cobalt alloy from FeCl₃, CoCl₂, LiBEt₃H in THF

Eine Lösung von 9,1 g (56 mmol) FeCl₃ und 3,1 g (24 mmol) CoCl₂ in 2,5 l THF wird innerhalb von fünf Stunden bei 23°C zu 150 ml einer 1,7 molaren (255 mmol) Lösung von LiBEt₃H in THF unter Rühren getropft. Nach Rühren über Nacht wird die Eisen-Cobalt-Legierung von der klaren Reaktionslösung abgetrennt und 2 x mit je 200 ml THF gewaschen. Anschließend wird mit 300 ml Ethanol, dann mit einer Mischung aus 200 ml Ethanol und 200 ml THF bis zum Ende des Ausgasens gerührt. Man wäscht erneut 2 x mit je 200 ml THF und erhält nach Trocknen im Hochvakuum (10⁻³ mbar) 5,0 g Metallegierungspulver (s. Tab. 5, Nr. 3)
Metallgehalt der Probe: 54,79% Fe, 24,45% Co
Borgehalt der Probe: 0,0%
Röntgendiffraktogramm, gemessen mit CoKα-Strahlung und Fe-Filter
Reflexmaxima 2 ϑ: 52,5° (99,9°) bei Netzgitterebenenabstand D von 2,02 Å (1,17 Å)
Teilchengröße bestimmt nach REM-Aufnahme und Röntgendiffraktorgramm: 0,01 - 0,1 »m

Figure imgb0009
Figure imgb0010
Figure imgb0011
A solution of 9.1 g (56 mmol) FeCl₃ and 3.1 g (24 mmol) CoCl₂ in 2.5 l THF within five hours at 23 ° C to 150 ml of a 1.7 molar (255 mmol) solution dropped by LiBEt₃H in THF with stirring. After stirring overnight, the iron-cobalt alloy is separated from the clear reaction solution and washed twice with 200 ml of THF. The mixture is then stirred with 300 ml of ethanol, then with a mixture of 200 ml of ethanol and 200 ml of THF until the outgassing has ended. It is washed again twice with 200 ml of THF and, after drying in a high vacuum (10⁻³ mbar), 5.0 g of metal alloy powder is obtained (see Tab. 5, No. 3)
Metal content of the sample: 54.79% Fe, 24.45% Co
Boron content of the sample: 0.0%
X-ray diffractogram, measured with CoK α radiation and Fe filter
Reflecting maxima 2 ϑ: 52.5 ° (99.9 °) with mesh spacing D of 2.02 Å (1.17 Å)
Particle size determined according to SEM image and X-ray diffraction gram: 0.01 - 0.1 »m
Figure imgb0009
Figure imgb0010
Figure imgb0011

Beispiel 10Example 10 Herstellung einer kolloiden Chromlösung mit NBu₄(BEt₃H) in THFPreparation of a colloidal chromium solution with NBu₄ (BEt₃H) in THF

1,58 g (10 mmol) CrCl₃ werden mit 11,25 g (33 mmol) NBu₄(BEt₃H) gelöst in THF, unter Schutzgas bei 23°C in weiteren 300 ml THF unter Rühren gelöst. Man erhält eine kolloide Chromlösung (s. Tab. 6, Nr. 2). Tabelle 6 Darstellung kolloider Metallösungen Nr. Edukte Metallsalz (mmol) NBu₄(BEt₃H) (mmol) Reaktionsbed. Lösungsmittel (ml) t (min) T (°C) 1 MnCl₂ 10 25 20 23 THF 300 2 CrCl₃ 10 33 20 23 THF 300 3 FeCl₃ 10 35 20 23 THF 300 4 CoF₂ 10 25 20 23 THF 300 5 CoCl₂ 10 25 20 23 THF 300 6 NiF₂ 10 25 20 23 THF 300 7 NiCl₂ 10 25 20 23 THF 300 8 RuCl₃ 1 4 20 23 THF 300 9 RhCl₃ 1 4 20 23 THF 300 10 PdCl₂ 1 3 20 23 THF 300 11 IrCl₃ 1 4 20 23 THF 300 12 ReCl₃ 1 4 20 23 THF 300 13 OsCl₃ 1 4 20 23 THF 300 14 PtCl₂ 1 3 20 23 THF 300 15 (COD)PtCl₂ 1 3 20 23 THF 150 16 Pt(Py)₄Cl₂ 1 2,0* 300 -20 THF 150 17 CoCl₂/FeCl₃ 1/1 6 20 23 THF 300 * KBEt₃H
Py = Pyridin
COD = Cyclooctadien-1,5
1.58 g (10 mmol) of CrCl₃ are dissolved in 11.25 g (33 mmol) of NBu₄ (BEt₃H) in THF, under protective gas at 23 ° C in a further 300 ml of THF with stirring. A colloidal chrome solution is obtained (see Tab. 6, No. 2). Table 6 Representation of colloidal metal solutions No. Educts metal salt (mmol) NBu₄ (BEt₃H) (mmol) Reaction conditions Solvent (ml) t (min) T (° C) 1 MnCl₂ 10th 25th 20th 23 THF 300 2nd CrCl₃ 10th 33 20th 23 THF 300 3rd FeCl₃ 10th 35 20th 23 THF 300 4th CoF₂ 10th 25th 20th 23 THF 300 5 CoCl₂ 10th 25th 20th 23 THF 300 6 NiF₂ 10th 25th 20th 23 THF 300 7 NiCl₂ 10th 25th 20th 23 THF 300 8th RuCl₃ 1 4th 20th 23 THF 300 9 RhCl₃ 1 4th 20th 23 THF 300 10th PdCl₂ 1 3rd 20th 23 THF 300 11 IrCl₃ 1 4th 20th 23 THF 300 12th ReCl₃ 1 4th 20th 23 THF 300 13 OsCl₃ 1 4th 20th 23 THF 300 14 PtCl₂ 1 3rd 20th 23 THF 300 15 (COD) PtCl₂ 1 3rd 20th 23 THF 150 16 Pt (Py) ₄Cl₂ 1 2.0 * 300 -20 THF 150 17th CoCl₂ / FeCl₃ 1/1 6 20th 23 THF 300 * KBEt₃H
Py = pyridine
COD = cyclooctadiene-1.5

Beispiel 11Example 11 Herstellung einer Fe/Co-Legierung auf einem Al₂O₃-TrägerProduction of an Fe / Co alloy on an Al₂O₃ support

11,5 g (70,89 mmol) FeCl₃ und 2,3 g (17,7 mmol) CoCl₂ werden in 1 l THF gelöst. In einer 1 l-Steilbrustflasche werden 50 g Al₂O₃ (SAS 350 Pellets, Rhône Poulenc) in 335 ml der oben dargestellten FeCl₃/CoCl₂-Lösung in THF über Nacht getränkt, wobei sich die grüne Lösung nahezu entfärbt. Das Lösungsmittel wird entfernt und der Träger im Hochvakuum (10⁻³ mbar) drei Stunden getrocknet. Die Tränkung wird mit weiteren 335 ml FeCl₃/CoCl₂-Lösung wiederholt, wobei man eine intensiv gelb gefärbte Lösung erhält. Die Lösung wird entfernt und die Al₂O₃-Träger erneut im Hochvakuum (10⁻³ mbar) drei Stunden getrocknet. Die Tränkung wird noch einmal mit 330 ml FeCl₃/CoCl₂-Lösung über Nacht durchgeführt. Es tritt keine Farbänderung der Lösung mehr auf. Die Lösung wird entfernt und die Al₂O₃-Pellets werden mit 63,6 g (600 mmol) LiBEt₃H in 400 ml THF bei 23°C, 16 Stunden behandelt, wobei sich die Pellets unter H₂-Entwicklung schwarz färben. Die Reaktionslösung wird entfernt und die Pellets werden mit je 300 ml THF, THF/Ethanol (2:1), THF gewaschen und im Hochvakuum (10⁻³ mbar) vier Stunden getrocknet. Man erhält Al₂O₃-Pellets, die nur an der Oberfläche schalenförmig mit einer Fe/Co-Legierung belegt sind.
Elementaranalye: 1,13% Fe, 0,50% Co
11.5 g (70.89 mmol) FeCl₃ and 2.3 g (17.7 mmol) CoCl₂ are dissolved in 1 l THF. 50 g of Al₂O₃ (SAS 350 pellets, Rhône Poulenc) in 335 ml of the FeCl₃ / CoCl₂ solution shown above in THF are soaked overnight in a 1 liter steep breast bottle, the green solution almost becoming discolored. The solvent is removed and the carrier is dried in a high vacuum (10 -3 mbar) for three hours. The impregnation is repeated with a further 335 ml of FeCl₃ / CoCl₂ solution, giving an intensely yellow colored solution. The solution is removed and the Al₂O₃ carrier again dried in a high vacuum (10⁻³ mbar) for three hours. The impregnation is carried out again overnight with 330 ml FeCl₃ / CoCl₂ solution. The color of the solution no longer occurs. The solution is removed and the Al₂O₃ pellets are treated with 63.6 g (600 mmol) of LiBEt₃H in 400 ml of THF at 23 ° C for 16 hours, the pellets turning black with evolution of H₂. The reaction solution is removed and the pellets are washed with 300 ml of THF, THF / ethanol (2: 1), THF and dried in a high vacuum (10 -3 mbar) for four hours. Al₂O₃ pellets are obtained which are coated with an Fe / Co alloy only on the surface of the shell.
Elemental analysis: 1.13% Fe, 0.50% Co

Beispiel 12Example 12 Regeneration des Trägers BEt₃Regeneration of the carrier BEt₃

Umsetzungen von Ni(OH)₂ mit Na(BEt₃H) in THF ergeben z.B. laut ¹¹B-NMR-Spektrum (¹¹B-Signal bei 1 ppm) in Lösung Na(BEt₃OH). Aus diesem in der Reaktionslösung vorliegenden -at-Komplex erhält man durch Hydrolyse mit HCl/THF den Komplexbildner BEt₃ laut gaschromatographischer Analyse in 97,6%iger Ausbeute zurück. Zu einer Lösung von 1.85 g (20 mmol) Ni(OH)₂ in 200 ml THF in einem 500 ml-Kolben werden unter Schutzgas 5 g (41 mmol) NaBEt₃H gelöst in THF (1 molar) bei 23°C unter Rühren getropft. Nach zwei Stunden wird die klare Reaktionslösung vom Nickelpulver getrennt und mit je 200 ml THF, Ethanol, THF, Pentan gewaschen. Nach Trocknen im Hochvakuum (10⁻³ mbar) erhält man 1,15 g Metallpulver.
Metallgehalt der Probe: 94,7% Ni
Oberfläche nach BET: 29,7 m²/g
Reactions of Ni (OH) ₂ with Na (BEt₃H) in THF, for example according to ¹¹B-NMR spectrum (¹¹B signal at 1 ppm) in solution Na (BEt₃OH). From this -at complex present in the reaction solution, the complexing agent BEt₃ is obtained by hydrolysis with HCl / THF according to gas chromatographic analysis in 97.6% yield. To a solution of 1.85 g (20 mmol) of Ni (OH) ₂ in 200 ml of THF in a 500 ml flask, 5 g (41 mmol) of NaBEt₃H dissolved in THF (1 molar) at 23 ° C. are added dropwise under stirring under stirring. After two hours, the clear reaction solution is separated from the nickel powder and washed with 200 ml each of THF, ethanol, THF and pentane. After drying in a high vacuum (10⁻³ mbar), 1.15 g of metal powder is obtained.
Metal content of the sample: 94.7% Ni
BET surface area: 29.7 m² / g

Zu der vom Nickelpulver abgetrennten klaren Reaktionslösung wird unter Schutzgas und Rühren innerhalb 20 Minuten 11,7 ml einer 3,5 molaren (41 mmol) Lösung von HCl in THF zugetropft, wobei nach kurzem Aufschäumen und leichter Erwärmung ein weißer Niederschlag (NaCl) ausfällt. Die Reaktionsmischung wird mit Na₂CO₃ neutralisiert und über eine D-3-Glasfritte filtriert. Man erhält 222,5 g klares Filtrat das laut gaschromatographischer Analyse 1,76% (3,92 g = 40 mmol) BEt₃ enthält. Somit werden 97,5% des Trägers BEt₃, bezogen auf eingesetzten Trägerkomplex, wiedergewonnen.11.7 ml of a 3.5 molar (41 mmol) solution of HCl in THF are added dropwise to the clear reaction solution, separated from the nickel powder, under protective gas and with stirring, a white precipitate (NaCl) precipitating out after brief foaming and slight heating. The reaction mixture is neutralized with Na₂CO₃ and filtered through a D-3 glass frit. This gives 222.5 g of clear filtrate which, according to gas chromatographic analysis, contains 1.76% (3.92 g = 40 mmol) of BEt₃. Thus, 97.5% of the carrier BEt₃, based on the carrier complex used, are recovered.

Beispiel 13Example 13 Regeneration des Trägers BEt₃Regeneration of the carrier BEt₃

Zu der unter Schutzgas in Beispiel 2 abgetrennten Lösung werden 1,62 g (10 mmol) FeCl₃ gegeben. Nach Abreaktion wird die Lösung destilliert. Man erhält 206 g klares Destillat, das laut gaschromatographischer Analyse 1,63% (3,36 g = 34,3 mmol) BEt₃ enthält. Somit werden 95,2% des Trägers BEt₃, bezogen auf den eingesetzten Trägerkomplex, wiedergewonnen.1.62 g (10 mmol) are added to the solution separated off under protective gas in Example 2 Given FeCl₃. After the reaction has ended, the solution is distilled. 206 g of clear distillate are obtained which, according to gas chromatographic analysis, contains 1.63% (3.36 g = 34.3 mmol) of BEt₃. Thus, 95.2% of the carrier BEt₃, based on the carrier complex used, are recovered.

Beispiel 14Example 14 Herstellung schalenförmig aufgetragenen Nickels auf Aluminiumoxidträger aus NiCl₂ · 6 H₂O mit LiBEt₃H in THFProduction shell-shaped applied nickel on alumina carrier from NiCl₂ · 6 H₂O with LiBEt₃H in THF

270 g kugelförmiges, neutrales Aluminiumoxid werden bei Raumtemperatur in einer Lösung von 150 g (631,3 mmol) NiCl₂ · 6 H₂O in 500 ml Ethanol 45 min umgeschwenkt, von der überstehenden Lösung befreit und 24 h im Hochvakuum (10⁻³ mbar) bei 250°C getrocknet. Nach Abkühlen versetzt man unter Schutzgas mit 1 l 1,5 molarer LiBEt₃H-Lösung in THF und trennt nach 16 h Umschwenken die klare Reaktionslösung ab. Man wäscht mit je 1,5 l THF, THF/Ethanol-Gemisch (1 : 1), THF und erhält nach Trocknen im Hochvakuum (10⁻³ mbar) kugelförmiges Aluminiumoxid mit 2,5% schälenförmig aufgebrachtem Ni-Metall. Durch Wiederholen der Prozedur kann unter Erhalt der Schalenform der Ni-Gehalt erhöht werden.270 g of spherical, neutral aluminum oxide are swirled for 45 min at room temperature in a solution of 150 g (631.3 mmol) of NiCl₂ · 6 H₂O in 500 ml of ethanol, freed from the supernatant solution and at 24 h in a high vacuum (10⁻³ mbar) 250 ° C dried. After cooling, 1 l of 1.5 molar LiBEt₃H solution in THF is added under a protective gas, and the clear reaction solution is separated off after 16 hours of swirling. It is washed with 1.5 l each of THF, THF / ethanol mixture (1: 1), THF and, after drying in a high vacuum (10⁻³ mbar), spherical aluminum oxide with 2.5% peel-shaped Ni metal is obtained. By repeating the procedure, the Ni content can be increased while maintaining the shell shape.

Beispiel 15Example 15 Herstellung eines mit Nickel durchtränkten Aluminiumoxidträgers aus NiCl₂ · 6 H₂O mit LiBEt₃H in THFProduction of an aluminum oxide support impregnated with nickel from NiCl₂ · 6 H₂O with LiBEt₃H in THF

270 g kugelförmiges, neutrales Aluminiumoxid werden bei Raumtemperatur mit einer Lösung von 200 g (841,7 mmol) NiCl₂ · 6 H₂O in 500 ml destilliertem Wasser 16 h getränkt. Nach Trocknen in Hochvakuum (250°C, 24 h) setzt man, wie in Beispiel 9 beschrieben, mit LiBEt₃H um und erhält nach Aufarbeitung ein mit Nickel durchtränktes Aluminiumoxid mit einem Ni-Gehalt von 4,4%. Durch Wiederholen der Prozedur kann der Ni-Gehalt erhöht werden.270 g of spherical, neutral aluminum oxide are soaked at room temperature with a solution of 200 g (841.7 mmol) of NiCl₂ · 6 H₂O in 500 ml of distilled water for 16 h. After drying in a high vacuum (250 ° C., 24 h), as described in Example 9, the reaction is carried out with LiBEt₃H and, after working up, an aluminum oxide impregnated with nickel with a Ni content of 4.4% is obtained. The Ni content can be increased by repeating the procedure.

Claims (14)

  1. Process for producing highly dispersed, microcrystalline to amorphous metals and/or alloys in the form of powders, characterized in that in an anhydrous organic solvent selected from THF, diglyme and hydrocarbons, metal salts are reacted in the absence of hydrogen with metal hydrides of the first and second group of the periodic table of the elements (PSE) which are kept in solution by means of complexing agents of the general formula of BR₃, BRn(OR')3-n, respectively GaR₃, GaRn(OR')3-n, wherein R, R' represent C₁- to C₆-alkyl, phenyl or aralkyl and n represents 0, 1 or 2, or are reacted with tetraalkylammoniumtriorganoborates of the formula NR''₄ (BR₃H) or NR''₄ [BRn(OR')3-nH] ( R = C₁-C₆- alkyl; aryl-C₁-C₆-alkyl; R' = C₁-C₆-alkyl, aryl-C₁-C₆-alkyl; R'' = C₁-C₆- alkyl, aryl-C₁-C₆-alkyl, tri-C₁-C₆-alkylsilyl; n = 0, 1, 2).
  2. Process for producing metals or alloys which are colloidally dissolved in THF and/or hydrocarbons, characterized in that
    a) donor complexes of salts of nonferrous metals and/or noble metals are reacted individually or in a mixture either with tetraalkylammoniumtriorganoborates according to claim 1, or with alkaline- and/or alkaline earth metal-triorganohydroborates in THF and/or hydrocarbons, or
    b) salts of nonferrous metals and/or noble metals are reacted individually or in a mixture with tetraalkylammoniumtriorganoborates according to claim 1 in THF.
  3. Process according to claim 1 or 2, characterized in that as metals salts, individually or in a mixture, those of the 5. to 12. and 14. group of the PSE, dissolved and/or suspended in organic solvents, are applied and that they are reacted at -30 °C to +150 °C, preferably at 0 °C to +80 °C, with metal hydrides MHx (x = 1, 2) of the 1. and 2. group, respectively, of the PSE in the presence of the complexing agent.
  4. Process according to claim 1 or 3, characterized in that the metals salts are used in the form of donor complexes.
  5. Process according to claim 1 to 4, characterized in that the metals salts are reacted with the metal hydrides and a reduced amount of the complexing agent.
  6. Process according to claims 1 to 5, characterized in that the complexing agent is regenerated by acidifying in the form of BR₃ and BRn(OR')3-n, respectively.
  7. Process according to claims 1 to 6, characterized in that the reaction is carried out in the presence of carrier materials.
  8. Process according to claims 2 and 7, characterized in that the metals and/or alloys which are colloidally dissolved in THF or hydrocarbons, are produced in the presence of inorganic or organic carrier materials and/or are bound by adsorption to these carriers.
  9. Colloidal solutions of metals and/or alloys, obtainable according to the claims 2, 7 and 8, in THF and/or hydrocarbons.
  10. Metal powders, obtainable according to claim 1 or 2, having a grain size of 0,01-200 »m which are according to their X-ray diffraction analysis microcrystalline to amorphous, and having a boron content of less than 1 percent by weight.
  11. Metal alloy powders, obtainable according to claim 1 or 2, having a grain size of 0,01-200 »m which are according to their diffuse X-ray diffraction analysis microcrystalline to amorphous, and having a boron content of less than 1 percent by weight.
  12. Use of the microcrystalline to amorphous metal powders and metal alloy powders, respectively, according to the claims 10 and 11 in powder technology.
  13. Use of the microcrystalline to amorphous Pt-powders having a grain size of 2-200 »m, obtainable according to the claims 1 or 2, for powder-metallurgical coating of glass and ceramic materials.
  14. Use of the microcrystalline to amorphous Fe/Ni/Co-alloys, obtainable according to the claims 1 or 2, for powder-metallurgical sealing of glass materials.
EP90119546A 1989-10-14 1990-10-12 Process for preparing microcrystalline to amorphous metal- or metal alloy powder and metals or alloys dissolved in organic solvents without a protective colloid Expired - Lifetime EP0423627B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3934351A DE3934351A1 (en) 1989-10-14 1989-10-14 METHOD FOR PRODUCING MICROCRYSTALLINE TO AMORPHOUS METAL OR ALLOY POWDER AND WITHOUT PROTECTIVE COLLOID IN ORGANIC SOLVENTS SOLVED METALS OR. ALLOYS
DE3934351 1989-10-14

Publications (2)

Publication Number Publication Date
EP0423627A1 EP0423627A1 (en) 1991-04-24
EP0423627B1 true EP0423627B1 (en) 1995-04-19

Family

ID=6391482

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90119546A Expired - Lifetime EP0423627B1 (en) 1989-10-14 1990-10-12 Process for preparing microcrystalline to amorphous metal- or metal alloy powder and metals or alloys dissolved in organic solvents without a protective colloid

Country Status (9)

Country Link
US (2) US5308377A (en)
EP (1) EP0423627B1 (en)
JP (1) JPH03134106A (en)
AT (1) ATE121330T1 (en)
CA (1) CA2027257C (en)
DE (2) DE3934351A1 (en)
DK (1) DK0423627T3 (en)
ES (1) ES2070970T3 (en)
IE (1) IE67173B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756880A1 (en) * 1997-12-19 1999-07-01 Degussa Anode catalyst for fuel cells with polymer electrolyte membranes
US7713910B2 (en) 2004-10-29 2010-05-11 Umicore Ag & Co Kg Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3934351A1 (en) * 1989-10-14 1991-04-18 Studiengesellschaft Kohle Mbh METHOD FOR PRODUCING MICROCRYSTALLINE TO AMORPHOUS METAL OR ALLOY POWDER AND WITHOUT PROTECTIVE COLLOID IN ORGANIC SOLVENTS SOLVED METALS OR. ALLOYS
US5507973A (en) * 1991-04-26 1996-04-16 Board Of Regents Of The University Of Nebraska Highly reactive zerovalent metals from metal cyanides
US5384078A (en) * 1991-08-01 1995-01-24 Board Of Regents Of The University Of Nebraska Soluble highly reactive form of calcium and reagents thereof
US5330687A (en) * 1991-08-01 1994-07-19 Board Of Regents Of The University Of Nebraska Preparation of functionalized polymers utilizing a soluble highly reactive form of calcium
WO1993005877A1 (en) * 1991-09-25 1993-04-01 Research Corporation Technologies, Inc. The sonochemical synthesis of amorphous metals
ES2140733T3 (en) * 1995-05-26 2000-03-01 Goldschmidt Ag Th PROCESS FOR THE PREPARATION OF AMORPHIC METALLIC POWDER TO X-RAYS AND NANOCRISTALINE.
FR2768638B1 (en) * 1997-09-23 1999-12-17 Centre Nat Rech Scient ULTRAFINE POLYMETALLIC PARTICLES, THEIR PREPARATION AND THEIR USE FOR HYDROGENATION OF OLEFINS OR FOR THE COUPLING OF AROMATIC HALOGEN DERIVATIVES
DE19806167A1 (en) * 1998-02-14 1999-08-19 Studiengesellschaft Kohle Mbh Precious metal-protected, anti-corrosive magnetic nanocolloids
DE19821968A1 (en) * 1998-05-18 1999-11-25 Studiengesellschaft Kohle Mbh Production of transition metal colloid for use e.g. as coating, catalyst, fuel cell component and in ink jet printing, laser etching, information storage and cell labeling and cell separation
US6262129B1 (en) * 1998-07-31 2001-07-17 International Business Machines Corporation Method for producing nanoparticles of transition metals
DE19853123A1 (en) * 1998-11-18 2000-05-25 Degussa Process for the selective catalytic hydrogenation of fatty acids
US7192778B2 (en) * 1999-10-06 2007-03-20 Natan Michael J Surface enhanced spectroscopy-active composite nanoparticles
US8497131B2 (en) * 1999-10-06 2013-07-30 Becton, Dickinson And Company Surface enhanced spectroscopy-active composite nanoparticles comprising Raman-active reporter molecules
TW521451B (en) * 2000-03-13 2003-02-21 Canon Kk Process for producing an electrode material for a rechargeable lithium battery, an electrode structural body for a rechargeable lithium battery, process for producing said electrode structural body, a rechargeable lithium battery in which said electrode
KR100358853B1 (en) * 2000-04-04 2002-10-31 광주과학기술원 Method of preparing platinum alloy electrode catalysts for direct methanol fuel cell using anhydrous metal chloride
DE10024776C1 (en) 2000-05-19 2001-09-06 Goldschmidt Ag Th Zinc treated with metal hydride is used in organometallic synthesis, especially synthesis of cyclopropane derivatives and zinc organyl compounds and in Reformatsky and analogous reactions
US6861263B2 (en) 2001-01-26 2005-03-01 Surromed, Inc. Surface-enhanced spectroscopy-active sandwich nanoparticles
US7282710B1 (en) 2002-01-02 2007-10-16 International Business Machines Corporation Scanning probe microscopy tips composed of nanoparticles and methods to form same
US6897650B2 (en) * 2002-02-11 2005-05-24 International Business Machines Corporation Magnetic-field sensor device
DE10227779A1 (en) * 2002-06-21 2004-01-08 Studiengesellschaft Kohle Mbh Monodisperse, magnetic nanocolloids of adjustable size and process for their production
US7648938B2 (en) * 2003-12-15 2010-01-19 Nippon Sheet Glass Company, Limited Metal nanocolloidal liquid, method for producing metal support and metal support
JP4647906B2 (en) * 2003-12-15 2011-03-09 日本板硝子株式会社 Method for producing metal carrier and metal carrier.
JP2006218346A (en) * 2005-02-08 2006-08-24 Honda Motor Co Ltd Hydrogen adsorbent material and its production method
US9149545B2 (en) * 2005-11-02 2015-10-06 General Electric Company Nanoparticle-based imaging agents for X-ray/computed tomography and methods for making same
US20070122620A1 (en) * 2005-11-02 2007-05-31 General Electric Company Nanoparticle-based imaging agents for x-ray / computed tomography and methods for making same
US20090298197A1 (en) * 2005-11-15 2009-12-03 Oxonica Materials Inc. Sers-based methods for detection of bioagents
US8409863B2 (en) 2005-12-14 2013-04-02 Becton, Dickinson And Company Nanoparticulate chemical sensors using SERS
US7723100B2 (en) 2006-01-13 2010-05-25 Becton, Dickinson And Company Polymer coated SERS nanotag
EP1977242B1 (en) * 2006-01-27 2016-08-03 Becton Dickinson and Company Lateral flow immunoassay with encapsulated detection modality
JP5277165B2 (en) * 2006-07-24 2013-08-28 ベクトン・ディキンソン・アンド・カンパニー Analytical particle agglomeration and imaging apparatus and method
US8003883B2 (en) * 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices
US7977568B2 (en) * 2007-01-11 2011-07-12 General Electric Company Multilayered film-nanowire composite, bifacial, and tandem solar cells
EP2060323A1 (en) 2007-11-12 2009-05-20 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Methods of preparing, optionally supported, ordered intermetallic palladium gallium compounds, the compounds as such, and their use in catalysis
US8772886B2 (en) * 2010-07-26 2014-07-08 Avalanche Technology, Inc. Spin transfer torque magnetic random access memory (STTMRAM) having graded synthetic free layer
EP3363538A1 (en) 2017-02-20 2018-08-22 Technische Universität Berlin A method of preparing a mesoporous carbon composite material comprising metal nanoparticles and use thereof as catalyst
EP4173701A1 (en) 2021-10-29 2023-05-03 Technische Universität Berlin Method for producing metal-containing spherical porous carbon particles

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379062A2 (en) * 1989-01-14 1990-07-25 Studiengesellschaft Kohle mbH Acicular magnetic iron pigments with an adjustable coercive force, and process for their production; Fe metal pigments for magnetic recording with an adjustable coercive force

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180835A (en) * 1962-07-17 1965-04-27 California Research Corp Stable metal sols and method for producing the same
GB1047933A (en) * 1962-09-12 1966-11-09 Exxon Research Engineering Co Catalysts
FR2041076A1 (en) * 1969-03-15 1971-01-29 Stamicarbon Submicroscopic metallic particles in the - form of needles and capable of being perm
US3672867A (en) * 1970-12-07 1972-06-27 Du Pont Submicron ferromagnetic alloy particles containing cobalt,boron,and zinc
US3814696A (en) * 1972-06-19 1974-06-04 Eastman Kodak Co Colloidal metal in non-aqueous media
US4096316A (en) * 1973-08-18 1978-06-20 Fuji Photo Film Co., Ltd. Method of producing magnetic material with alkaline borohydrides
US4080177A (en) * 1975-04-17 1978-03-21 Winston Boyer Colloidal magnesium suspension in critical low concentration in jet fuel
JPS6018902A (en) * 1983-07-13 1985-01-31 Toyota Motor Corp Preparation of magnetic fluid
US4537625A (en) * 1984-03-09 1985-08-27 The Standard Oil Company (Ohio) Amorphous metal alloy powders and synthesis of same by solid state chemical reduction reactions
US4624797A (en) * 1984-09-17 1986-11-25 Tdk Corporation Magnetic fluid and process for preparing the same
DE3513132A1 (en) * 1985-04-12 1986-10-23 Peter Dr. 4000 Düsseldorf Faber Electrochemically active nickel mass
US4877647A (en) * 1986-04-17 1989-10-31 Kansas State University Research Foundation Method of coating substrates with solvated clusters of metal particles
JPS6475601A (en) * 1987-09-18 1989-03-22 Tanaka Precious Metal Ind Fine composite silver-palladium powder and production thereof
EP0363552B1 (en) * 1988-07-27 1993-10-13 Tanaka Kikinzoku Kogyo K.K. Process for preparing metal particles
WO1990011858A1 (en) * 1989-04-04 1990-10-18 Sri International Low temperature method of forming materials using one or more metal reactants and a halogen-containing reactant to form one or more reactive intermediates
US5034313A (en) * 1989-04-28 1991-07-23 Eastman Kodak Company Metastable metal colloids and preparation
DE3934351A1 (en) * 1989-10-14 1991-04-18 Studiengesellschaft Kohle Mbh METHOD FOR PRODUCING MICROCRYSTALLINE TO AMORPHOUS METAL OR ALLOY POWDER AND WITHOUT PROTECTIVE COLLOID IN ORGANIC SOLVENTS SOLVED METALS OR. ALLOYS

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0379062A2 (en) * 1989-01-14 1990-07-25 Studiengesellschaft Kohle mbH Acicular magnetic iron pigments with an adjustable coercive force, and process for their production; Fe metal pigments for magnetic recording with an adjustable coercive force

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19756880A1 (en) * 1997-12-19 1999-07-01 Degussa Anode catalyst for fuel cells with polymer electrolyte membranes
US7713910B2 (en) 2004-10-29 2010-05-11 Umicore Ag & Co Kg Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith
US8017548B2 (en) 2004-10-29 2011-09-13 Umicore Ag & Co. Kg Method for manufacture of noble metal alloy catalysts and catalysts prepared therewith

Also Published As

Publication number Publication date
ES2070970T3 (en) 1995-06-16
IE903660A1 (en) 1991-04-24
US5580492A (en) 1996-12-03
DE3934351A1 (en) 1991-04-18
US5308377A (en) 1994-05-03
CA2027257A1 (en) 1991-04-15
JPH03134106A (en) 1991-06-07
EP0423627A1 (en) 1991-04-24
DK0423627T3 (en) 1995-09-04
ATE121330T1 (en) 1995-05-15
CA2027257C (en) 2001-05-29
IE67173B1 (en) 1996-03-06
DE59008929D1 (en) 1995-05-24

Similar Documents

Publication Publication Date Title
EP0423627B1 (en) Process for preparing microcrystalline to amorphous metal- or metal alloy powder and metals or alloys dissolved in organic solvents without a protective colloid
DE1467175C3 (en) Zeolite molecular sieve
DE60037881T2 (en) PROMOVED POROUS CATALYST
EP0490156B1 (en) Process for manufacturing active, reversible, H2 accepting magnesium hydride-magnesium-hydrogen storage system
DE102007038045B4 (en) Process for the production of a palladium / carbon catalyst
DE60123753T2 (en) METHOD FOR THE PRODUCTION OF SILICON DIOXIDE CARRIERED COBALT CATALYSTS AND THEIR USE
EP0112548B1 (en) Process for producing active systems for the storage of hydrogen by hydrides of magnesium
EP0151991B1 (en) Ammonium-organopolysiloxane compounds containing platinum and/or palladium, process for their fabrication, and use
DE19781880B4 (en) A method for removing carbon monoxide from a hydrogen-containing gas for a fuel cell
DE3347676C2 (en)
DE19745905A1 (en) Supported catalysts with high sintering stability and process for their production
EP1720656A1 (en) Preparation of metal/metal oxide supported catalysts by precursor chemical nanometallurgy in defined reaction chambers of porous supports using organometallic and/or inorganic precursors and reductants containing metal
DE2748210A1 (en) PARTICLES OF ALLOYS OF PLATINUM METALS WITH NON-PLATINUM METALS, METHOD FOR THEIR MANUFACTURE AND THEIR USE
EP1299191B1 (en) Metallic nickel hydrogenation catalysts, production and use thereof
DE102006013794A1 (en) Preparing colloidal nano-catalyst, useful e.g. to synthesis methanol, comprises thermally treating a ligand stabilized complex of an ion of catalytically active metal in an solvent, and adding a precursor compound of an activator compound
WO2009000526A1 (en) Colloidal catalyst, and method for the production thereof
Hincapie et al. Direct synthesis of copper faujasite
DE3123000C2 (en) Process for the production of copper / copper oxide catalysts and their use
EP0316968A2 (en) Process for producing active systems for the storage of hydrogen by hydrides of magnesium
DE1297792B (en) Process for the catalytic cracking of a hydrocarbon oil
DE4336829A1 (en) Process for producing doped supported metal catalysts from an organic or inorganic support material and use thereof
DE2219531A1 (en) Silver powder prodn - by reduction of amine or ammonium -complexed silver salts
AT287156B (en) THREE-DIMENSIONAL, CRYSTALLINE, ZEOLITHIC MOLECULAR SCREEN FOR THE REFINEMENT OF HYDROCARBONS
DE1145152B (en) Process for the preparation of metal-loaded zeolitic molecular sieves
WO1998042441A1 (en) Bimetallic noble metal carbonyl compounds, method for the production and use of catalysts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19910518

17Q First examination report despatched

Effective date: 19930405

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FR GB IT LI LU NL

REF Corresponds to:

Ref document number: 121330

Country of ref document: AT

Date of ref document: 19950515

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59008929

Country of ref document: DE

Date of ref document: 19950524

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2070970

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950710

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19970919

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 19970924

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19970925

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970926

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19971003

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19971010

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19971021

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981012

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981012

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19981013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981031

BERE Be: lapsed

Owner name: STUDIENGESELLSCHAFT KOHLE M.B.H.

Effective date: 19981031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19990501

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20001102

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020925

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021009

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021017

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051012