EP0377117A1 - Verfahren und Vorrichtung zur Luftzerlegung - Google Patents

Verfahren und Vorrichtung zur Luftzerlegung Download PDF

Info

Publication number
EP0377117A1
EP0377117A1 EP89122047A EP89122047A EP0377117A1 EP 0377117 A1 EP0377117 A1 EP 0377117A1 EP 89122047 A EP89122047 A EP 89122047A EP 89122047 A EP89122047 A EP 89122047A EP 0377117 A1 EP0377117 A1 EP 0377117A1
Authority
EP
European Patent Office
Prior art keywords
argon
rectification
column
oxygen
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89122047A
Other languages
English (en)
French (fr)
Other versions
EP0377117B2 (de
EP0377117B1 (de
Inventor
Wilhelm Rohde
Horst Dipl.-Ing. Corduan
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6368245&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0377117(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of EP0377117A1 publication Critical patent/EP0377117A1/de
Application granted granted Critical
Publication of EP0377117B1 publication Critical patent/EP0377117B1/de
Publication of EP0377117B2 publication Critical patent/EP0377117B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04248Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion
    • F25J3/04284Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams
    • F25J3/0429Generation of cold for compensating heat leaks or liquid production, e.g. by Joule-Thompson expansion using internal refrigeration by open-loop gas work expansion, e.g. of intermediate or oxygen enriched (waste-)streams of feed air, e.g. used as waste or product air or expanded into an auxiliary column
    • F25J3/04303Lachmann expansion, i.e. expanded into oxygen producing or low pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04406Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system
    • F25J3/04412Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air using a dual pressure main column system in a classical double column flowsheet, i.e. with thermal coupling by a main reboiler-condenser in the bottom of low pressure respectively top of high pressure column
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04654Producing crude argon in a crude argon column
    • F25J3/04666Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system
    • F25J3/04672Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser
    • F25J3/04678Producing crude argon in a crude argon column as a parallel working rectification column of the low pressure column in a dual pressure main column system having a top condenser cooled by oxygen enriched liquid from high pressure column bottoms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04642Recovering noble gases from air
    • F25J3/04648Recovering noble gases from air argon
    • F25J3/04721Producing pure argon, e.g. recovered from a crude argon column
    • F25J3/04727Producing pure argon, e.g. recovered from a crude argon column using an auxiliary pure argon column for nitrogen rejection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2200/00Processes or apparatus using separation by rectification
    • F25J2200/90Details relating to column internals, e.g. structured packing, gas or liquid distribution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2235/00Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams
    • F25J2235/58Processes or apparatus involving steps for increasing the pressure or for conveying of liquid process streams the fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/42One fluid being nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2250/00Details related to the use of reboiler-condensers
    • F25J2250/30External or auxiliary boiler-condenser in general, e.g. without a specified fluid or one fluid is not a primary air component or an intermediate fluid
    • F25J2250/58One fluid being argon or crude argon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2290/00Other details not covered by groups F25J2200/00 - F25J2280/00
    • F25J2290/12Particular process parameters like pressure, temperature, ratios
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/923Inert gas
    • Y10S62/924Argon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S62/00Refrigeration
    • Y10S62/939Partial feed stream expansion, air

Definitions

  • the invention relates to a method and a device for air separation by low-temperature rectification of air, in which air is compressed, pre-cleaned, cooled, fed to a two-stage rectification and broken down into an oxygen-rich and a nitrogen-rich fraction, with another from the low-pressure stage of the rectification Argon-enriched oxygen fraction is removed and broken down into crude argon in a crude argon rectification and into a heavy-boiling residual fraction.
  • the main products of air separation, oxygen and nitrogen, can be taken directly from the two-stage rectification.
  • Argon on the other hand, whose boiling temperature is between the boiling temperatures of oxygen and nitrogen, accumulates in the middle region of the low-pressure stage of the rectification.
  • a fraction consisting essentially of oxygen is removed, with which a large part of the argon contained in the feed air is drawn off.
  • This fraction is obtained by rectification in a raw argon column in raw argon and in a liquid Residual fraction disassembled. The remaining fraction is returned to the low pressure stage.
  • a method of the type mentioned is known from DE-OS-34 36 897.
  • gaseous crude argon is obtained, which consists of approximately 95% argon and is contaminated with approximately 3% oxygen and 2% nitrogen (all percentages relate to the volume).
  • the oxygen can only be incompletely removed in the processes known hitherto during rectification in the crude argon column, which usually contains about 60 rectification trays, since the boiling points of argon and oxygen are extremely close to one another.
  • the difference in boiling temperatures is, for example, 2.9 K at a pressure of 1 bar.
  • the oxygen is separated from the crude argon in a so-called deoxo device by burning the oxygen with admixed hydrogen and separating the water formed in a dryer.
  • a deoxo device by burning the oxygen with admixed hydrogen and separating the water formed in a dryer.
  • Such a deoxo device is a complex apparatus and, above all, causes high operating costs due to the not inconsiderable consumption of hydrogen.
  • the provision of the hydrogen is particularly complex if this does not occur anyway in chemical processes that are carried out at the location of the air separation plant.
  • the invention has for its object to develop a method and an apparatus of the type mentioned, which are characterized by a low level of equipment and low operating costs.
  • the head of the rectification column in which such a separation is to be carried out has to be generated be cooled by return.
  • This head cooling only an indirect heat exchange with the bottom fraction from the pressure stage comes into question, as is usually also used in the crude argon rectification.
  • the bottom fraction is expanded in a top condenser and liquefied there. Indirect heat exchange absorbs heat from condensing gas in the top of the crude argon column.
  • the evaporated bottom fraction is introduced into the low pressure column.
  • a prerequisite for the fact that return can be generated in this way is, however, that the condensation temperature of the gas at the top of the column to be cooled is higher than the evaporation temperature of the evaporating bottom liquid. These temperatures are determined by the pressures of the respective fractions.
  • an exclusively rectifying separation of the oxygen is nevertheless maintained.
  • rectification trays are dispensed with in the device according to the invention and instead structured packings or fillers are used which bring about a substantially lower pressure drop within the rectification column. Since there was no empirical data on the effect of structured packings or packing elements in air rectification, it was only with the experience gained in a larger test facility that the possible implementation of packs in this area and especially in the crude argon column could be assessed. The tests showed that with a theoretical number of trays between 150 and 200, preferably about 180, an oxygen content of less than 1 ppm in the raw argon is possible with an economical argon yield.
  • the invention is explained in more detail below on the basis of an exemplary embodiment shown schematically in the drawing.
  • the figure shows in simplified form a process for air separation with subsequent argon extraction, which is carried out purely by rectification according to the invention.
  • Air is drawn in from the compressor 2 via line 1 and freed of water vapor and carbon dioxide in a cleaning stage 3.
  • the air is then cooled in a heat exchanger 4 in countercurrent to product gases and partly introduced via line 5 into the pressure column 10 of a two-stage rectification column 9.
  • Another part of the air is branched off in the heat exchanger 4 at an average temperature (line 6), expanded in a turbine 7 while performing work, and fed to the low-pressure column 11 via line 8.
  • a condenser-evaporator 12 gas is condensed from the top of the pressure column against evaporating bottom liquid of the low-pressure column, and is fed as a return to the pressure column. From the Pressure column nitrogen gas (line 15) and liquid (line 14) is removed. A portion of the liquid nitrogen is fed as a return liquid into the low pressure column via line 18. Sump liquid is fed out of the pressure column via line 13 and partly fed via line 16 to the central region of the low pressure column.
  • Gaseous nitrogen (line 20) and gaseous oxygen (line 21) are taken from the low-pressure column as product streams and then heated in the heat exchanger 4 to almost ambient temperature.
  • Another fraction leaves the low-pressure column via line 22.
  • This fraction contains 87-92%, preferably 90% oxygen, 8-13%, preferably 10% argon and also about 0.05% nitrogen and is fed into the lower region of a crude argon column 24.
  • the top condenser 26 of the crude argon column 24 is cooled by vaporizing liquid which is fed from the bottom of the pressure column 10 via line 17.
  • the bottom liquid in line 17 contains 35-40% oxygen and is expanded to approximately the pressure of the low pressure column before being introduced into the top condenser 26.
  • the evaporated portion is introduced via line 19 into the low pressure column.
  • the raw argon column 24 is equipped with structured packings which correspond to a theoretical number of plates from 170 to 200, preferably approximately 180, and is operated under the pressure of the low pressure column from 1.2 to 1.6, preferably approximately 1.3 bar. Instead of the packs, too Packings with a similarly low pressure drop can be used.
  • Raw argon is removed in gaseous form via line 25 and contains only about 1 ppm oxygen. A part of this raw argon is liquefied in the top condenser 26 and returned to the raw argon column as a return. The remaining raw argon is condensed in a raw argon liquefier 28 by heat exchange with evaporating nitrogen 29, which comes from the pressure column.
  • the nitrogen remaining in the crude argon is separated off in the pure argon column, which, like the large rectification column 9, can be designed in a conventional manner with trays.
  • the bottom of the column is heated by nitrogen gas which is fed from the pressure column via line 15.
  • the condensed nitrogen 31 is used together with the liquid 32 removed from the pressure column to cool the head of the pure argon column.
  • gas is withdrawn via line 34 and partly liquefied in the top condenser 33 and returned to the pure argon column 30.
  • the remaining part is discharged via line 37 as residual gas, which consists essentially of nitrogen.
  • Liquid pure argon is removed via line 39 and still contains a total of 1-10 ppm, preferably 3 ppm, of impurities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Removal Of Specific Substances (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

Es werden ein Verfahren und eine Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation beschrieben, bei denen Argon ausschließlich durch Rektifikation gewonnen wird. Eine Rohargonsäule (24) wird mit mindestens 150 theoretischen Rektifizierböden ausgestattet, so daß in ihr eine vollständige Abtrennung des Sauerstoffs möglich ist.

Description

  • Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Luftzerlegung durch Tieftemperaturrektifikation von Luft, bei dem Luft verdichtet, vorgereinigt, abgekühlt, einer zweistufigen Rektifikation zugeführt und in eine sauerstoffreiche und in eine stickstoffreiche Fraktion zerlegt wird, wobei aus der Niederdruckstufe der Rektifikation eine weitere, mit Argon angereicherte Sauerstofffraktion entnommen und in einer Rohargonrektifikation in Rohargon und in eine schwerersiedende Restfraktion zerlegt wird.
  • Die Hauptprodukte einer Luftzerlegung, Sauerstoff und Stickstoff, können unmittelbar aus der zweistufigen Rektifikation entnommen werden. Argon dagegen, dessen Siedetemperatur zwischen den Siedetemperaturen von Sauerstoff und Stickstoff liegt, reichert sich im mittleren Bereich der Niederdruckstufe der Rektifikation an. An dieser Stelle wird eine im wesentlichen aus Sauerstoff bestehende Fraktion entnommen, mit der ein großer Teil des in der Einsatzluft enthaltenen Argons abgezogen wird. Diese Fraktion wird durch Rektifikation in einer Rohargonsäule in Rohargon und in eine flüssige Restfraktion zerlegt. Die Restfraktion wird in die Niederdruckstufe zurückgeführt.
  • Ein Verfahren der eingangs gennanten Art ist aus der DE-OS-34 36 897 bekannt. Dort wird im Anschluß an eine zweistufige Luftrektifikation in einer Rohargonsäule gasförmiges Rohargon gewonnen, das zu etwa 95% aus Argon besteht und haptsächlich durch ca. 3% Sauerstoff und 2% Stickstoff verunreinigt ist (alle Prozentangaben beziehen sich auf das Volumen). Der Sauerstoff kann bei den bisher bekannten Verfahren bei der Rektifikation in der Rohargonkolonne, die üblicherweise etwa 60 Rektifizierböden enthält, nur unvollständig entfernt werden, da die Siedepunkte von Argon und Sauerstoff außerordentlich dicht beieinander liegen. Die Differenz der Siedetemperaturen beträgt beispielsweise 2,9 K bei einem Druck von 1 bar.
  • Soll reines Argon gewonnen werden, das weniger als 1% Verunreinigungen enthält, so muß der restliche Sauerstoff, der einen geringfügig höheren Siedepunkt als Argon aufweist, aus dem auf die bekannte Weise gewonnene Rohargon entfernt werden, bevor der leichterflüchtige Stickstoff in einer Reinargonsäule rektifikatorisch abgetrennt wird.
  • Die Abtrennung des Sauerstoffs aus dem Rohargon wird bei den bekannten Verfahren in einer sogenannten Deoxo-Vorrichtung durchgeführt, indem der Sauerstoff mit zugemischtem Wasserstoff verbrannt und das dabei entstandene Wasser in einem Trockner abgetrennt wird. Ein solches Verfahren ist beispielsweise in der DE-OS-34 28 968 veröffentlicht worden.
  • Eine derartige Deoxo-Vorrichtung stellt eine aufwendige Apparatur dar und verursacht vor allem hohe Betriebskosten durch den nicht unerheblichen Verbrauch an Wasserstoff. Besonders aufwendig ist die Bereitstellung des Wasser- stoffs, wenn dieser nicht ohnehin bei chemischen Prozessen anfällt, die am Ort der Luftzerlegungsanlage durchgeführt werden.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Verfahren und eine Vorrichtung der eingangs gennanten Art zu entwickeln, die sich durch einen geringen apparativen Aufwand und niedrige Betriebskosten auszeichnen.
  • Diese Aufgabe wird durch die im kennzeichnenden Teil der Patentanspruches 1 aufgeführten Merkmale gelöst. Die Unteransprüche beinhalten besonders günstige Ausgestaltungen der Erfindung.
  • Eine rektifikatorische Trennung von Sauerstoff und Argon under einen Sauerstoffanteil von etwa 1% hinaus wurde bei der Planung von Luftzerlegungsanlagen bisher nicht ernsthaft erwogen, da eine solche Verfahrensweise wegen der geringen Differenz der Siedetemperaturen der beiden Stoff außerordentlich schwierig und aufwendig erscheint. Diese Zurückhaltung ist auf zunächst einleuchtende Argumente gegründet, die im folgenden kurz ausgeführt werden.
  • Der Kopf der Rektifiziersäule, in der eine solche Trennung durchgeführt werden, soll, muß zur Erzeugung von Rücklauf gekühlt werden. Für diese Kopfkühlung kommt nur ein indirekter Wärmetausch mit der Sumpffraktion aus der Druckstufe in Frage, wie sie üblicherweise auch bei der Rohargonrektifikation angewandt wird. Die Sumpffraktion wird dabei in einen Kopfkondensator entspannt und dort verflüssigt. Durch indirekten Wärmetausch wird Wärme aus kondensierendem Gas im Kopf der Rohargonsäule aufgenommen. Die verdampfte Sumpffraktion wird in die Niederdrucksäule eingeleitet. Voraussetzung dafür, daß auf diese Weise Rücklauf erzeugt werden kann, ist allerdings, daß die Kondensationstemperatur des Gases am Kopf der zu kühlenden Säule höher als die Verdampfungstemperatur der verdampfenden Sumpfflüssigkeit ist. Diese Temperaturen werden durch die Drücke der jeweiligen Fraktionen festgelegt. Deren Werte sind beide an den Druck der Niederdrucksäule gebunden, da einerseits die zu rektifizierende argonhaltige Fraktion aus der Niederdrucksäule stammt und andererseits die zur Kühlung eingesetzte Fraktion anschließend in die Niederdrucksäule eingeführt wird. Eine zusätzliche Verdichtung eines der beiden Ströme wäre wirtschaftlich nicht vertretbar, da es sich im Vergleich zur gewonnenen Rohargonmenge um außerordentlich hohe Umsätze handelt.
  • Die Trennstufen von Rektifiziersäulen in Luftzerlegungsanlagen werden nahezu ausschließlich mittels Böden realisiert. Eine Säule zur vollständigen Abtrennung von Sauerstoff aus Argon müßte jedoch eine solch hohe Anzahl von Böden enthalten, daß dadurch eine starker Druckabfall innerhalb der Kolonne entstünde. Infolge dessen sänke der Druck am Kopf der Säule so weit ab, daß die Kondensationstemperatur des Kopfgases unterhalb der Verdampfungstemperatur der Sumpfflüssigkeit der Drucksäule (30 bis 40% Sauerstoff) beim Druck der Niederdrucksäule (ca. 1,4 bar) läge. Damit wäre eine Erzeugung von Rücklaufflüssigkeit nicht mehr möglich, in der Säule könnte keine Rektifikation durchgeführt werden.
  • Gemäß der Erfindung wird trotzdem an einer ausschließblich rektifikatorischen Abtrennung des Sauerstoffs festgehalten. Dies wird dadurch ermöglicht, daß bei der erfindungsgemäßen Vorrichtung auf Rektifizierböden verzichtet und statt dessen strukturierte Packungen oder Füllkörper eingesetzt werden, die einen wesentlich geringeren Druckabfall innerhalb der Rektifiziersäule bewirken. Da keinerlei Erfahrungswerte über die Wirkung von strukturierten Packungen oder Füllkörpern bei der Luftrektifikation vorlagen, konnte erst mit Hilfe der Erfahrungen, die in einer größeren Versuchanlage gewonnen wurden, die Realisierungsmöglichkeiten eines Einsatzes von Packungen auf diesem Gebiet und speziell in der Rohargonsäule eingeschätzt werden. Bei den Versuchen ergab sich, daß mit einer theoretischen Bodenzahl zwischen 150 und 200, vorzugsweise etwas 180, ein Sauerstoffgehalt von unter 1 ppm im Rohargon bei wirtschaftlicher Argonausbeute möglich ist.
  • Besonders vorteilhaft ist es, diese Argonrektifikation bereits in der Rohargonsäule durchzuführen. Dadurch muß die Rohargonsäule zwar mit einer hohen Anzahl von Trennstufen ausgeführt werden und erreicht eine verhältnismäßig große Bauhöhe. Die erzielten Einsparungen sind jedoch ungleich höher als dieser zusätzliche Aufwand, da das sauerstofffreie Rohargon direkt einer Reinargonrektifikation zugeführt werden kann. Eine Deoxo-Anlage zur Entfernung von Restsauerstoff braucht nicht eingebaut zu werden. Der Hauptvorteil der Erfindung besteht jedoch darin, daß die hohen Betriebskosten einer Deoxo-Vorrichtung und der durch sie verursachte höhere Steuerungsaufwand vollständig wegfallen.
  • Die Erfindung wird im folgenden anhand eines in der Zeichnung schematisch dargestellten Ausführungsbeispiels näher erläutert. Die Figur zeigt in vereinfachter Form ein Verfahren zur Luftzerlegung mit anschließender Argongewinnung, die erfindungsgemäß rein rektifikatorisch durchgeführt wird.
  • Über Leitung 1 wird Luft vom Verdichter 2 angesaugt und in einer Reinigungsstufe 3 von Wasserdampf und Kohlendioxid befreit. Die Luft wird anschließend in einem Wärmetauscher 4 im Gegenstrom zu Produktgasen abgekühlt und zu einem Teil über Leitung 5 in die Drucksäule 10 einer zweistufigen Rektifizierkolonne 9 eingeführt. Eine anderer Teil der Luft wird im Wärmetauscher 4 bei einer mittleren Temperatur abgezweigt (Leitung 6), in einer Turbine 7 arbeitsleistend entspannt und über Leitung 8 der Niederdrucksäule 11 zugeführt.
  • In einem Kondensator-Verdampfer 12 wird Gas aus dem Kopf der Drucksäule gegen verdampfende Sumpfflüssigkeit der Niederdrucksäule kondensiert, und als Rücklauf auf die Drucksäule aufgegeben. Aus der Drucksäule wird Stickstoff gasförmige (Leitung 15) und flüssig (Leitung 14) entnommen. Ein Teil des flüssig entnommenen Stickstoffs wird über Leitung 18 als Rücklaufflüssigkeit in die Niederdrucksäule eingespeist. Über Leitung 13 wird Sumpfflüssigkeit aus der Drucksäule heraus- und teilweise über Leitung 16 dem mittleren Bereich der Niederdrucksäule zugeführt.
  • Als Produktströme werden der Niederdrucksäule gasförmiger Stickstoff (Leitung 20) und gasförmiger Sauerstoff (Leitung 21) entnommen und anschließend im Wärmetauscher 4 auf nahezu Umgebungstemperatur angewärmt. Eine weitere Fraktion verläßt über Leitung 22 die Niederdruckkolonne. Diese Fraktion enthält 87 - 92%, vorzugsweise 90 % Sauerstoff, 8 - 13 %, vorzugsweise 10% Argon und Außerdem etwa 0,05% Stickstoff und wird in den unteren Bereich einer Rohargonsäule 24 eingespeist. Der Kopfkondensator 26 der Rohargonsäule 24 wird durch verdampfende Flüssigkeit, die über Leitung 17 aus dem Sumpf der Drucksäule 10 herangeführt wird, gekühlt. Die Sumpfflüssigkeit in Leitung 17 enthält 35 - 40% Sauerstoff und wird vor der Einführung in den Kopfkondensator 26 auf etwa den Druck der Niederdrucksäule enspannt. Der verdampfte Anteil wird über Leitung 19 in die Niederdrucksäule eingeleitet.
  • Die Rohargonsäule 24 ist erfindungsgemäß mit strukturierten Packungen ausgestattet, die einer theoretischen Bodenanzahl von 170 - 200, vorzugsweise ca. 180 entsprechen, und wird unter dem Druck der Niederdrucksäule von 1,2 bis 1,6, vorzugsweise ca. 1,3 bar betrieben. Statt der Packungen könnten auch Füllkörper mit ähnlich geringem Druckverlust eingesetzt werden. Über Leitung 25 wird Rohargon gasförmig entnommen, das nur noch etwa 1 ppm Sauerstoff enthält. Ein Teil dieses Rohargons wird im Kopfkondensator 26 verflüssigt und als Rücklauf in die Rohargonsäule zurückgeleitet. Das übrige Rohargon wird in einem Rohargonverflüssiger 28 im Wärmetausch mit verdampfendem Stickstoff 29, der aus der Drucksäule stammt, kondensiert.
  • Wegen der großen Bauhöhe der erfindungsgemäß ausgeführten Rohargonsäule (etwa 30 m) bietet es sich an, in Leitung 40 das hydrostatische Potential des am Kopf der Rohargonsäule entnommenen Rohargons auszunutzen, um den für die Feinreinigung in einer Reinargonsäule 30 benötigten Druck zu erzeugen.
  • In der Reinargonsäule, die ebenso wie die große Rektifiziersäule 9 auf konventionell Weise mit Böden ausgeführt sein kann, wird der im Rohargon verbliebene Stickstoff abgetrennt. Der Sumpf der Säule wird durch Stickstoffgas, das über Leitung 15 aus der Drucksäule herangeführt wird, beheizt. Der dabei kondensierte Stickstoff 31 wird gemeinsam mit aus der Drucksäule flüssig entnommenem Stickstoff 32 zur Kühlung des Kopfes der Reinargonsäule verwendet. Am Kopf der Reinargonsäule wird über Leitung 34 Gas entnommen und zum einen Teil im Kopfkondensator 33 verflüssigt und in die Reinargonsäule 30 zurückgeführt. Der übrige Teil wird über Leitung 37 als Restgas abgegeben, das im wesentlichen aus Stickstoff besteht. Über Leitung 39 wird flüssiges Reinargon entnommen, das insgesamt noch 1 - 10 ppm, vorzugsweise 3 ppm Verunreinigungen enthält.

Claims (3)

1. Verfahren zur Luftzerlegung durch Tieftemperaturrektifikation von Luft, bei dem Luft verdichtet, vorgereinigt, abgekühlt, einer einstufigen Rektifikation zugeführt und in eine sauerstoffreiche und in eine stickstoffreiche Fraktion zerlegt wird, wobei aus der Niederdruckstufe der Rektifikation eine weitere, mit Argon angereicherte Sauerstofffraktion entnommen und in einer Rohargonrektifikation in Rohargon und in eine schwerersiedende Restfraktion zerlegt wird, dadurch gekennzeichnet, daß die Rohargonrektifikation mit mindestens 150 theoretischen Böden durchgeführt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das Rohargon aus der Rohargonrektifikation in einer Reinargonrektifikation in Reinargon und in eine leichtersiedende Restfraktion zerlegt wird.
3. Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1 mit einer zweistufigen Rektifizierkolonne, bestehend aus einer Drucksäule und einer Niederdrucksäule, und mit einer Rohargonsäule, dadurch gekennzeichnet, daß die Rohargonsäule strukturierte Packungen oder Füllkörper aufweist.
EP89122047A 1988-12-01 1989-11-29 Verfahren und Vorrichtung zur Luftzerlegung Expired - Lifetime EP0377117B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3840506A DE3840506A1 (de) 1988-12-01 1988-12-01 Verfahren und vorrichtung zur luftzerlegung
DE3840506 1988-12-01

Publications (3)

Publication Number Publication Date
EP0377117A1 true EP0377117A1 (de) 1990-07-11
EP0377117B1 EP0377117B1 (de) 1992-03-25
EP0377117B2 EP0377117B2 (de) 1995-05-17

Family

ID=6368245

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89122047A Expired - Lifetime EP0377117B2 (de) 1988-12-01 1989-11-29 Verfahren und Vorrichtung zur Luftzerlegung

Country Status (11)

Country Link
US (1) US5019145A (de)
EP (1) EP0377117B2 (de)
JP (1) JPH0781781B2 (de)
KR (1) KR950014009B1 (de)
CN (1) CN1019690B (de)
AT (1) ATE74199T1 (de)
AU (1) AU617226B2 (de)
CA (1) CA2004263C (de)
DE (2) DE3840506A1 (de)
ES (1) ES2031677T5 (de)
ZA (1) ZA899186B (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628777A1 (de) * 1993-05-28 1994-12-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Argon
EP0669508A1 (de) * 1994-02-24 1995-08-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von reinem Argon
DE4406051A1 (de) * 1994-02-24 1995-08-31 Linde Ag Verfahren und Vorrichtung zur Gewinnung von reinem Argon
DE4406049A1 (de) * 1994-02-24 1995-09-07 Linde Ag Verfahren und Vorrichtung zur Gewinnung von reinem Argon
DE4406069A1 (de) * 1994-02-24 1995-09-07 Linde Ag Verfahren und Vorrichtung zur Gewinnung von reinem Argon
EP0687876A1 (de) 1994-06-17 1995-12-20 The BOC Group plc Lufttrennung
EP0692689A1 (de) * 1994-07-14 1996-01-17 Praxair Technology, Inc. Kryogenisches Lufttrennungsverfahren mit Flüssigluftstripping
EP0714005A2 (de) 1994-11-24 1996-05-29 The BOC Group plc Lufttrennung
EP0722074A3 (de) * 1995-01-11 1997-04-16 Boc Group Plc Lufttrennung
EP0733869A3 (de) * 1995-03-21 1997-05-02 Boc Group Plc Lufttrennung
EP0733589A3 (de) * 1995-03-24 1997-10-15 Praxair Technology Inc Verfahren und Vorrichtung zur Gewinnung und Reinigung von Argon aus einem kryogenem Lufttrennungssystem
EP0752565A3 (de) * 1995-07-06 1998-01-28 The BOC Group plc Herstellung von Argon
EP0768503A3 (de) * 1995-10-11 1998-02-04 Linde Aktiengesellschaft Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
EP1103772A1 (de) * 1999-11-26 2001-05-30 Linde Aktiengesellschaft Vorrichtung zur Gewinnung von Argon
EP2211131A1 (de) 2009-01-21 2010-07-28 Linde AG Verfahren zum Betreiben einer Luftzerlegungsanlage

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4994098A (en) * 1990-02-02 1991-02-19 Air Products And Chemicals, Inc. Production of oxygen-lean argon from air
US4983194A (en) * 1990-02-02 1991-01-08 Air Products And Chemicals, Inc. Production of high purity argon
US5133790A (en) * 1991-06-24 1992-07-28 Union Carbide Industrial Gases Technology Corporation Cryogenic rectification method for producing refined argon
US5161380A (en) * 1991-08-12 1992-11-10 Union Carbide Industrial Gases Technology Corporation Cryogenic rectification system for enhanced argon production
US5235816A (en) * 1991-10-10 1993-08-17 Praxair Technology, Inc. Cryogenic rectification system for producing high purity oxygen
US5207066A (en) * 1991-10-22 1993-05-04 Bova Vitaly I Method of air separation
US5237823A (en) * 1992-03-31 1993-08-24 Praxair Technology, Inc. Cryogenic air separation using random packing
JP2966999B2 (ja) * 1992-04-13 1999-10-25 日本エア・リキード株式会社 超高純度窒素・酸素製造装置
US5230217A (en) * 1992-05-19 1993-07-27 Air Products And Chemicals, Inc. Inter-column heat integration for multi-column distillation system
US5305611A (en) * 1992-10-23 1994-04-26 Praxair Technology, Inc. Cryogenic rectification system with thermally integrated argon column
US5311744A (en) * 1992-12-16 1994-05-17 The Boc Group, Inc. Cryogenic air separation process and apparatus
DE4332870C2 (de) * 1993-09-27 2003-02-20 Linde Ag Verfahren und Vorrichtung zur Gewinnung eines Krypton-/Xenon-Konzentrats durch Tieftemperaturzerlegung von Luft
CA2142318A1 (en) * 1994-02-24 1995-08-25 Horst Corduan Process and apparatus for recovery of pure argon
US5396772A (en) * 1994-03-11 1995-03-14 The Boc Group, Inc. Atmospheric gas separation method
GB9410696D0 (en) 1994-05-27 1994-07-13 Boc Group Plc Air separation
DE4443190A1 (de) * 1994-12-05 1996-06-13 Linde Ag Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
WO1997001068A1 (fr) * 1995-06-20 1997-01-09 Nippon Sanso Corporation Procede et appareil de separation de l'argon
DE19543395A1 (de) 1995-11-21 1997-05-22 Linde Ag Doppelsäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE19543953C1 (de) * 1995-11-25 1996-12-19 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Sauerstoff und Stickstoff unter überatmosphärischem Druck
US5799508A (en) * 1996-03-21 1998-09-01 Praxair Technology, Inc. Cryogenic air separation system with split kettle liquid
FR2757421B1 (fr) * 1996-12-24 1999-01-15 Air Liquide Procede d'epuration d'un fluide cryogenique par filtration et/ou adsorption
US5768914A (en) * 1997-07-28 1998-06-23 Air Products And Chemicals, Inc. Process to produce oxygen and argon using divided argon column
US5916261A (en) * 1998-04-02 1999-06-29 Praxair Technology, Inc. Cryogenic argon production system with thermally integrated stripping column
US6276170B1 (en) * 1999-05-25 2001-08-21 Air Liquide Process And Construction Cryogenic distillation system for air separation
US6347534B1 (en) * 1999-05-25 2002-02-19 Air Liquide Process And Construction Cryogenic distillation system for air separation
US6321567B1 (en) 2000-10-06 2001-11-27 Praxair Technology, Inc. Structured packing system for reduced distillation column height
DE10153252A1 (de) * 2001-10-31 2003-05-15 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Krypton und/oder Xenon durch Tieftemperaturzerlegung von Luft
US7087804B2 (en) * 2003-06-19 2006-08-08 Chevron U.S.A. Inc. Use of waste nitrogen from air separation units for blanketing cargo and ballast tanks
EP2026024A1 (de) 2007-07-30 2009-02-18 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
DE102007035619A1 (de) 2007-07-30 2009-02-05 Linde Ag Verfahren und Vorrichtung zur Gewinnung von Argon durch Tieftemperaturzerlegung von Luft
JP5642923B2 (ja) * 2008-06-10 2014-12-17 エア・ウォーター株式会社 空気分離方法
DE102009016043A1 (de) 2009-04-02 2010-10-07 Linde Ag Verfahren zum Betreiben einer Reinargonsäule und Vorrichtung zur Reinargongewinnung
US8899075B2 (en) 2010-11-18 2014-12-02 Praxair Technology, Inc. Air separation method and apparatus
DE102012006479A1 (de) 2012-03-29 2013-10-02 Linde Ag Transportables Paket mit einer Coldbox und Verfahren zum Herstellen einer Tieftemperatur-Luftzerlegungsanlage
EP2645031A1 (de) 2012-03-29 2013-10-02 Linde Aktiengesellschaft Trennsäule für eine Tieftemperatur-Luftzerlegungsanlage, Tieftemperatur-Luftzerlegungsanlage und Verfahren zur Tieftemperaturzerlegung von Luft
DE102012006484A1 (de) 2012-03-29 2013-10-02 Linde Aktiengesellschaft Transportables Paket mit einer Coldbox und Verfahren zum Herstellen einer Tieftemperatur-Luftzerlegungsanlage
DE102012008415A1 (de) 2012-04-27 2013-10-31 Linde Aktiengesellschaft Transportables Paket mit einer Coldbox, Tieftemperatur-Luftzerlegungsanlage und Verfahren zum Herstellen einer Tieftemperatur-Luftzerlegungsanlage
CA2900122C (en) 2013-03-06 2023-10-31 Linde Aktiengesellschaft Air separation plant, method for obtaining a product containing argon, and method for creating an air separation plant
CN103267403B (zh) * 2013-05-15 2015-09-16 兖矿集团有限公司 一种提高液氩产量的***及方法
CN103256081B (zh) * 2013-05-22 2015-04-22 南京飓能电控自动化设备制造有限公司 基于超临界空气的能源综合利用方法
DE102013018664A1 (de) 2013-10-25 2015-04-30 Linde Aktiengesellschaft Verfahren zur Tieftemperaturzerlegung von Luft und Tieftemperatur-Luftzerlegungsanlage
EP3040665A1 (de) 2014-12-30 2016-07-06 Linde Aktiengesellschaft Destillationssäulen-system und anlage zur erzeugung von sauerstoff durch tieftemperaturzerlegung von luft
EP3048401A1 (de) 2015-01-20 2016-07-27 Linde Aktiengesellschaft Verfahren und vorrichtung zur variablen gewinnung von argon durch tieftemperturzerlegung von luft
US10663222B2 (en) * 2018-04-25 2020-05-26 Praxair Technology, Inc. System and method for enhanced recovery of argon and oxygen from a nitrogen producing cryogenic air separation unit
US11828532B2 (en) * 2020-12-31 2023-11-28 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Method and apparatus for transfer of liquid

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231163A1 (de) * 1986-01-30 1987-08-05 De Belgische Staat L'Etat Belge représenté par le Secrétaire général des Services de Programmation Verfahren zur Gewinnung von Äthylen aus Äthanol
EP0341854A1 (de) * 1988-04-29 1989-11-15 Air Products And Chemicals, Inc. Lufttrennungsverfahren unter Verwendung von gepackten Kolonnen für die Rückgewinnung von Sauerstoff und Argon

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE821951C (de) * 1949-06-20 1951-11-22 Linde Eismasch Ag Verfahren zur Gewinnung von Argon
NL111405C (de) * 1953-11-12
IT1034545B (it) * 1975-03-26 1979-10-10 Siad Processo ed impianto per l otte nimento dell argon a partire da un processo di frazionamento dell aria
IT1034544B (it) * 1975-03-26 1979-10-10 Siad Procedimento ed impianto per il frazionamento dell aria con colon na a semplice rettifica
CH617357A5 (de) * 1977-05-12 1980-05-30 Sulzer Ag
DE3428968A1 (de) * 1984-08-06 1986-02-13 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zur zerlegung von rohargon
DE3436897A1 (de) * 1984-10-08 1986-04-10 Linde Ag, 6200 Wiesbaden Verfahren und vorrichtung zum betreiben einer luftzerlegungsanlage
US4836836A (en) * 1987-12-14 1989-06-06 Air Products And Chemicals, Inc. Separating argon/oxygen mixtures using a structured packing
US4838913A (en) * 1988-02-10 1989-06-13 Union Carbide Corporation Double column air separation process with hybrid upper column

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0231163A1 (de) * 1986-01-30 1987-08-05 De Belgische Staat L'Etat Belge représenté par le Secrétaire général des Services de Programmation Verfahren zur Gewinnung von Äthylen aus Äthanol
EP0341854A1 (de) * 1988-04-29 1989-11-15 Air Products And Chemicals, Inc. Lufttrennungsverfahren unter Verwendung von gepackten Kolonnen für die Rückgewinnung von Sauerstoff und Argon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Band 80, Nr. 60, 25. M{rz 1974, Seite 109, Anszug Nr. 61607b, Columbus, Ohio, US; "High-purity argon from deep cooling o , & JP-A-48 69 766 (NIPPON SANSO) *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0628777A1 (de) * 1993-05-28 1994-12-14 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von Argon
EP0669508A1 (de) * 1994-02-24 1995-08-30 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Gewinnung von reinem Argon
DE4406051A1 (de) * 1994-02-24 1995-08-31 Linde Ag Verfahren und Vorrichtung zur Gewinnung von reinem Argon
DE4406049A1 (de) * 1994-02-24 1995-09-07 Linde Ag Verfahren und Vorrichtung zur Gewinnung von reinem Argon
DE4406069A1 (de) * 1994-02-24 1995-09-07 Linde Ag Verfahren und Vorrichtung zur Gewinnung von reinem Argon
EP0687876A1 (de) 1994-06-17 1995-12-20 The BOC Group plc Lufttrennung
EP0692689A1 (de) * 1994-07-14 1996-01-17 Praxair Technology, Inc. Kryogenisches Lufttrennungsverfahren mit Flüssigluftstripping
EP0714005A3 (de) * 1994-11-24 1997-04-09 Boc Group Plc Lufttrennung
EP0714005A2 (de) 1994-11-24 1996-05-29 The BOC Group plc Lufttrennung
EP0722074A3 (de) * 1995-01-11 1997-04-16 Boc Group Plc Lufttrennung
EP0733869A3 (de) * 1995-03-21 1997-05-02 Boc Group Plc Lufttrennung
EP1243883A1 (de) * 1995-03-21 2002-09-25 The BOC Group plc Luftzerlegung
EP0733589A3 (de) * 1995-03-24 1997-10-15 Praxair Technology Inc Verfahren und Vorrichtung zur Gewinnung und Reinigung von Argon aus einem kryogenem Lufttrennungssystem
EP0752565A3 (de) * 1995-07-06 1998-01-28 The BOC Group plc Herstellung von Argon
EP0768503A3 (de) * 1995-10-11 1998-02-04 Linde Aktiengesellschaft Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
EP1103772A1 (de) * 1999-11-26 2001-05-30 Linde Aktiengesellschaft Vorrichtung zur Gewinnung von Argon
EP2211131A1 (de) 2009-01-21 2010-07-28 Linde AG Verfahren zum Betreiben einer Luftzerlegungsanlage

Also Published As

Publication number Publication date
ES2031677T3 (es) 1992-12-16
CN1019690B (zh) 1992-12-30
US5019145A (en) 1991-05-28
CA2004263A1 (en) 1990-06-01
ES2031677T5 (es) 1995-09-16
EP0377117B2 (de) 1995-05-17
KR950014009B1 (ko) 1995-11-20
CA2004263C (en) 1994-02-01
ATE74199T1 (de) 1992-04-15
KR900009433A (ko) 1990-07-04
CN1043196A (zh) 1990-06-20
AU617226B2 (en) 1991-11-21
DE3840506A1 (de) 1990-06-07
EP0377117B1 (de) 1992-03-25
DE3840506C2 (de) 1992-01-16
AU4582189A (en) 1990-06-07
JPH02247484A (ja) 1990-10-03
DE58901041D1 (de) 1992-04-30
ZA899186B (en) 1990-08-29
JPH0781781B2 (ja) 1995-09-06

Similar Documents

Publication Publication Date Title
EP0377117B1 (de) Verfahren und Vorrichtung zur Luftzerlegung
EP0955509B1 (de) Verfahren und Vorrichtung zur Gewinnung von hochreinem Sauerstoff
EP0299364B1 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation
DE69100239T2 (de) Herstellung von ultrahochreinem Sauerstoff bei der Tieftemperatur-Luftzerlegung.
EP0628777B1 (de) Verfahren und Vorrichtung zur Gewinnung von Argon
EP0384213B1 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation
EP0505812A1 (de) Verfahren zur Tieftemperaturzerlegung von Luft
EP0383994A2 (de) Verfahren und Vorrichtung zur Luftzerlegung durch Rektifikation
DE4443190A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE69209572T2 (de) Verfahren zur Herstellung von reinstem Stickstoff
DE3817244A1 (de) Verfahren zur tieftemperaturzerlegung von luft
EP0669508B1 (de) Verfahren und Vorrichtung zur Gewinnung von reinem Argon
EP0948730A1 (de) Verfahren und vorrichtung zur gewinnung von druckstickstoff
EP0363861B1 (de) Verfahren zur Gewinnung von Rohargon
EP1006326B1 (de) Verfahren und Vorrichtung zur Gewinnung von Drucksauerstoff und Krypton/Xenon durch Tieftemperaturzerlegung von Luft
DE3307181A1 (de) Verfahren und vorrichtung zur zerlegung von luft
EP0768503A2 (de) Dreifachsäulenverfahren zur Tieftemperaturzerlegung von Luft
DE2903089A1 (de) Verfahren zur gewinnung von sauerstoff aus luft
DE69301418T2 (de) Kryogenisches Rektifikationssystem mit doppelter Wärmepumpe
DE69004647T2 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft.
DE19933558C5 (de) Dreisäulenverfahren und -vorrichtung zur Tieftemperaturzerlegung von Luft
DE3035844A1 (de) Verfahren und vorrichtung zur gewinnung von sauerstoff mittlerer reinheit
EP0559117B1 (de) Verfahren und Vorrichtung zur Zerlegung eines Gasgemisches
DE19725821A1 (de) Verfahren und Vorrichtung zur Tieftemperaturzerlegung von Luft
DE2307004A1 (de) Verfahren und vorrichtung zur gewinnung von fluessigem stickstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FR GB IT NL SE

17P Request for examination filed

Effective date: 19900601

17Q First examination report despatched

Effective date: 19910314

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FR GB IT NL SE

REF Corresponds to:

Ref document number: 74199

Country of ref document: AT

Date of ref document: 19920415

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 58901041

Country of ref document: DE

Date of ref document: 19920430

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: THE BOC GROUP PLC

Effective date: 19921221

26 Opposition filed

Opponent name: PRAXAIR TECHNOLOGY, INC.

Effective date: 19921222

Opponent name: THE BOC GROUP PLC

Effective date: 19921221

NLR1 Nl: opposition has been filed with the epo

Opponent name: PRAXAIR TECHNOLOGY, INC.

Opponent name: THE BOC GROUP PLC

EAL Se: european patent in force in sweden

Ref document number: 89122047.7

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 19950517

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE DE ES FR GB IT NL SE

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)

Effective date: 19950531

ET3 Fr: translation filed ** decision concerning opposition
NLR2 Nl: decision of opposition
ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

REG Reference to a national code

Ref country code: ES

Ref legal event code: DC2A

Kind code of ref document: T5

Effective date: 19950916

NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

REG Reference to a national code

Ref country code: FR

Ref legal event code: CA

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081127

Year of fee payment: 20

Ref country code: NL

Payment date: 20081103

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20081216

Year of fee payment: 20

Ref country code: AT

Payment date: 20081112

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081126

Year of fee payment: 20

Ref country code: BE

Payment date: 20081110

Year of fee payment: 20

Ref country code: SE

Payment date: 20081107

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081112

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081126

Year of fee payment: 20

BE20 Be: patent expired

Owner name: *LINDE A.G.

Effective date: 20091129

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20091128

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20091130

NLV7 Nl: ceased due to reaching the maximum lifetime of a patent

Effective date: 20091129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091130

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20091128