EP0377405B1 - Künstliche, unterirdische Kaverne zur Speicherung von gasförmigem Erdgas unter erhöhtem Druck und bei tiefer Temperatur und Verfahren zu ihrer Herstellung - Google Patents

Künstliche, unterirdische Kaverne zur Speicherung von gasförmigem Erdgas unter erhöhtem Druck und bei tiefer Temperatur und Verfahren zu ihrer Herstellung Download PDF

Info

Publication number
EP0377405B1
EP0377405B1 EP19890810902 EP89810902A EP0377405B1 EP 0377405 B1 EP0377405 B1 EP 0377405B1 EP 19890810902 EP19890810902 EP 19890810902 EP 89810902 A EP89810902 A EP 89810902A EP 0377405 B1 EP0377405 B1 EP 0377405B1
Authority
EP
European Patent Office
Prior art keywords
cavern
natural gas
storage
lining
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19890810902
Other languages
English (en)
French (fr)
Other versions
EP0377405A1 (de
Inventor
Charles Dr. Mandrin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sulzer AG
Original Assignee
Gebrueder Sulzer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gebrueder Sulzer AG filed Critical Gebrueder Sulzer AG
Publication of EP0377405A1 publication Critical patent/EP0377405A1/de
Application granted granted Critical
Publication of EP0377405B1 publication Critical patent/EP0377405B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C3/00Vessels not under pressure
    • F17C3/005Underground or underwater containers or vessels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2201/00Vessel construction, in particular geometry, arrangement or size
    • F17C2201/05Size
    • F17C2201/052Size large (>1000 m3)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/032Hydrocarbons
    • F17C2221/033Methane, e.g. natural gas, CNG, LNG, GNL, GNC, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/03Mixtures
    • F17C2221/038Refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0107Single phase
    • F17C2223/0123Single phase gaseous, e.g. CNG, GNC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/036Very high pressure (>80 bar)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0144Type of cavity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0142Applications for fluid transport or storage placed underground
    • F17C2270/0157Location of cavity
    • F17C2270/016Location of cavity onshore

Definitions

  • the invention relates to an artificial, underground cavern for storing gaseous natural gas according to the preamble of claim 1 and a method for its production.
  • natural caverns It is known to store natural gas under high pressure and low temperature in natural caverns.
  • these natural caverns consist, for example, of salt caverns, exhausted gas fields, so-called aquifer caverns or porous rocks at greater depths in the order of several hundred or even several thousand meters.
  • the invention is based on the formation of an artificial, underground cavern for the storage of natural gas under high pressure, in the order of 100 to 200 bar at a low temperature in the order of approximately -50 to -70 ° C, which gas-tight against surrounding rock and which can be created in an economical manner.
  • Fig. 1 shows a schematic representation of an embodiment of an underground, horizontally arranged cavern, while the
  • 1a to 1f show the various stages in the production of the gas-tight cover layer of the cavern, including the cavern in the state of natural gas storage.
  • FIG. 2 shows a schematic representation of an embodiment of a subterranean, horizontally arranged cavern modified compared to FIG. 1, while the
  • 2a to 2g show the various stages in the production of the gas-tight cover layer of the cavern, including the cavern in the state of natural gas storage.
  • the cavern 1 shown in Fig. 1 is tunnel-shaped and, for example, at a depth of 150 to 200 m in the surrounding rock, e.g. Granite blasted out. Although this horizontal arrangement of the cavern is particularly advantageous, the invention also encompasses e.g. vertically formed caverns.
  • the cavern is not arranged at a depth that ensures that the storage pressure withstands the hydrostatic head of the water contained in the surrounding rock.
  • a cladding 2 is introduced at a short distance from the cavern wall of, for example, approximately 2 to 10 cm, and ends at a short distance from the cavern base area of, for example, 10 centimeters.
  • This formwork 2 can be made of steel, aluminum or plastic, for example. Its wall thickness is determined in accordance with the hydrostatic water pressure in method step 2 described later (see FIG. 1b).
  • the formwork itself which in most cases is composed of several pieces, in particular is welded together, cannot be produced for the prints mentioned.
  • this formwork does not have to be gas-tight, but instead can have cracks and smaller holes, for example, which, as described below, are closed with the measures according to the invention, so that when natural gas is stored, the required gas tightness is secured against the surrounding rock.
  • the cavern 1 is closed off from the outside atmosphere by means of a pin 4 inserted into a bore 3, which e.g. can consist of metal or possibly also of plastic. Depending on the design of the cavern, in principle several pins can also be arranged.
  • the pin 4 is penetrated by three lines 5, 6 and 7.
  • the line 5 which is firmly fixed in the journal, ends in the gap space 8 formed by the cavern 1 and casing 2. It serves to supply water or to vent the gap space 8.
  • the line 7 is movable, ie slidably mounted in the pin 4 and penetrates the formwork 2.
  • This line serves either water or gas or remove liquid refrigerant from cavern 1 or introduce water or liquid refrigerant into it.
  • the line 7 is pushed into the lower region of the storage space 9 in a first process step (see FIG. 1a) and water is introduced through it until the storage space 9 and the surrounding gap space 8 are completely filled with water.
  • the pressure in the cavern corresponds to the sum of the atmospheric pressure and the hydrostatic height of the water in the cavern.
  • the temperature in the cavern space is approximately 4 ° C.
  • the cavern In the second process step (see FIG. 1b), water is pressed out of cavern 1 with the aid of natural gas, the cavern being under a pressure of approximately 20 bar.
  • the natural gas is introduced through line 6 and extracts water from the cavern through line 7, the end of which is in its lowest position.
  • Line 5 is closed, so that the gap space 8 remains filled with water.
  • the interior of the cavern is at approximately ambient temperature. It depends on the temperature of the natural gas injected.
  • the Formwork 2 At the end of this step, the Formwork 2 withstand the hydrostatic pressure of the water accumulated in the gap space 8.
  • the line 7 is moved upwards so far that its end lies above the water level of the water w located above the base area of the cavern, but still occupies a position in the lower region of the storage space 9.
  • liquid refrigerant k e.g. Propane
  • liquid refrigerant k e.g. Propane
  • Other hydrocarbons such as e.g. Ethane or ethylene
  • refrigerants such as Ammonia, freons and the like are not suitable for environmental or cost reasons.
  • the liquid refrigerant is introduced at ambient temperature, and since a pressure of approximately 20 bar is maintained in the cavern, the refrigerant will not start to boil.
  • the fourth method step can now begin (see FIG. 1d).
  • Natural gas is drawn off from the storage space 9 through line 6, and the refrigerant k in the lower storage space 9 begins to boil, as a result of which the temperature in all parts flooded by the refrigerant drops below 0 ° C., so that the water level is above the base area of the Cavern 1 and the corresponding water w located in the lower part of the gap space 9 freezes to ice e.
  • the storage space 9 is flooded with liquid refrigerant k.
  • the liquid refrigerant k which is continuously introduced through line 7, should boil immediately when it exits into the storage space 9, in order to avoid reheating at any point within the cavern 1.
  • the line 7 is continuously shifted upwards during the flooding in such a way that the outlet of the line 7 is always above the level of the boiling refrigerant k.
  • Refrigerant vapor and some natural gas generated during the boiling process flow out through line 6.
  • the level of the refrigerant rises continuously until the storage space 9 is completely filled with boiling refrigerant.
  • it must be taken into account that the boiling temperature of the refrigerant k rises in the bottom space of the storage space 9, even if the pressure on the surface of the boiling refrigerant is kept constant. The reason for this there is the level of the hydrostatic pressure of the liquid refrigerant in the floor space.
  • the ice will still not melt unless the heat from the rock surrounding the cavern is so great that the ice begins to melt.
  • an advantageous measure consists in reducing the pressure at the level of the boiling refrigerant while the refrigerant is rising and also not dimensioning the cavern depth too great.
  • the refrigerant k is removed from the storage space 9 of the cavern 1, namely by the fact that the refrigerant is pressed through line 7 with cold natural gas, for which purpose the cold natural gas of, for example, approx. -20 to - 70 ° C is introduced through line 6.
  • the pressure at the refrigerant level k is kept low, e.g. to 1 to 2 bar in order to ensure that some refrigerant k constantly boils.
  • the formation of the ice jacket in the gap space 8 also, for example, instead of the procedure described above can only be done with cold gas. In this case, however, very large amounts of gas have to be circulated and recooled because of the relatively poor heat transfer between gas and water.
  • a seventh process step the process of storing natural gas at a pressure of approximately 60 to 150 bar and a temperature of approximately -70 ° C is explained (see FIG. 1g).
  • This natural gas can originate, for example, from a pipeline or from a plant as described in Swiss Patent Application No. 827 / 88-3.
  • the cavern is ready for storage (cf. FIG. 1g).
  • Cold natural gas is initially introduced through the line 7 pushed into the lower part of the storage space 9, for example with pipeline pressure at approximately 60 bar and approximately -70 ° C. Lines 5 and 6 are closed.
  • the methane in the natural gas is hydrated at the "open" locations of the formwork 2, ie in its cracks and small openings upon contact with the ice from the gap space 8.
  • This methane hydrate thus formed has elastic properties and seals the previously open positions gas-tight to the outside.
  • the ice in the gap space 8 is brittle at the pressure and temperature conditions mentioned.
  • the natural gas to be stored is compressed to the desired storage pressure of, for example, 150 bar and introduced into the storage space 9 through line 7. If necessary, stored natural gas is withdrawn from cavern 1 through line 6.
  • cold natural gas is taken from a refrigeration system, not shown, installed above ground and introduced through line 7 into the storage space 9, and a corresponding amount of natural gas heated therein is taken through line 6 and recirculated into the refrigeration system.
  • This measure is advantageous because it ensures that the cavern always stays cold and prevents ice from melting at any point in the "ice jacket" surrounding the storage space 9.
  • FIG. 2 shows a variant embodiment of a cavern designed according to the invention compared to the exemplary embodiment described above (see FIG. 1).
  • This embodiment offers certain advantages over the first embodiment, which mainly consist in the fact that considerably less refrigerant is required to produce a gas-tight cover for the storage space of the cavern with respect to the surrounding rock.
  • a second formwork 10 is arranged within this at a distance of a few centimeters, the ends of which are set back by a distance from the first formwork 2'.
  • This formwork corresponds in its training in terms of material and method of manufacture with the formwork 2 '.
  • two lines 11 and 12 are passed through the pin 4 ', which open into the gap space 13 formed by the two casings 2' and 10. These two lines, which are fixed in the pin 4 ', serve to fill the gap 13 with gas or liquid or to remove gas from it.
  • the cavern 1 ' is vented analogously to the first exemplary embodiment (see FIG. 1a) and filled with water for this purpose. All four lines 5 ', 6', 11 and 12 are used to displace the cavern air.
  • liquid refrigerant k is introduced into the gap space 13, namely until the water level above the base of the cavern 1 'and the lowermost part of the casing 10 are completely flooded with refrigerant.
  • the lines 5 ', 7' and 11 are closed and the lines 6 'and 12 are open to lower the pressure in the cavern 1', so that the refrigerant k boils.
  • the pressure between the gap space 13 and the storage space 9 ' is controlled in such a way that a higher level of the liquid refrigerant k in the gap space 13 than in the storage space 9' is maintained. In this case, however, the lower part of the casing 10 remains flooded with refrigerant k.
  • the water located in the bottom of the cavern 1 freezes the water in the lower part of the outer gap space 8 'to ice e.
  • liquid refrigerant k is introduced into the lower gap space 13 through line 12 at room temperature. Gas and refrigerant vapor escape through line 12 from the gap space 13 and through line 6 'from the storage space 9'.
  • the amounts of gas or vapor discharged are controlled such that the liquid level in the storage space 9 'is lower than in the gap space 13, the level of the boiling refrigerant k in the gap space 13 constantly increasing until this gap space is completely filled with boiling refrigerant. When this is reached, the water w in the outer gap space 8 'is completely frozen to ice e.
  • the pressure on the uppermost surface of the refrigerant in the gap 13 is greater than in the interior 9 ', so that the refrigerant boils in the gap 13, but not in the interior 9'.
  • FIGS. 2e and 1e shows the savings in refrigerant when using a double casing 2 ', 10 compared to a single casing 2, since with simple casing the interior 9 of the cavern 1 must be completely filled with refrigerant.
  • the liquid refrigerant from the gap space 13 and from the storage space 9 'with the help of cold natural gas at about -70 ° C through the lines 12 and 6' is pressed.
  • the Movable line 7 ' is lowered and used to suck off the refrigerant located in the bottom of the cavern 1'.
  • This method step essentially corresponds to the corresponding one of the first exemplary embodiment.
  • methane hydrate which closes the open areas in a gas-tight manner with respect to the surrounding rock.
  • FIGS. 1g and 2g further shows that more effective cooling can be achieved in a cavern with a double formwork than in a cavern with a simple formwork, since the gas velocities on the surface of the formwork 1 'are higher and therefore a better one Heat transfer is achieved.
  • the formwork can be produced in an extremely cost-effective manner, since it does not have to be made absolutely gas-tight. Even if during the time in which the reservoir is filled, due to pressure fluctuations, e.g. may be caused by earth movements or due to thermal expansion of the ice layer, e.g. As a result of heat from the surrounding rock, cracks in the casing or in the ice layer should develop, methane hydrate immediately forms again in the "open areas" due to the low storage temperature and the high storage pressure, so that gas tightness to the surrounding area also occurs during storage Rock is guaranteed.
  • the formwork In order to absorb the expansion of the water during ice formation in the gap space, it is advisable to produce the formwork from a material with elastic properties, or to bring about a sufficient elasticity of the formwork by appropriate shaping of the wall.
  • the wall can be made from corrugated sheets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Description

  • Die Erfindung betrifft eine künstliche, unterirdische Kaverne zur Speicherung von gasförmigem Erdgas gemäss Oberbegriff von Anspruch 1 sowie ein Verfahren zu ihrer Herstellung.
  • Es ist bekannt, Erdgas als Energieträger in den Zeiten zu speichern, in welchen kein oder nur ein geringer Verbrauch besteht. Speichert man während dieser Zeit das z.B. in konstanter Menge während des ganzen Jahres anfallende Erdgas, so kann während der Zeit erhöhten Bedarfs dieser mit Hilfe des gespeicherten Gases gedeckt werden.
  • Es ist bekannt, Erdgas unter hohem Druck und tiefer Temperatur in natürlichen Kavernen zu speichern. Wie aus der Fachliteratur bekannt ist, bestehen diese natürlichen Kavernen beispielsweise aus Salzkavernen, ausgeschöpften Gasfeldern, sogenannten Aquifer-Kavernen oder porösen Gesteinen in grösseren Tiefen in der Grössenordnung von Mehreren hundert bzw. sogar mehreren tausend Metern.
  • Im Falle aus geographischen Gründen solche natürlichen Kavernen nicht vorhanden sind, ist es erforderlich, künstliche Speicher zu errichten.
  • So ist es bekannt, verflüssigtes Erdgas bei Atmosphärendruck in oberirdischen Isoliertanks ("peakshaving") zu speichern. Sowohl die Verflüssigung des Erdgases als auch die Tanks sind äusserst kostenaufwendig und daher nicht von grossem wirtschaftlichem Interesse.
  • Der Erfindung liegt die Ausbildung einer künstlichen, unterirdischen Kaverne für die Speicherung von Erdgas unter hohem Druck, in der Grössenordnung von 100 bis 200 bar bei einer tiefen Temperatur in der Grössenordnung von ca. -50 bis -70°C zugrunde, welche gasdicht gegen das umgebende Gestein ist und die auf wirtschaftliche Weise erstellt werden kann.
  • Die Lösung dieser Aufgabe wird mit den im Kennzeichen von Anspruch 1 angegebenen Merkmalen sowie mit Hilfe eines Verfahrens gemäss der im Kennzeichen des Anspruchs 3 angegebenen Massnahmen gelöst.
  • Eine vorteilhafte Weiterbildung einer erfindungsgemässen Kaverne ist im Anspruch 2 beschrieben, während die Ansprüche 4 bis 12 vorteilhafte Ausführungsformen für das Herstellungsverfahren zum Inhalt haben.
  • Die Erfindung wird im folgenden anhand von in der Zeichnung dargestellten Ausführungsbeispielen beschrieben.
  • Die Fig. 1 zeigt in schematischer Darstellungsweise eine Ausführungsform einer unterirdischen, horizontal angeordneten Kaverne, während die
  • Fig. 1a bis 1f die verschiedenen Stadien der Herstellung der gasdichten Abdeckschicht der Kaverne einschliesslich die Kaverne im Zustand der Erdgas-Speicherung zeigen.
  • Die Fig. 2 zeigt in schematischer Darstellungsweise eine gegenüber Fig. 1 abgewandelte Ausführungsform einer unterirdischen, horizontal angeordneten Kaverne, während die
  • Fig. 2a bis 2g die verschiedenen Stadien der Herstellung der gasdichten Abdeckschicht der Kaverne einschliesslich die Kaverne im Zustand der Erdgas-Speicherung zeigen.
  • Die in Fig. 1 dargestellte Kaverne 1 ist tunnelartig ausgebildet und beispielsweise in einer Tiefe von 150 bis 200 m im umgebenden Gestein, z.B. Granit ausgesprengt. Obwohl diese horizontale Anordnung der Kaverne von besonderem Vorteil ist, umfasst die Erfindung auch z.B. vertikal ausgebildete Kavernen.
  • Allgemein ist zu bemerken, dass die Kaverne nicht in einer solchen Tiefe angeordnet ist, die gewährleistet, dass der Speicherdruck der hydrostatischen Druckhöhe des im umgebenden Gestein enthaltenen Wassers standhält.
  • In die Kaverne 1 ist in einem geringen Abstand von der Kavernenwandung von beispielsweise ca. 2 bis 10 cm eine Verschalung 2 eingebracht, die in einem geringen Abstand von der Kavernengrundfläche von beispielsweise 10 Zentimetern endet.
  • Diese Verschalung 2 kann beispielsweise aus Stahl, Aluminium oder Kunststoff bestehen. Ihre Wandstärke wird entsprechend dem hydrostatischen Wasserdruck im später beschriebenen Verfahrensschritt 2 (vergl. Fig. 1b) bestimmt. Die Verschalung an sich, die in den meisten Fällen aus mehreren Stücken zusammengefügt, insbesondere zusammengeschweisst ist, ist für die genannten Drucke nicht herstellbar.
  • Es ist ein gravierender Vorteil der Erfindung, dass diese Verschalung nicht gasdicht ausgebildet sein muss, sondern beispielsweise Risse und kleinere Löcher aufweisen kann, die, wie an nachstehender Stelle beschrieben, mit Hilfe der erfindungsgemässen Massnahmen geschlossen werden, so dass bei der Speicherung von Erdgas die erforderliche Gasdichtheit gegen das umgebende Gestein gesichert ist.
  • Gegen die Aussenatmosphäre ist die Kaverne 1 mittels eines in eine Bohrung 3 eingefügten Zapfens 4 abgeschlossen, der z.B. aus Metall oder gegebenenfalls auch aus Kunststoff bestehen kann. Es können je nach Ausbildung der Kaverne prinzipiell auch mehrere Zapfen angeordnet sein.
  • Im vorliegenden Ausführungsbeispiel wird der Zapfen 4 von drei Leitungen 5, 6 und 7 durchsetzt.
  • Hierbei endigt die fest im Zapfen fixierte Leitung 5 im von der Kaverne 1 und Verschalung 2 gebildeten Spaltraum 8. Sie dient zur Wasserzuführung oder zur Entlüftung des Spaltraumes 8.
  • Die ebenfalls im Zapfen 4 fixierte Leitung 6 durchdringt die Verschalung 2 und endet im Kopfteil des Speicherraumes 9. Sie dient dazu, Gas in die Kaverne 1 oder aus dieser herauszuführen.
  • Die Leitung 7 ist beweglich, d.h. verschiebbar im Zapfen 4 angebracht und durchdringt die Verschalung 2. Diese Leitung dient dazu, entweder Wasser oder Gas oder flüssiges Kältemittel aus der Kaverne 1 zu entfernen oder Wasser oder flüssiges Kältemittel in diese einzuleiten.
  • Im folgenden werden anhand der Fig. 1a bis 1f die einzelnen Verfahrensschritte erläutert, mit deren Hilfe eine gasdichte Auskleidung der Kaverne gegen das umgebende Gestein erzielt wird.
  • Zur Entlüftung der Kaverne wird in einem ersten Verfahrensschritt (vergl. Fig. 1a) die Leitung 7 in den unteren Bereich des Speicherraumes 9 geschoben und durch sie Wasser eingeleitet, bis der Speicherraum 9 und der umgebende Spaltraum 8 vollständig mit Wasser gefüllt sind.
  • Die Luft entweicht hierbei durch die Leitungen 5 und 6. Der Druck in der Kaverne entspricht bei diesem Verfahrensschritt der Summe aus dem Atmosphärendruck und der hydrostatischen Höhe des Wassers in der Kaverne. Im vorliegenden Ausführungsbeispiel liegt die Temperatur im Kavernenraum etwa bei ca. 4° C.
  • Im zweiten Verfahrensschritt (vergl. Fig. 1b) wird Wasser mit Hilfe von Erdgas aus der Kaverne 1 gepresst, wobei die Kaverne unter einem Druck von ca. 20 bar steht. Das Erdgas wird durch die Leitung 6 eingeführt und presst Wasser aus der Kaverne durch Leitung 7 aus, deren Ende sich in ihrer tiefsten Position befindet. Leitung 5 ist geschlossen, so dass der Spaltraum 8 mit Wasser gefüllt bleibt. Während dieses Verfahrensschrittes befindet sich der Innenraum der Kaverne auf etwa Umgebungstemperatur. Sie ist abhängig von der Temperatur des injizierten Erdgases. Am Ende dieses Verfahrensschrittes muss die Verschalung 2 dem hydrostatischen Druck des sich im Spaltraum 8 gestauten Wassers standhalten.
  • Im dritten Verfahrensschritt (vergl. Fig. 1c) wird die Leitung 7 so weit nach oben bewegt, dass ihr Ende oberhalb des Wasserspiegels des sich oberhalb der Kavernengrundfläche befindenden Wassers w liegt, jedoch noch eine Position im unteren Bereich des Speicherraumes 9 einnimmt.
  • Nun wird eine vorgegebene Menge von flüssigem Kältemittel k, z.B. Propan, durch Leitung 7 in den Speicherraum 9 eingeleitet, derart, dass der tiefste Bereich des Speicherraumes 9 oberhalb des Wasserspiegels mit dem flüssigen Kältemittel k gefüllt wird. Als Kältemittel kommen auch andere Kohlenwasserstoffe, wie z.B. Aethan oder Aethylen infrage, während Kältemittel wie z.B. Ammoniak, Freone und dergl. aus Umwelt- bzw. Kostengründen nicht geeignet sind.
  • Das flüssige Kältemittel wird mit Umgebungstemperatur eingeleitet, und da ein Druck von ca. 20 bar in der Kaverne aufrechterhalten wird, wird das Kältemittel nicht beginnen zu sieden.
  • Nun kann der vierte Verfahrensschritt beginnen (vergl. Fig. 1d).
  • Erdgas wird durch Leitung 6 aus dem Speicherraum 9 abgezogen, und das Kältemittel k im unteren Speicherraum 9 beginnt zu sieden, wodurch die Temperatur in allen vom Kältemittel überschwemmten Teile unterhalb von 0°C fällt, so dass die Wasserlage oberhalb der Grundfläche der Kaverne 1 und das entsprechende, sich im unteren Teil des Spaltraumes 9 befindende Wasser w zu Eis e gefriert.
  • Während dieses Verfahrensschrittes muss darauf geachtet werden, dass der Druck im Spaltraum 8 höher als derjenige im Speicherraum 9 ist, so dass geringe Wassermengen durch, in der Verschalung 2 vorhandene Risse oder kleine Oeffnungen in den Speicherraum 9 eindringen und in das flüssige Kältemittel k herabrieseln kann.
  • Im anschliessenden fünften Verfahrensschritt (vergl. Fig. 1e) wird der Speicherraum 9 mit flüssigem Kältemittel k geflutet.
  • Das flüssige Kältemittel k, das durch Leitung 7 kontinuierlich eingeleitet wird, soll bei seinem Austritt in den Speicherraum 9 sofort sieden, um eine Wiedererwärmung an irgend einer Stelle innerhalb der Kaverne 1 zu vermeiden.
  • Um dieses zu ermöglichen, wird während des Flutens die Leitung 7 kontinuierlich nach oben verschoben und zwar derart, dass der Austritt der Leitung 7 sich stets oberhalb des Niveaus des siedenden Kältemittels k befindet. Während des Siedens entstehender Kältemitteldampf und etwas Erdgas strömen durch Leitung 6 ab.
  • Das Niveau des Kältemittels steigt ständig an, bis der Speicherraum 9 völlig mit siedendem Kältemittel gefüllt ist. Bei der Ausführung dieses Verfahrensschrittes ist zu berücksichtigen, dass die Siedetemperatur des Kältmittels k im Bodenraum des Speicherraumes 9 ansteigt, und zwar sogar dann, wenn der Druck an der Oberfläche des siedenden Kältemittels konstant gehalten wird. Der Grund hierfür besteht in der Höhe des hydrostatischen Druckes des flüssigen Kältemittels im Bodenraum.
  • Im Falle der Siedepunkt der tiefsten Kältemittelschicht oberhalb von 0°C liegen sollte, wird das Eis e trotzdem nicht schmelzen, wenn nicht der Wärmeeinfall von dem die Kaverne umgebenden Gestein so gross ist, dass das Eis e zu schmelzen beginnt.
  • Um einen solchen Schmelzvorgang mit Sicherheit zu vermeiden, besteht eine vorteilhafte Massnahme darin, den Druck am Niveau des siedenden Kältemittels während des Ansteigens des Kältemittels zu reduzieren und ausserdem die Kavernentiefe nicht zu gross zu bemessen.
  • Im sechsten Verfahrensschritt (vergl. Fig. 1f) wird das Kältemittel k aus dem Speicherraum 9 der Kaverne 1 entfernt und zwar dadurch, dass das Kältemittel mit kaltem Erdgas durch Leitung 7 ausgepresst wird, wozu das kalte Erdgas von beispielsweise ca. -20 bis -70° C durch Leitung 6 eingeleitet wird. Während dieses Prozesses wird der Druck am Niveau des Kältemittels k tief gehalten, z.B. auf 1 bis 2 bar, um zu erreichen, dass ständig etwas Kältemittel k siedet.
  • Es seinoch erwähnt, dass selbstverständlich bei allen Verfahrensschritten, bei welchen mit komprimiertem Gas gearbeitet wird, die mit der Druckerhöhung verbundenen Temperaturerhöhungen durch zusätzliche Kühlung kompensiert werden.
  • Es sei darauf hingewiesen, dass die Ausbildung des Eismantels im Spaltraum 8 auch beispielsweise anstelle der vorstehend beschriebenen Verfahrensweise ausschliesslich mit Kaltgas vorgenommen werden kann. In diesem Fall müssen jedoch wegen des relativ schlechten Wärmeüberganges zwischen Gas und Wasser sehr grosse Gasmengen umgewälzt und rückgekühlt werden.
  • In einem siebten Verfahrensschritt wird der Vorgang der Erdgasspeicherung bei einem Druck von ca. 60 bis 150 bar und einer Temperatur von ca. -70° C erläutert (vergl. Fig. 1g).
  • Dieses Erdgas kann beispielsweise aus einer Pipeline stammen oder aus einer Anlage, wie sie im schweizerischen Patentgesuch Nr. 827/88-3 beschrieben ist.
  • Nach Beendigung des sechsten Verfahrensschrittes ist die Kaverne bereit zur Speicherung (vergl. Fig. 1g).
  • Kaltes Erdgas wird durch die in den unteren Teil des Speicherraumes 9 geschobene Leitung 7 zunächst beispielsweise mit Pipeline-Druck bei ca. 60 bar und ca. -70° C eingeleitet. Leitungen 5 und 6 sind geschlossen.
  • Bei diesen Druck- und Temperaturverhältnissen findet eine Hydratisierung des Methans des Erdgases an den "offenen" Stellen der Verschalung 2 statt, d.h. in ihren Rissen und kleinen Oeffnungen bei Kontakt mit dem Eis aus dem Spaltraum 8. Dieses so gebildete Methanhydrat hat elastische Eigenschaften und verschliesst die vorher offenen Stellen gasdicht nach aussen. Das Eis im Spaltraum 8 ist bei den genannten Druck- und Temperaturverhältnissen spröde. Durch Hinzufügen von Zusätzen, wie z.B. Methanol zu dem, während des zweiten Verfahrensschrittes eingefüllten Wasser kann der Eisschicht eine erwünschte Elastizität verliehen werden.
  • Nachdem dieser Vorgang abgeschlossen ist, wird das zu speichernde Erdgas auf den gewünschten Speicherdruck von beispielsweise 150 bar komprimiert und in den Speicherraum 9 durch Leitung 7 eingeleitet. Bei Bedarf wird gespeichertes Erdgas durch Leitung 6 aus der Kaverne 1 entnommen.
  • Wenn aus dem gefüllten Speicherraum 9 während längerer Zeit kein Erdgas für den Verbrauch entnommen werden soll, ist es empfehlenswert, eine kleine Menge von kaltem Erdgas durch den Speicherraum zu zirkulieren. Hierzu wird kaltes Erdgas aus einer nicht dargestellten, oberirdisch installierten Kälteanlage entnommen und durch Leitung 7 in den Speicherraum 9 eingeleitet und eine entsprechende Menge von hierin erwärmtem Erdgas durch Leitung 6 entnommen und in die Kälteanlage rezirkuliert.
  • Diese Massnahme ist deshalb von Vorteil, da durch sie gesichert ist, dass die Kaverne stets kalt bleibt und vermieden wird, dass an keiner Stelle in dem, den Speicherraum 9 umgebenden "Eismantel" Eis schmilzt.
  • In Fig. 2 ist eine variante Ausführungsform einer erfindungsgemäss ausgebildeten Kaverne gegenüber dem vorstehend beschriebenen Ausführungsbeispiel (vergl. Fig. 1) dargestellt.
  • Diese Ausführungsform bietet gegenüber dem ersten Ausführungsbeispiel gewisse Vorteile, die hauptsächlich darin bestehen, dass wesentlich weniger Kältemittel zur Herstellung einer gasdichten Abdeckung des Speicherraumes der Kaverne gegenüber dem umgebenden Gestein benötigt wird.
  • In der in Fig. 2 dargestellten Ausführungsform sind alle mit Fig. 1 übereinstimmenden Elemente mit den gleichen Bezugsziffern, die mit einem Apostroph versehen sind, bezeichnet.
  • Zusätzlich zu der ersten Verschalung 2′ ist innerhalb dieser in einem Abstand von wenigen Zentimetern eine zweite Verschalung 10 angeordnet, deren Enden gegenüber der ersten Verschalung 2′ um einen Abstand zurückgesetzt sind. Diese Verschalung stimmt in ihrer Ausbildung hinsichtlich Werkstoff und Herstellungsweise mit der Verschalung 2′ überein.
  • Ausserdem sind durch den Zapfen 4′ noch zwei Leitungen 11 und 12 hindurchgeführt, die in den von den beiden Verschalungen 2′ und 10 gebildeten Spaltraum 13 münden. Diese beiden Leitungen, die im Zapfen 4′ fixiert sind, dienen dazu, den Spaltraum 13 mit Gas bzw. Flüssigkeit zu füllen bzw. Gas aus ihm zu entfernen.
  • Im folgenden werden anhand der Fig. 2a bis 2g die einzelnen Verfahrensschritte erläutert, mit deren Hilfe eine gasdichte Auskleidung der Kaverne gegen das umgebende Gestein erzielt wird.
  • Während des ersten Verfahrensschrittes (vergl. Fig. 2a) wird analog zu dem ersten Ausführungsbeispiel (vergl. Fig. 1a) die Kaverne 1′ entlüftet und hierzu mit Wasser gefüllt. Alle vier Leitungen 5′, 6′, 11 und 12 werden zur Verdrängung der Kavernenluft benutzt.
  • Im zweiten Verfahrensschritt (vergl. Fig. 2b) wird Erdgas durch die Leitungen 6′ und 11 und durch den Spaltraum 13 zwischen den Verschalungen 2′ und 10 gepresst, so dass kein Wasser in den Spaltraum 13 eindringen kann. Während dieses Verfahrensschrittes sin die Leitungen 5′ und 12 geschlossen und Leitung 7′ wird zur Ableitung des Wassers benutzt.
  • Im dritten Verfahrensschritt (vergl. Fig. 2c) wird flüssiges Kältemittel k in den Spaltraum 13 eingeleitet, und zwar solange, bis der Wasserspiegel über der Grundfläche der Kaverne 1′ und der unterste Teil der Verschalung 10 vollständig mit Kältemittel überschwemmt sind.
  • Während dieses Verfahrensschrittes entweicht Erdgas aus dem Spaltraum 13 durch Leitung 12 und aus dem Speicherraum 9′ durch Leitung 6′. Die Gasabfuhr durch die Leitungen 12 und 6′ wird derart gesteuert, dass ein etwas geringerer Druck im Spaltraum 13 aufrechterhalten wird, so dass das Niveau des flüssigen Kältemittels in diesen Raum höher als im Speicherraum 9′ ist.
  • Während des vierten Verfahrensschrittes (vergl. Fig. 2d) sind die Leitungen 5′, 7′ und 11 geschlossen und die Leitungen 6′ und 12 sind geöffnet, um den Druck in der Kaverne 1′ zu senken, so dass das Kältemittel k siedet.
  • Der Druck zwischen dem Spaltraum 13 und dem Speicherraum 9′ wird in der Weise gesteuert, dass ein höheres Niveau des flüssigen Kältemittels k im Spaltraum 13 als im Speicherraum 9′ erhalten bleibt. Hierbei bleibt jedoch der untere Teil der Verschalung 10 von Kältemittel k überschwemmt.
  • Aufgrund des Siedevorganges des Kältemittels gefriert das sich im Bodenraum der Kaverne 1′ befindende Wasser und das Wasser im unteren Teil des äusseren Spaltraumes 8′ zu Eis e.
  • Im fünften Verfahrensschritt (vergl. Fig. 2e) wird flüssiges Kältemittel k bei Raumtemperatur durch Leitung 12 in den unteren Spaltraum 13 eingeleitet. Gas und Kältemitteldampf entweichen durch Leitung 12 aus dem Spaltraum 13 und durch Leitung 6′ aus dem Speicherraum 9′.
  • Die Mengen des abgeführten Gases bzw. Dampfes werden derart gesteuert, dass das Flüssigkeitsniveau im Speicherraum 9′ tiefer liegt als im Spaltraum 13, wobei das Niveau des siedenden Kältemittels k im Spaltraum 13 ständig ansteigt, bis dieser Spaltraum vollständig von siedendem Kältemittel gefüllt ist. Wenn dieses erreicht ist, ist das Wasser w im äusseren Spaltraum 8′ vollständig zu Eis e gefroren.
  • Am Ende dieses Verfahrensschrittes ist der Druck an der obersten Oberfläche des Kältemittels im Spaltraum 13 grösser als im Innenraum 9′, so dass das Kältemittel im Spaltraum 13, aber nicht im Innenraum 9′ siedet.
  • Ein Vergleich zwischen den Fig. 2e und 1e zeigt die Einsparung an Kältemittel bei Anwendung einer Doppelverschalung 2′, 10 gegenüber einer einzigen Verschalung 2, da bei einfacher Verschalung der Innenraum 9 der Kaverne 1 vollständig mit Kältemittel gefüllt werden muss.
  • Im sechsten Verfahrensschritt (vergl. Fig. 2f) wird das flüssige Kältemittel aus dem Spaltraum 13 und aus dem Speicherraum 9′ mit Hilfe von kaltem Erdgas bei ca. -70° C durch die Leitungen 12 und 6′ ausgepresst. Die bewegliche Leitung 7′ wird abgesenkt und dazu benutzt, das sich im Bodenraum der Kaverne 1′ befindende Kältemittel abzusaugen.
  • In einem siebten Verfahrensschritt (vergl. Fig. 2g) wird die Speicherung der Kaverne mit kaltem Erdgas erläutert. Dieser Verfahrensschritt stimmt im wesentlichen mit dem entsprechenden des ersten Ausführungsbeispieles überein.
  • Zunächst wird kaltes, komprimiertes Erdgas durch die Leitung 12 und durch den Spaltraum 13 in den Speicherraum 9′ gepresst. Analog zu dem ersten Ausführungsbeispiel bildet sich in den bei der Herstellung der Verschalung 2′ oder während der Herstellung der Abdichtung entstandenen Risse und kleinen Oeffnungen durch Kontakt mit dem Eis im Spaltraum 8′ Methanhydrat, welches die offenen Stellen gasdicht gegenüber dem umgebenden Gestein verschliesst.
  • Analog zu Fig. 1g ist es von Vorteil, während der Zeiten, in denen kein Verbrauch an Erdgas besteht, eine entsprechende Zirkulation einer kleinen Erdgasmenge, welche in einer oberirdisch installierten Kälteanlage rückgekühlt wird, vorzunehmen. Auf diese Weise wird gewährleistet, dass zwischen der Verschalung 2′ und dem Gestein ein Schmelzen von Eis durch Wärmeeinfall vom umgebenden Gestein vermieden wird.
  • Ein Vergleich zwischen den Fig. 1g und 2g zeigt weiterhin, dass in einer Kaverne mit einer Doppelverschalung eine wirksamere Kühlung erreicht werden kann als bei einer Kaverne mit einer einfachen Verschalung, da die Gasgeschwindigkeiten an der Oberfläche der Verschalung 1′ höher sind und daher ein besserer Wärmeübergang erreicht wird.
  • Abschliessend sei noch auf einige besondere Vorteile der Erfindung hingewiesen.
  • So können, wie bereits erwähnt, die Verschalungen auf äusserst kostengünstige Weise hergestellt werden, da sie nicht absolut gasdicht ausgeführt werden müssen. Selbst wenn während der Zeit, in der der Speicher gefüllt ist, aufgrund von Druckschwankungen, wie sie z.B. durch Erdbewegungen hervorgerufen sein können oder aufgrund von thermischen Expansionen der Eisschicht, z.B. infolge von Wärmeeinfall vom umgebenen Gestein, Risse in der Verschalung bzw. in der Eisschicht entstehen sollten, bildet sich aufgrund der tiefen Speichertemperatur und des hohen Speicherdruckes in den "offenen Stellen" sofort wieder Methanhydrat, so dass auch während der Speicherung die Gasdichtheit gegen das umgebende Gestein gewährleistet ist.
  • Um die Ausdehnungen des Wassers bei der Eisbildung in dem Spaltraum aufzunehmen, empfiehlt es sich, die Verschalung aus einem Werkstoff mit elastischen Eigenschaften herzustellen, bzw. eine genügende Elastizität der Verschalung durch eine entsprechende Formgebung der Wandung herbeizuführen. Beispielsweise kann die Wand aus gewellten Platten hergestellt werden.
  • Um grosse Mengen von Erdgas speichern zu können, ist es sinnvoll, eine Speicheranlage aus mehreren erfindungsgemäss ausgebildeten Kavernen zu erstellen.

Claims (12)

1. Künstliche, unterirdische Kaverne zur Speicherung von Erdgas, dessen Hauptkomponente aus Methan besteht unter erhöhtem Druck und bei tiefer Temperatur, dadurch gekennzeichnet, dass innerhalb der Kavernenwandung in einem geringen Abstand eine Verschalung eingebracht ist, welche in einem geringen Abstand oberhalb der Kavernengrundfläche endet, und dass einer gasdichte Abschluss gegen die Kavernenwandung in einer elastischen Schicht aus Eis und Methanhydrat besteht, wobei die undichten Stellen der Verschalung durch, während der Speicherung gebildetes Methanhydrat gasdicht verschlossen sind, und dass weiterhin die Kaverne gegen die Atmosphäre mittels eines Zapfens abgeschlossen ist, durch welchen Zu- und Ableitungen durchgeführt sind.
2. Kaverne nach Anspruch 1, dadurch gekennzeichnet, dass innerhalb der Verschalung in einem geringen Abstand eine weitere Verschalung angebracht ist, die in einem geringen Abstand oberhalb des Endes der ersten Verschalung endet, wobei in den, von den beiden Verschalungen gebildeten Spaltraum zwei durch den Zapfen geführte Leitungen münden.
3. Verfahren zur Herstellung einer künstlichen, unterirdischen Kaverne nach Anspruch 1, dadurch gekennzeichnet, dass man aus der Kaverne zunächst die Luft mit Hilfe von Wasser entfernt, anschliessend mit Hilfe von komprimiertem Erdgas Wasser in den zwischen der Verschalung und der Kavernenwandung gebildeten Spaltraum presst und sodann dieses Wasser sowie eine noch oberhalb der Kavernengrundfläche befindende Wasserschicht mittels eines, durch den Innenraum der Kaverne zirkulierenden Kühlmittels gefriert.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass das Kühlmittel aus kaltem Erdgas besteht.
5. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass als Kühlmittel ein verdampfendes Kältemittel verwendet wird.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das Kältemittel aus einem Kohlenwasserstoff besteht.
7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass der Kohlenwasserstoff Propan, Aethyl oder Aethylen ist.
8. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass dem Wasser ein Zusatzmittel zugegeben wird, welches die elastischen Eigenschaften des erzeugten Eises bei dem Speicherdruck und der Speichertemperatur erhöht.
9. Verfahren nach Anspruch 8, dadurch gekennzeichnet, dass als Zusatzmittel Methanol verwendet wird.
10. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass beim Speichern von Erdgas in offenen Stellen der Verschalung das sich zwischen ihr und dem umgebenden Gestein gebildete Eis mit dem Methan des Erdgases in Kontakt gebracht wird, wobei sich Methanhydrat bildet, welches die offenen Stellen der Verschalung gasdicht verschliesst.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass während der Zeiten, in welchen kein Verbrauch an gespeichertem Erdgas besteht, eine geringe Menge von Erdgas aus dem Speicherraum entnommen, ausserhalb der Kaverne zurückgekühlt und wieder in den Speicherraum rezirkuliert wird.
12. Verfahren nach Anspruch 5 für die Herstellung einer Kaverne nach Anspruch 2, dadurch gekennzeichnet, dass die Drücke in dem Speicherraum und in dem, von den beiden Verschalungen gebildeten Spaltraum derart eingestellt werden, dass der Spaltraum vollständig mit Kältemittel überflutet wird, und dass nur der untere Teil des Speicherraumes mit Kältemittel gefüllt wird, wobei das untere Ende der inneren Verschaltung überflutet wird.
EP19890810902 1988-12-06 1989-11-24 Künstliche, unterirdische Kaverne zur Speicherung von gasförmigem Erdgas unter erhöhtem Druck und bei tiefer Temperatur und Verfahren zu ihrer Herstellung Expired - Lifetime EP0377405B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH451588 1988-12-06
CH4515/88 1988-12-06

Publications (2)

Publication Number Publication Date
EP0377405A1 EP0377405A1 (de) 1990-07-11
EP0377405B1 true EP0377405B1 (de) 1992-04-01

Family

ID=4277537

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19890810902 Expired - Lifetime EP0377405B1 (de) 1988-12-06 1989-11-24 Künstliche, unterirdische Kaverne zur Speicherung von gasförmigem Erdgas unter erhöhtem Druck und bei tiefer Temperatur und Verfahren zu ihrer Herstellung

Country Status (6)

Country Link
EP (1) EP0377405B1 (de)
CA (1) CA2004000A1 (de)
DE (1) DE58901092D1 (de)
FI (1) FI895818A0 (de)
NO (1) NO171329C (de)
SE (1) SE8904075L (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108150220A (zh) * 2018-01-22 2018-06-12 重庆大学 一种盐穴储气库修复方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE511729C2 (sv) 1998-02-13 1999-11-15 Sydkraft Ab Sätt vid operation av ett bergrum för gas
ATE320302T1 (de) 1998-06-08 2006-04-15 Wild Vaucher Pierrette Verfahren zur entfernung von co2 aus verbrennungsabgasen, konversion in ch4 und speicherung ausserhalb der erdatmosphäre
CN104386409B (zh) * 2014-10-21 2016-08-24 中国矿业大学 一种煤矿区地面钻孔引导水源蓄存采空区的保水方法
CN105545359B (zh) * 2016-02-16 2017-09-26 中国石油天然气集团公司 一种水封洞库连接巷道与水幕巷道的注水导通装置及方法
CN109356650B (zh) * 2017-10-25 2021-03-26 中国矿业大学 一种利用煤矿井下巷道进行压缩空气储能的方法
CN108222904A (zh) * 2017-12-12 2018-06-29 浙江海洋大学 一种大型地下水封石洞库水幕补水***三维物理模型的装置
DE102023101619B3 (de) 2023-01-24 2024-06-27 Ontras Gastransport Gmbh Verfahren zum Befüllen eines Kavernenspeichers mit flüssigem Wasserstoff

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB959328A (en) * 1960-08-24 1964-05-27 Shell Res Ltd Storage of gases which are in the liquid phase
DE2236059C2 (de) * 1972-07-22 1974-08-22 Rheinisch-Westfaelisches Elektrizitaetswerk Ag, 4300 Essen Luft-Pumpspeicherwerk für Kraftwerksanlagen
SE373636B (sv) * 1973-08-06 1975-02-10 E I Janelid Sett for tetning av berg omkring ett i berget anornat bergrum for ett medium, vars temperatur avviker fran bergets naturliga temperatur

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108150220A (zh) * 2018-01-22 2018-06-12 重庆大学 一种盐穴储气库修复方法
CN108150220B (zh) * 2018-01-22 2019-06-25 重庆大学 一种盐穴储气库修复方法

Also Published As

Publication number Publication date
CA2004000A1 (en) 1990-06-06
NO894870D0 (no) 1989-12-05
EP0377405A1 (de) 1990-07-11
FI895818A0 (fi) 1989-12-05
DE58901092D1 (de) 1992-05-07
NO171329C (no) 1993-02-24
NO894870L (no) 1990-06-07
SE8904075D0 (sv) 1989-12-01
SE8904075L (sv) 1990-06-07
NO171329B (no) 1992-11-16

Similar Documents

Publication Publication Date Title
EP0377405B1 (de) Künstliche, unterirdische Kaverne zur Speicherung von gasförmigem Erdgas unter erhöhtem Druck und bei tiefer Temperatur und Verfahren zu ihrer Herstellung
EP2538072B1 (de) Unterirdisches Pumpspeicherkraftwerk
DE2815499A1 (de) Verfahren zur gewinnung von erdgas aus unter wasserdruck stehenden gaslagerstaetten
DE3410132A1 (de) Verfahren zur vorwiegend horizontalen, nachtraeglichen abdichtung von deponien und vorrichtungen zur durchfuehrung des verfahrens
DE4115431C2 (de)
DE1255904B (de) Erdbehaelter fuer Fluessiggase und Verfahren zu seiner Herstellung
DE2032101C3 (de) Verfahren zum Herstellen von dichten Untertagekammerspeichern für die Speicherung von Gasen oder Flüssigkeiten
DE2002552A1 (de) Verfahren und Vorrichtung zum Zwischenlagern eines normalerweise gasfoermigen Stoffs,insbesondere Erdgas
DE2320151C3 (de) Unterirdischer Speicherbehälter für verflüssigtes Gas
DE2146135A1 (de) Anlage zur unterirdischen Lagerung von Gas
DE102013107677A1 (de) Druckgasspeicher zur unterirdischen Druckgasspeicherung
DE3036842A1 (de) Verfahren zum bodengefrieren
DE2510552C3 (de) Verfahren zum Absenken eines schwimmfähigen Hohlkörpers und Hohlkörper zur Durchführung des Verfahrens
WO2013064162A1 (de) Verfahren und anlage zur erzeugung von elektrischen strom und ggf. wärme aus geothermischer energie oder erdwärme
DE1434604A1 (de) Verfahren zur Speicherung von Gas in unterirdischen Hohlraeumen
AT404247B (de) Druckbehälter für zu speichernde gase
EP1739686A1 (de) Verfahren zur unterboden-lagerung ökologisch gefährlicher mittel und einrichtung zur ausführung des verfahrens
DE828388C (de) Verfahren zur Klimatisierung der Grubenluft
DE854185C (de) Gefrierverfahren und Einrichtung zur Durchfuehrung des Verfahrens
DE202023103627U1 (de) Unterirdisches rotierendes Überschall-Luftmesser für ringförmige Kavitations- und Sickerwassererhöhungsanlagen
DE2928326A1 (de) Verfahren zum abdichten der aus stahloder spannbeton bestehenden innenwand eines doppelwandigen behaelters sowie nach diesem verfahren abgedichteter behaelter
CH616124A5 (en) Method for the safe subterranean storage of cold products and corresponding storage system
DE2253407A1 (de) Behaelter zum lagern kalter fluessigkeiten, insbesondere von fluessiggas, sowie verfahren zu ihrer herstellung
DE2364340B2 (de) Verfahren zum Sprengen
DE2432955A1 (de) Verfahren zum unterirdischen speichern von schweren fluessigkeiten, wie schweroel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19891128

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI NL

17Q First examination report despatched

Effective date: 19910917

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19920401

Ref country code: NL

Effective date: 19920401

Ref country code: FR

Effective date: 19920401

Ref country code: GB

Effective date: 19920401

REF Corresponds to:

Ref document number: 58901092

Country of ref document: DE

Date of ref document: 19920507

EN Fr: translation not filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19921130

Ref country code: LI

Effective date: 19921130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930803