EP0413173B1 - Kraftstoff-Einspritzdüse für Brennkraftmaschinen - Google Patents

Kraftstoff-Einspritzdüse für Brennkraftmaschinen Download PDF

Info

Publication number
EP0413173B1
EP0413173B1 EP90114186A EP90114186A EP0413173B1 EP 0413173 B1 EP0413173 B1 EP 0413173B1 EP 90114186 A EP90114186 A EP 90114186A EP 90114186 A EP90114186 A EP 90114186A EP 0413173 B1 EP0413173 B1 EP 0413173B1
Authority
EP
European Patent Office
Prior art keywords
valve seat
pintle
conical
edge
bore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP90114186A
Other languages
English (en)
French (fr)
Other versions
EP0413173A3 (en
EP0413173A2 (de
Inventor
Harald Schmidt
Theodor Kauba
Josef Morell
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Steyr Daimler Puch AG
Original Assignee
Steyr Daimler Puch AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Steyr Daimler Puch AG filed Critical Steyr Daimler Puch AG
Publication of EP0413173A2 publication Critical patent/EP0413173A2/de
Publication of EP0413173A3 publication Critical patent/EP0413173A3/de
Application granted granted Critical
Publication of EP0413173B1 publication Critical patent/EP0413173B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1846Dimensional characteristics of discharge orifices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • F02M45/083Having two or more closing springs acting on injection-valve

Definitions

  • the invention relates to a fuel injection nozzle for internal combustion engines of the multi-hole type with a nozzle housing ending in a nozzle tip and a nozzle needle guided therein, the inside of the nozzle tip having a conical valve seat for the nozzle needle, which is also conical at its end and resiliently pressed as a valve body against the valve seat forms and in the area of this valve seat has at least one ejection hole covered by the conical end of the nozzle needle when the valve is closed and the conical section of the nozzle needle is delimited by an edge toward the blind hole and the nozzle needle opposes one another under the pressure of the supplied fuel in a first stroke phase the force of a spring lifts off the valve seat and places it against a stop which, in turn, can be displaced to a limited extent against the force of another spring in a second lifting phase.
  • the invention has for its object to improve the fuel injector described with simple means so that the highest atomization is guaranteed in the first stroke phase and optimal atomization in the second stroke phase with sufficient penetration depth.
  • the invention solves the problem in that the conical valve site passes into a blind hole with a sharp edge, that the center of the inlet hole of the ejection bore or at least one of the ejection bores when the valve is closed by the two at the transition from the valve seat to the blind hole and at the boundary of the conical section the nozzle needle provided edges each have a shortest distance which is at most one and a half times the diameter of the entry hole to the one edge and is selected to be equal to or greater than this amount to the other edge, and that in each case the lateral surface of the extension of the ejection bores between the The edge of the inlet hole and the surface of the imaginary cylinder resulting from the valve seat at the end of the first lifting phase is a maximum of 75% of the cross-sectional area of the ejection bore.
  • the special distances between the center points of the inlet holes of the ejection bores from the two edges ensure that the flow initially passing between the inlet holes arrives at the edges with sufficient speed to be swirled into the blind hole, and then again with sufficient speed flows upwards to the lower edge of the inlet holes, so that around the entire inlet hole of the ejection hole there are approximately the same intensely turbulent flow conditions and thus a corresponding swirling takes place on the entire circumference of the inlet hole, which then occurs when deflecting into the ejection hole Turbulence is superimposed, which significantly improves the atomization and fanning out of the injected fuel.
  • the invention is particularly effective in the case of injection nozzles with a two-phase stroke of the nozzle needle, because in the first stroke phase, which can last for a correspondingly long time, the nozzle needle lifts up only slightly from the valve seat and only a small passage gap is created, which actually corresponds to the desired flow conditions in the region of the injection bores ensures and brings about a uniform, defined atomization.
  • the larger the passage gap and thus the amount of fuel flowing in, the less edges and holes can influence the flow conditions, even if they still spray marginally during the second stroke phase, in which the inflow lateral surface is, as usual, over 133% of the cross-sectional area of the ejection bore effect without the in this phase by the further raised nozzle needle to affect greater injection depth.
  • the lateral surface of the imaginary cylinder resulting in the extension of the ejection bores between the edge of their inlet hole and the surface of the imaginary cylinder resulting from the valve seat at the end of the first lifting phase is approximately 15 to 50% of the cross-sectional area of the ejection bores, then particularly favorable conditions occur, since only then A throttle point is created in the area of the ejection bores and the desired influence of the sharp fuel deflection before entry into the entry holes, supported by the edge and hole distances, has a particularly good effect on the spatial turbulence and thus on the atomization.
  • ejection bores will be provided and all of them arranged so that they meet the conditions according to the invention.
  • the fuel finely atomized by the design according to the invention should emerge from the ejection bore directed towards the closest combustion chamber wall, whereas the ejection bores directed towards the distant combustion chamber wall require a different configuration or arrangement in order to achieve correspondingly wide fuel jets reaching the combustion chamber wall.
  • the edge provided at the border of the conical section on the nozzle needle can at least partially have a course deviating from the course in a normal plane to the nozzle needle axis and the nozzle needle can be guided in a rotationally fixed manner, so that a suitable one Edge course for one or the other ejection hole changed flow and spray conditions.
  • the nozzle housing 1 which is connected to the other parts of the device by a union nut 2, ends in a nozzle tip 3, which has a conical valve seat 4 on the inside, which has a sharp edge 5 with an angle ⁇ of approximately 145 ° (see FIG. 3) in a blind hole 6 passes over.
  • a nozzle needle 7 is guided, which is resiliently pressed against the conical valve seat 4 and also has a conical end section 8, so that the nozzle needle 2 together with its end section 8 forms with the valve seat 4 in the valve, which is shown in FIGS. 1, 3, 4 and 5 in the closed position.
  • a weaker spring 9 initially acts on the nozzle needle 7 and is surrounded by a much stronger spring 10.
  • the fuel is fed from a fuel pump, not shown, to a channel 11 and reaches a collecting space 12, from where it penetrates along the nozzle needle 7 to the valve seat 4.
  • the nozzle needle 7 or its end section 8 is lifted against the force of the spring 9 from the valve seat 4 until it lies against the surface of the stop 13.
  • the nozzle tip 3 has in the region of the valve seat 4 ejection bores 15 which are covered by the conical end section 8 of the nozzle needle 7 when the valve is closed. This conical section 8 is delimited against the blind hole 6 by an edge 16.
  • the outer surface M of the imaginary cylinder resulting from the extension of the ejection bore 15 between its inner edge R and the surface of the conical end section 8 should only be 15 - 50% of the cross-sectional area of the ejection bore 15, so that it is only in the region of the ejection bores 15 that the fuel flow is throttled, which leads to particularly fine atomization because of the high speeds which are the same around the inlet holes.
  • the boundary edge 16a of the conical end section 8 of the nozzle needle 7 extends in a plane inclined to the axis of the nozzle needle, so that the spacing conditions apply only to the ejection bore 15 shown on the left, but not to the one shown on the right, which is not from the conical section 8 is covered, which results in different spraying conditions for the holes 15.
  • the fuel flow is indicated by arrows when the nozzle needle 7 or the end section 8 of the nozzle needle 7 is lifted off the valve seat 4 in the first stroke phase. It is it can be seen that the edges 5 and 16 during the acceleration or swirling of the fuel in the area of the entry hole 17 into the ejection bore 15 precisely in this lifting phase, in which there is only a narrow gap between the end section 8 and the valve seat 4 and thus only a thin one Fuel film in the transition area to the ejection bores 15 has a decisive share.
  • the fuel passes from the collecting space 12 into the space between the conical valve seat 4 and the conical end section 8 of the nozzle needle 2.
  • the current threads 20 run so that they lead evenly to the upper edge of the entry holes 17, some of which have already been noticeably deflected.
  • the current threads 21 already shoot over an imaginary connecting line between the centers of the entry holes 17, so that they have to be deflected by more than 90 °.
  • the current threads 22 are so far away from the entry holes that they reach the edge 5, enter the blind hole 6 with the formation of secondary vortices 23, are deflected there and run again past the edge 5 past the lower edge of the entry holes 17.
  • the inlet holes 17 have a distance E from one another along the valve seat 4 which is at most three and a half times the diameter or, in the case of different diameters, of the smallest diameter of the holes 17, which further improves the spraying conditions with regard to the atomization behavior.
  • tapered valve seat 4 passes over a sharp edge 5 into the blind hole 6, which in turn is initially cylindrical and then - again over a sharp edge, which is an angle of 120 ° to 145 °, preferably forms about 135 °, ends in a truncated cone shape. This results in strongly pronounced edges, which also have a favorable influence on the flow behavior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Description

  • Die Erfindung bezieht sich auf eine Kraftstoff-Einspritzdüse für Brennkraftmaschinen vom Mehrlochtyp mit einem in einer Düsenkuppe endenden Düsengehäuse und einer in diesem geführten Düsennadel, wobei die Düsenkuppe innenseitig einen konischen Ventilsitz für die an ihrem Ende ebenfalls konische, als Ventilkörper federnd gegen den Ventilsitz gedrückte Düsennadel bildet und im Bereich dieses Ventilsitzes wenigstens eine bei geschlossenem Ventil vom konischen Ende der Düsennadel überdeckte Ausspritzbohrung aufweist und der konische Abschnitt der Düsennadel gegen das Sackloch hin durch eine Kante begrenzt ist und wobei sich die Düsennadel unter dem Druck des zugeführten Kraftstoffes in einer ersten Hubphase gegen die Kraft einer Feder vom Ventilsitz abhebt und an einen Anschlag anlegt, der seinerseits in einer zweiten Hubphase gegen die Kraft einer weiteren Feder begrenzt verschiebbar ist.
  • Eine derartige Kraftstoff-Einspritzdüse ist bereits bekannt (US-A- 4.715.541). Dabei ist aber die Anordnung der Ausspritzbohrungen beliebig getroffen, d.h. es bestehen keine besonderen Beziehungen zwischen der Eintrittsöffnung der Ausspritzbohrungen und den beiden vorhandenen Kanten an der Düsennadel und am Übergang vom Ventilsitz zum Sackloch bzw. zwischen den Eintrittsöffnungen. Die Folge davon ist, daß sich zum Sackloch gerichtete nicht funktionsoptimierte Kraftstoffströme ergeben können, die undefiniert sind, wodurch die Zuströmung zu den Eintrittsöffnungen hinsichtlich Menge, Strömungsgeschwindigkeit und Richtung nicht am ganzen Umfang der Eintrittsöffnungen gleich ist und somit stellenweise ungünstige Strömungsverläufe sowie geringe Strömungsgeschwindigkeiten aufweist. Durch diese verzögerten, kaum zur Turbulenz neigenden Teilströme wird nachteiligerweise der Zerstäubungseffekt beeinträchtigt.
  • Der Erfindung liegt die Aufgabe zugrunde, die geschilderte Kraftstoff-Einspritzdüse mit einfachen Mitteln so zu verbessern, daß in der ersten Hubphase höchste Zerstäubung und in der zweiten Hubphase optimale Zerstäubung bei ausreichender Eindringtiefe gewährleistet ist.
  • Die Erfindung löst die gestellte Aufgabe dadurch, daß der Konische Ventilsite scharfkantig in ein Sackloch übergeht, daß der Mittelpunkt des Eintrittsloches der Ausspritzbohrung bzw. wenigstens einer der Ausspritzbohrungen bei geschlossenem Ventil von den beiden am Übergang des Ventilsitzes zum Sackloch und an der Grenze des konischen Abschnittes der Düsennadel vorgesehenen Kanten jeweils einen kürzesten Abstand besitzt, der zu der einen Kante höchstens das Eineinhalbfache des Durchmessers des Eintrittsloches beträgt und zu der anderen Kante gleich oder größer als dieser Betrag gewählt ist, und daß jeweils die Mantelfläche des sich in Verlängerung der Ausspritzbohrungen zwischen dem Rand deren Eintrittsloches und der Oberfläche der am Ende der ersten Hubphase vom Ventilsitz abgehobenen Düsennadel ergebenden gedachten Zylinders maximal 75% der Querschnittsfläche der Ausspritzbohrung beträgt.
  • Durch die besonderen Abstände der Mittelpunkte der Eintrittslöcher der Ausspritzbohrungen von den beiden Kanten wird erreicht, daß die zunächst zwischen den Eintrittslöchern hindurchtretende Strömung an den Kanten noch mit ausreichender Geschwindigkeit ankommt, um in das Sackloch hinein verwirbelt zu werden, und dann auch wieder mit ausreichender Geschwindigkeit aufwärts zum unteren Rand der Eintrittslöcher strömt, daß also jeweils um das ganze Eintrittsloch der Ausspritzbohrung herum etwa die gleichen intensiv turbulenten Strömungsverhältnisse herrschen und damit auch eine entsprechende Verwirbelung am ganzen Umfang des Eintrittsloches stattfindet, der sich dann bei der Umlenkung in die Ausspritzbohrung noch eine zweite Turbulenz überlagert, was die Zerstäubung und Auffächerung des eingespritzten Brennstoffes wesentlich verbessert.
  • Eine ganz wesentliche Voraussetzung dafür sind allerdings die scharfen Kanten am Übergang vom konischen Ventilsitz zum Sackloch, die die für die Verwirbelung in das Sackloch hinein erforderliche Strömungsgestaltung ermöglichen, bei der auch die Strömungsablösung eine Rolle spielt.
  • Die Erfindung ist besonders wirkungsvoll bei Einspritzdüsen mit zweiphasigem Hub der Düsennadel, weil sich in der ersten Hubphase, die entsprechend lange andauern kann, die Düsennadel nur wenig vom Ventilsitz abhebt und nur ein geringer Durchlaßspalt entsteht, der tatsächlich für die gewünschten Strömungsverhältnisse im Bereich der Ausspritzbohrungen sorgt und eine gleichmäßige definierte Zerstäubung mit sich bringt. Je größer der Durchlaßspalt und damit die zufließende Kraftstoffmenge wird, umso weniger können Kanten und Löcher die Strömungsverhältnisse beeinflussen, wenngleich sie auch noch während der zweiten Hubphase, in der die Einström-Mantelfläche wie üblich über 133 % der Querschnittsfläche der Ausspritzbohrung beträgt, eine marginale Zerstäubung bewirken, ohne die in dieser Phase durch die weiter angehobene Düsennadel größere Einspritztiefe zu beeinträchtigen.
  • Ähnliches wird durch die vorgegebene Wahl der Abstände zwischen den Ausspritzbohrungen erreicht, da die verhältnismäßig geringe Entfernung deren Eintrittslöcher voneinander eine sonst auftretende Verzögerung der Strömungen des Kraftstoffes zwischen den Eintrittslöchern unterbindet, so daß auch keine abgebremste Rückströmung aus dem Sackloch mit ungleichmäßiger Geschwindigkeitsverteilung am Umfang der Eintrittslöcher und ungleichmäßiger Zerstäubung als Folge zu befürchten ist. Je geringer nämlich der Abstand zwischen den Eintrittslöchern in die Ausspritzbohrungen ist, umso größer wird die Geschwindigkeit der Strömung zwischen den Eintrittslöchern; es erfolgt also eine verbesserte bzw. beschleunigte und stark umgelenkte Zuströmung zum Sackloch und damit auch eine entsprechend günstigere Rückströmung von diesem. Dabei wird dieser Effekt mit einfachsten technischen Mitteln erreicht, die ja nur darin bestehen, die Ausspritzbohrungen an bestimmten Stellen anzuordnen.
  • Beträgt jeweils die Mantelfläche des sich in Verlängerung der Ausspritzbohrungen zwischen dem Rand deren Eintrittsloches und der Oberfläche der am Ende der ersten Hubphase vom Ventilsitz abgehobenen Düsennadel ergebenden gedachten Zylinders etwa 15 bis 50 % der Querschnittsfläche der Ausspritzbohrungen, treten besonders günstige Verhältnisse auf, da so erst im Bereich der Ausspritzbohrungen eine Drosselstelle entsteht und der gewünschte Einfluß der scharfen Brennstoffumlenkung vor Eintritt in die Eintrittslöcher, unterstützt durch die Kanten- und Lochabstände, auf die räumliche Turbulenz und somit auf die Zerstäubung besonders gut zur Geltung kommt.
  • In der Regel wird man mehrere Ausspritzbohrungen vorsehen und alle so anordnen, daß sie die erfindungsgemäßen Bedingungen erfüllen. Es kann aber auch von Vorteil sein, nur eine Ausspritzbohrung oder nur einen Teil der Ausspritzbohrungen in dieser Weise vorzusehen und die übrigen Ausspritzbohrungen ohne besondere Beziehung zu den am Nadel- bzw. Sitzende vorhandenen Kanten zu belassen, und zwar dann nämlich, wenn es sich beispielsweise um einen großen Brennraum einer Brennkraftmaschine mit stark exzentrisch angeordneter Einspritzdüse handelt.
  • In diesem Fall soll aus der zu der am nächsten liegenden Brennraumwand gerichteten Ausspritzbohrung der durch die erfindungsgemäße Ausbildung fein zerstäubte Kraftstoff austreten, wogegen die zur entfernten Brennraumwand gerichteten Ausspritzbohrungen einer anderen Ausbildung bzw. Anordnung bedürfen, um entsprechend weite, die Brennraumwand erreichende Kraftstoffstrahlen zu erzielen.
  • Um auf rationelle Weise für diese unterschiedlichen Ausspritzbedingungen zu sorgen, kann erfindungsgemäß die an der Grenze des konischen Abschnittes an der Düsennadel vorgesehene Kante zumindest teilweise einen vom Verlauf in einer Normalebene zur Düsennadelachse abweichenden Verlauf besitzen und die Düsennadel drehfest geführt sein, so daß durch einen geeigneten Kantenverlauf für die eine oder andere Ausspritzbohrung geänderte Strömungs- und Ausspritzverhältnisse entstehen.
  • Es liegt im Rahmen der Erfindung, daß bei abgehobener Düsennadel die Kante des konischen Abschnittes tiefer liegt als der untere Mündungsrand des Einspritzloches. Wenn diese Bedingung auch in der zweiten Hubphase erfüllt ist, erfolgt in dieser die vorerwähnte marginale Zerstäubung bei im wesentlichen unverminderter Einspritztiefe.
  • Optimale Strömungsverhältnisse liegen vor, wenn die Erzeugenden von konischem Ventilsitz und Sackloch einen Winkel von 120° bis maximal 145° einschließen. So wird beste Strömungsablösung ohne Bildung von Totzonen, in denen Kavitationsgefahr besteht, erreicht.
  • In der Zeichnung ist der Erfindungsgegenstand beispielsweise dargestellt, und zwar zeigen
  • Fig. 1
    die erfindungswesentlichen Teile einer Kraftstoff-Einspritzdüse mit zweiphasigem Nadelhub in vereinfachter Darstellung im Axialschnitt,
    Fig. 2
    den Bereich einer Ausspritzbohrung als vergrößertes Detail,
    Fig. 3
    das Ende des Düsengehäuses mit der Düsenkuppe und auf den Ventilsitz gedrückter Düsennadel, ebenfalls im Axialschnitt größeren Maßstabes,
    Fig. 4 und 5
    zwei Ausführungsvarianten in gleicher Darstellungsweise,
    Fig. 6
    das Ende des Düsengehäuses bei in der ersten Hubphase vom Ventilsitz abgehobener Düsennadel mit angedeuteter Kraftstoffströmung in weiterer Vergrößerung,
    Fig. 7
    einen Teil des Ventilsitzes der Düsenkuppe in Abwicklung mit angedeuteter Kraftstoffströmung und
    Fig. 8 und 9
    Anordnungsmöglichkeiten der Eintrittslöcher in die Ausspritzbohrungen in einer der Fig. 7 entsprechenden Darstellungsweiese.
  • Das Düsengehäuse 1, das durch eine Überwurfmutter 2 mit den übrigen Vorrichtungsteilen verbunden ist, endet in einer Düsenkuppe 3, die innenseitig einen konischen Ventilsitz 4 aufweist, der mit scharfer Kante 5 mit einem Winkel β von etwa 145° (siehe Fig. 3) in ein Sackloch 6 übergeht. Im Düsengehäuse 1 ist eine Düsennadel 7 geführt, die federnd gegen den konischen Ventilsitz 4 gedrückt wird und ebenfalls einen konischen Endabschnitt 8 besitzt, so daß die Düsennadel 2 mit ihrem Endabschnitt 8 zusammen mit dem Ventilsitz 4 in Ventil bildet, das in den Fig. 1, 3, 4 und 5 in geschlossener Stellung dargestellt ist. Auf die Düsennadel 7wirkt zunächst eine schwächere Feder 9 ein, die von einer wesentlich stärkeren Feder 10 umschlossen ist. Der Kraftstoff wird von einer nicht dargestellten Kraftstoffpumpe einem Kanal 11 zugeführt und gelangt in einen Sammelraum 12, von wo er entlang der Düsennadel 7 bis zum Ventilsitz 4 vordringt.
  • Steigt der Pumpendruck an, so wird die Düsennadel 7 bzw. deren Endabschnitt 8 gegen die Kraft der Feder 9 vom Ventilsitz 4 so weit abgehoben, bis sie sich gegen die Fläche des Anschlags 13 legt. Das ist die erste Hubphase, in der die Mantelfläche des gedachten Zylinders max. 75 % des Querschnittes der Ausspritzbohrung beträgt. Erst bei weiterem Anstieg des Kraftstoffdruckes wird dann auch der Anschlag 13 gegen die Kraft der Feder 10 bis zum Anlegen an eine Innenschulter 14a einer Hülse 14 angehoben. Das ist die zweite Hubphase, in der die Mantelfläche größer als der Querschnitt der Ausspritzbohrung ist.
  • Die Düsenkuppe 3 weist im Bereich des Ventilsitzes 4 Ausspritzbohrungen 15 auf, die bei geschlossenem Ventil vom konischen Endabschnitt 8 der Düsennadel 7 überdeckt sind. Dieser konische Abschnitt 8 ist gegen das Sackloch 6 hin durch eine Kante 16 begrenzt.
  • Wie in Fig. 2 angedeutet, soll nun für besonders gute Resultate nach der ersten Hubphase der Düsennadel 7 jeweils die Mantelfläche M des sich in Verlängerung der Ausspritzbohrung 15 zwischen deren innerem Rand R und der Oberfläche des konischen Endabschnittes 8 sich ergebenden gedachten Zylinders nur 15 - 50 % der Querschnittsfläche der Ausspritzbohrung 15 betragen, so daß es erst im Bereich der Ausspritzbohrungen 15 zu einer Drosselung der Kraftstoffströmung kommt, die wegen der hohen und rund um die Eintrittslöcher gleichen Geschwindigkeiten zu einer besonders feinen Zerstäubung führt.
  • Aus Fig. 3 ist ersichtlich, daß der Mittelpunkt der Einspritzlöcher 17 in die Ausspritzbohrungen 15 von der Kante 5 am Übergang zum Sackloch 6 einen Abstand a aufweist, der etwas kleiner ist als das Eineinhalbfache des Durchmessers des Eintrittsloches 17. Dagegen hat dieser Mittelpunkt des Eintrittsloches 17 bei geschlossenem Ventil einen Abstand A von der Kante 16 der Düsennadel 7, der bei diesem Ausführungsbeispiel größer als dieser Betrag bemessen ist.
  • Die Ausbildung nach Fig. 4 unterscheidet sich von jener nach Fig. 3 nur dadurch, daß der Abstand a des Mittelpunktes der Eintrittslöcher 17 in die Ausspritzbohrung 15 von der Kante 5 größer ist als der Abstand A von der Begrenzungskante 16 des kegeligen Abschnittes 8 der Düsennadel 7, wobei auch hier als Grenzmaß das Eineinhalbfache des Durchmessers des Eintrittsloches 17 gilt. Der Begrenzungskante 16 ist hier noch ein Kegelstumpf 18 vorgesetzt.
  • Beim Ausführungsbeispiel nach Fig. 5 verläuft die Begrenzungskante 16a des kegeligen Endabschnittes 8 der Düsennadel 7 in einer zur Düsennadelachse schrägen Ebene, so daß die Abstandsbedingungen nur für die links dargestellte Ausspritzbohrung 15 gelten, nicht aber für die rechts dargestellte, die nicht vom konischen Abschnitt 8 überdeckt wird, was gezielt unterschiedliche Ausspritzbedingungen für die Bohrungen 15 ergibt.
  • Aus Fig. 5 ist weiterhin erkennbar, daß hier zwischen der Wandung des konischen Ventilsitzes und dem Endabschnitt 8 der Ventilspitze ein spitzer Winkel Δ gebildet ist, welcher beispielsweise in den Grenzen zwischen 0,2 bis 1,0° liegen kann. Hierdurch ergibt sich der Vorteil einer guten Dichtung, und zwar immer genau über der Ausspritzbohrung.
  • In Fig. 6 ist die Kraftstoffströmung bei in der ersten Hubphase vom Ventilsitz 4 abgehobener Düsennadel 7 bzw. abgehobenem Endabschnitt 8 der Düsennadel 7 durch Pfeile angedeutet. Es ist ersichtlich, daß die Kanten 5 und 16 bei der Beschleunigung bzw. Verwirbelung des Kraftstoffes im Bereich des Eintrittsloches 17 in die Ausspritzbohrung 15 gerade in dieser Hubphase, in der es nur zu einem schmalen Spalt zwischen Endabschnitt 8 und Ventilsitz 4 und dadurch nur zu einem dünnen Kraftstoffilm im Übergangsbereich zu den Ausspritzbohrungen 15 kommt, entscheidenden Anteil haben.
  • Diese Strömungsverhältnisse in der ersten Hubphase sind in der Abwicklung des Ventilsitzes nach Fig. 7 noch besser verdeutlicht: der Brennstoff tritt vom Sammelraum 12 in den Raum zwischen konischem Ventilsitz 4 und dem konischen Endabschnitt 8 der Düsennadel 2. Die Stromfäden 20 verlaufen so, daß sie gleichmäßig zum oberen Rand der Eintrittslöcher 17 führen, wobei einige bereits merklich umgelenkt werden. Die Stromfäden 21 schießen bereits über eine gedachte Verbindungslinie der Mittelpunkte der Eintrittslöcher 17 hinaus, so daß sie um mehr als 90° umgelenkt werden müssen. Die Stromfäden 22 sind soweit von den Eintrittslöchern entfernt, daß sie die Kante 5 erreichen, unter Bildung von Sekundärwirbeln 23 in das Sackloch 6 eintreten, dort umgelenkt werden und wieder an der Kante 5 vorbei dem unteren Rand der Eintrittslöcher 17 zulaufen. Dadurch ist bei erfindungsgemäßem Abstand zwischen den Eintrittslöchern 17 und Abstand der Eintrittslöcher 17 von der Kante 5 bzw.16 eine am Umfang der Eintrittslöcher gleichmäßig verteilte, vorverwirbelte Strömung enstanden und beste Zerstäubung gewährleistet.
  • Aus Fig. 6 geht darüber hinaus deutlich hervor, daß bei abgehobener Düsennadel 7 die Kante 16 des konischen Abschnittes 8 tiefer als der untere Mündungsrand des Eintrittsloches 17 der Ausspritzbohrung 15 liegt. Damit tritt eine scharfe Umlenkung des Kraftstoffes von jeder Seite des Mündungsrandes des Eintrittsloches 17 ein, wodurch eine Verbesserung des Zerstäubungseffektes gegeben ist.
  • Aus der Abwicklung des Ventilsitzes 4 nach den Fig. 8 und 9 ergibt sich, daß die Eintrittslöcher 17 eine entlang des Ventilsitzes 4 gemessene Entfernung E voneinander besitzen, die höchstens das Dreieinhalbfache des Durchmessers bzw. bei unterschiedlichen Durchmessern des kleinsten Durchmessers der Löcher 17 beträgt, wodurch die Ausspritzbedingungen hinsichtlich des Zerstäubungsverhaltens weiter verbessert werden.
  • Allen Ausführungsformen der vorliegenden Erfindung ist gemeinsam, daß der kegelige Ventilsitz 4 über eine scharfe Kante 5 in das Sackloch 6 übergeht, welches seinerseits zunächst zylinderförmig ausgebildet ist und dann - wiederum über eine scharfe Kante, die einen Winkel von 120° bis 145°, vorzugsweise etwa 135° bildet, in eine Kegelstumpfform mündet. Es ergeben sich damit jeweils stark ausgeprägte Kanten, welche das Strömungsverhalten zusätzlich günstig beeinflussen.

Claims (8)

  1. Kraftstoff-Einspritzdüse für Brennkraftmaschinen vom Mehrlochtyp mit einem in einer Düsenkuppe (3) endenden Düsengehäuse (1) und einer in diesem geführten Düsennadel (7), welche Düsenkuppe innenseitig einen konischen Ventilsitz (4) für die an ihrem Ende ebenfalls konische, als Ventilkörper federnd gegen den Ventilsitz gedrückte Düsennadel bildet und im Bereich dieses Ventilsitzes wenigstens eine bei geschlossenem Ventil vom konischen Ende der Düsennadel überdeckte Ausspritzbohrung (15) aufweist, wobei der konische Abschnitt (8) der Düsennadel gegen das Sackloch hin durch eine Kante (16) begrenzt ist und wobei sich die Düsennadel unter dem Druck des zugeführten Kraftstoffes in einer ersten Hubphase gegen die Kraft einer Feder (9) vom Ventilsitz abhebt und an einen Anschlag (13) anlegt, der seinerseits in einer zweiten Hubphase gegen die Kraft einer weiteren (10) Feder begrenzt verschiebbar ist, dadurch gekennzeichnet, daß der konische Ventilsitz scharfkantig in ein Sackloch (6) übergeht
    daß der Mittelpunkt des Eintrittsloches (17) der Ausspritzbohrungen (15) bzw. wenigstens einer der Ausspritzbohrungen (15) bei geschlossenem Ventil von den beiden am Übergang des Ventilsitzes (4) zum Sackloch und an der Grenze des konischen Abschnittes (8) der Düsennadel (7) vorgesehenen Kanten (5; 16) jeweils einen kürzesten Abstand (a; A) besitzt, der zu der einen Kante (5; 16) höchstens das Eineinhalbfache des Durchmessers des Eintrittsloches (17) beträgt und zu der anderen Kante (16; 5) gleich oder größer als dieser Betrag gewählt ist, und daß jeweils die Mantelfläche (M) des sich in Verlängerung der Auspritzbohrungen (15) zwischen dem Rand (R) deren Eintrittsloches (17) und der Oberfläche der am Ende der ersten Hubphase vom Ventilsitz abgehobenen Düsennadel (7) ergebenden gedachten zylinders maximal 75% der Querschnittsfläche der Auspritzbohrung (15) beträgt.
  2. Kraftstoff-Einspritzdüse nach Anspruch 1, dadurch gekennzeichnet, daß bei Anordnung von zwei oder mehreren Ausspritzbohrungen (15) die Mittelpunkte deren Eintrittslöcher (17), gemessen entlang der Fläche des Ventilsitzes (4), höchstens um das Dreieinhalbfache des Lochdurchmessers voneinander entfernt sind.
  3. Einspritzdüse nach Anspruch 1 und 2, dadurch gekennzeichnet, daß jeweils die Mantelfläche (M) des sich in Verlängerung der Ausspritzbohrungen (15) zwischen dem Rand (R) deren Eintrittsloches (17) und der Oberfläche der am Ende der ersten Hubphase vom Ventilsitz abgehobenen Düsennadel (7) ergebenden gedachten Zylinders etwa 15 - 50 % der Querschnittsfläche der Ausspritzbohrung (15) beträgt.
  4. Einspritzdüse nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß bei Anordnung von zwei oder mehreren Ausspritzbohrungen (15) die an der Grenze des konischen Abschnittes (8) an der Düsennadel (7) vorgesehene Kante (16a) zumindest teilweise einen vom Verlauf in einer Normelebene zur Düsennadelachse abweichenden Verlauf besitzt und die Düsennadel (7) drehfest geführt ist.
  5. Einspritzdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß zwischen der Wandung des konischen Ventilsitzes (4) und dem Endabschnitt (8) der Ventilspitze ein spitzer Winkel (Δ) gebildet ist, welcher in den Grenzen zwischen 0,2 bis 1,0° liegt.
  6. Einspritzdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß bei abgehobener Düsennadel (7) in der ersten Hubphase die Kante (16) des konischen Abschnitts (8) tiefer als der untere Mündungsrand des Eintrittsloches (17) der Ausspritzbohrung liegt.
  7. Einspritzdüse nach Anspruch 1, dadurch gekennzeichnet, daß die Erzeugenden des konischen Ventilsitzes und die in derselben Axialebene liegende Erzeugende des Sackloches einen Winkel β von maximal 145° einschließen.
  8. Einspritzdüse nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß das Sackloch (6) in eine Kegelstumpfform mündet, welche einen Winkel von 120° bis 145° bildet.
EP90114186A 1989-08-17 1990-07-24 Kraftstoff-Einspritzdüse für Brennkraftmaschinen Expired - Lifetime EP0413173B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT195189 1989-08-17
AT1951/89 1989-08-17

Publications (3)

Publication Number Publication Date
EP0413173A2 EP0413173A2 (de) 1991-02-20
EP0413173A3 EP0413173A3 (en) 1991-03-06
EP0413173B1 true EP0413173B1 (de) 1993-08-25

Family

ID=3524573

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90114186A Expired - Lifetime EP0413173B1 (de) 1989-08-17 1990-07-24 Kraftstoff-Einspritzdüse für Brennkraftmaschinen

Country Status (4)

Country Link
EP (1) EP0413173B1 (de)
JP (1) JP2811228B2 (de)
AT (1) ATE93583T1 (de)
DE (1) DE59002457D1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4432686C2 (de) * 1994-09-14 1996-09-05 Man B & W Diesel Ag Querschnittgesteuerte Einspritzdüse
DE19547423B4 (de) * 1995-12-19 2008-09-18 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
EP0809017A1 (de) * 1996-05-22 1997-11-26 Steyr-Daimler-Puch Aktiengesellschaft Zweistufige Kraftstoffeinspritzdüse für Brennkraftmaschinen
ES2141624T3 (es) * 1997-03-26 2000-03-16 Bayerische Motoren Werke Ag Boquilla de inyeccion de carburante para un motor de combustion interna.
KR100444446B1 (ko) * 2001-09-29 2004-08-16 현대자동차주식회사 인젝션 노즐
DE102010032050B4 (de) * 2010-07-23 2017-12-21 Continental Automotive Gmbh Düsenkörper mit Sackloch

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH402510A (de) * 1963-05-14 1965-11-15 Sulzer Ag Brennstoffeinspritzventil einer Kolbenbrennkraftmaschine
FR2050592A5 (de) * 1969-06-18 1971-04-02 Ffsa
CH612733A5 (en) * 1976-05-26 1979-08-15 Sulzer Ag Nozzle of a fuel injection valve of a piston internal combustion engine
DE2841967A1 (de) * 1978-09-27 1980-04-10 Daimler Benz Ag Mehrloch-einspritzduese fuer luftverdichtende brennkraftmaschinen
JPS58122779U (ja) * 1982-02-15 1983-08-20 日産自動車株式会社 内燃機関の燃料噴射ノズル
JPS6026163A (ja) * 1983-07-23 1985-02-09 Toyota Motor Corp デイ−ゼルエンジンの燃料噴射弁
JPS6066874U (ja) * 1983-10-14 1985-05-11 いすゞ自動車株式会社 デイ−ゼル機関用燃料噴射ノズル
DE3420924A1 (de) * 1984-06-05 1985-12-05 Bayer Ag, 5090 Leverkusen Klebstoffe mit hohem haftungsniveau auf kunststoffen
US4715541A (en) * 1985-02-26 1987-12-29 Steyr-Daimler-Puch Ag Fuel injection nozzle for combustion engines
JP2584728B2 (ja) * 1987-10-02 1997-02-26 株式会社ゼクセル 燃料噴射ノズル
JPH0643496Y2 (ja) * 1988-07-25 1994-11-14 株式会社ゼクセル 燃料噴射ノズル

Also Published As

Publication number Publication date
JP2811228B2 (ja) 1998-10-15
EP0413173A3 (en) 1991-03-06
ATE93583T1 (de) 1993-09-15
EP0413173A2 (de) 1991-02-20
DE59002457D1 (de) 1993-09-30
JPH0388960A (ja) 1991-04-15

Similar Documents

Publication Publication Date Title
DE663301C (de) Einspritzduese fuer Brennkraftmaschinen mit Selbstzuendung
EP0846225B1 (de) Einspritzventil, insbesondere zum direkten einspritzen von kraftstoff in einen brennraum eines verbrennungsmotors
EP0980474B1 (de) Kraftstoffeinspritzdüse für selbstzündende brennkraftmaschinen
DE10049518B4 (de) Brennstoffeinspritzventil
EP0918927B1 (de) Einspritzventil, insbesondere zum direkten einspritzen von kraftstoff in einen brennraum eines verbrennungsmotors
EP1076772A1 (de) Kraftstoffeinspritzdüse für eine brennkraftmaschine
DE3606246A1 (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen
WO2000050765A1 (de) Brennstoffeinspritzventil
WO2001051806A1 (de) Kraftstoff-einspritzdüse
DE102011078857A1 (de) Sprühdüse und Verfahren zum Erzeugen wenigstens eines rotierenden Sprühstrahls
DE19623713B4 (de) Einspritzventil, insbesondere zum direkten Einspritzen von Kraftstoff in einen Brennraum eines Verbrennungsmotors
DE19815918A1 (de) Brennstoffeinspritzvorrichtung
DE3544503C2 (de)
EP0413173B1 (de) Kraftstoff-Einspritzdüse für Brennkraftmaschinen
DE4131499C1 (en) IC engine fuel injection valve - has ring gap between downstream continuation of sealing and seating surfaces of nozzle
DE3114398A1 (de) Einspritzduese fuer dieselmotoren
EP0383085B1 (de) Lochplatte für ein Kraftstoffeinspritzventil
EP0223018B1 (de) Elektromagnetisch betätigbares Kraftstoffeinspritzventil
DE10260975A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE3703075C2 (de)
DE866574C (de) Lochduese fuer Brennkraftmaschinen mit Selbstzuendung
EP0246220B1 (de) Einspritzdüse für Brennkraftmaschinen, insbesondere Dieselmotoren
DE19813020A1 (de) Brennstoffeinspritzventil
DE19853266B4 (de) Kraftstoffeinspritzventil für eine Brennkraftmaschine
AT394761B (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE FR GB IT NL SE

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19910326

17Q First examination report despatched

Effective date: 19920207

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT NL SE

REF Corresponds to:

Ref document number: 93583

Country of ref document: AT

Date of ref document: 19930915

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59002457

Country of ref document: DE

Date of ref document: 19930930

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19931020

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
EAL Se: european patent in force in sweden

Ref document number: 90114186.1

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20090716

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090715

Year of fee payment: 20

Ref country code: NL

Payment date: 20090730

Year of fee payment: 20

Ref country code: GB

Payment date: 20090720

Year of fee payment: 20

Ref country code: DE

Payment date: 20090722

Year of fee payment: 20

Ref country code: AT

Payment date: 20090715

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090723

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20100724

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20100723

EUG Se: european patent has lapsed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100723

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20100724