EP0363971A2 - Verfahren zur Entfernung von Terpenen aus etherischen Ölen - Google Patents

Verfahren zur Entfernung von Terpenen aus etherischen Ölen Download PDF

Info

Publication number
EP0363971A2
EP0363971A2 EP89119001A EP89119001A EP0363971A2 EP 0363971 A2 EP0363971 A2 EP 0363971A2 EP 89119001 A EP89119001 A EP 89119001A EP 89119001 A EP89119001 A EP 89119001A EP 0363971 A2 EP0363971 A2 EP 0363971A2
Authority
EP
European Patent Office
Prior art keywords
adsorbent
extraction
terpenes
essential oils
bar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89119001A
Other languages
English (en)
French (fr)
Other versions
EP0363971B1 (de
EP0363971A3 (de
Inventor
Jan Dr. Cully
Erwin Dr. Schütz
Heinz-Rüdiger Dr. Vollbrecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Evonik Operations GmbH
Original Assignee
SKW Trostberg AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SKW Trostberg AG filed Critical SKW Trostberg AG
Publication of EP0363971A2 publication Critical patent/EP0363971A2/de
Publication of EP0363971A3 publication Critical patent/EP0363971A3/de
Application granted granted Critical
Publication of EP0363971B1 publication Critical patent/EP0363971B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B9/00Essential oils; Perfumes
    • C11B9/02Recovery or refining of essential oils from raw materials
    • C11B9/022Refining

Definitions

  • the present invention relates to a process for removing terpenes from essential oils in a three-step process.
  • Essential oils are important aroma carriers in the food industry. For example, cold-pressed oils from citrus fruits are widely used for the production of essences for the beverage industry and for the flavoring of baked goods. These essential oils often contain terpene hydrocarbons from the mono- and sesquiterpene series, which have only limited storage stability and are thermolabile and, moreover, have a lower flavor intensity than the actual flavoring substances, which are predominantly derived from volatile oxygen-containing compounds such as aldehydes, ketones, esters, acids, phenols, alcohols and Put lactones together. For these reasons, the removal of the terpenes is an important step to improve the storage stability and to increase the aroma intensity of essential oils.
  • a number of processes for the de-terpenization of essential oils which use differences in the vapor pressure, in the polarity or in the solubility of the terpene components in comparison with the oxygen-containing compounds to separate the terpenes. All of these processes have certain disadvantages, which are reflected either in the product quality, in the process costs or in the yield. For example, it has been described to dissolve essential oils in aqueous alcohols, whereby separate the terpenes and then obtain the desired aroma fractions by salting out or liquid-liquid extraction. The separation effect and the yield in these processes are unsatisfactory. Depending on the type of extractant used, technical or environmental problems can also occur.
  • US Pat. No. 4,647,466 discloses a process for extracting volatile oxygen-containing substances such as ethyl butyrate or hexanal from citrus oils with the aid of compressed gases, enriching limonene. Since citrus oils such as Orange oils, however, consist of up to 95% limonene, very large amounts of CO2 or long extraction times are required to carry out the process in order to remove a high proportion of limonene with the necessary selectivity from the aromatic oil.
  • the present invention was therefore based on the object of developing a process for removing terpenes from essential oils which does not have the disadvantages of the prior art mentioned, but rather a selective enrichment of the essential oils with good yields with little technical effort and under gentle conditions enables.
  • the method according to the present invention consists of at least three stages.
  • a polar solid (adsorbent) a polar solid (adsorbent).
  • all terpene-containing essential oils can be used in the context of the present invention.
  • Citrus oils obtained from citrus fruits such as oranges, lemons, mandarins, limes, limes, grapefruit or cravos are particularly suitable.
  • other aromatic oils such as hop, clove, laurel, ginger, peppermint or cedarwood oil can also be used.
  • CO2 extracts or oleoresins can also be used.
  • the essential oils have a terpene content of up to 95%.
  • the adsorbent can be loaded with the essential oil by the known methods, e.g. simply by mixing.
  • Common polar solids such as e.g. Silica gel, aluminum oxide, diatomaceous earth, cellulose, bentonite, magnesium silicates etc. can be used. Silica gel and aluminum oxide have proven to be particularly advantageous.
  • the amount of polar adsorbent can be varied within wide limits, but preferably 10 to 60% by weight of polar adsorbent are used, based on the starting amount of essential oil. With this loading of the adsorbent according to stage a), the oxygen-containing aroma substances are largely adsorbed on the solid, while the terpenes largely remain in the liquid phase. Depending on the type of aroma oil used and the amount of adsorbent used, about 60 to 95% of the aroma substances are adsorbed.
  • the adsorbent loaded with the aroma substances is then separated from the terpenes remaining in the liquid phase.
  • the methods customary in technology for separating solids and liquids can be used here. Because of the quick and complete separation centrifugation is preferably used according to the invention. However, it is readily possible to use other separation processes such as filtration at this stage. In this way, the majority of the terpenes contained in the essential oils can usually be removed without noticeable losses in the valuable aroma substances.
  • the adsorbent can be used several times for adsorption. It is possible to increase the yield of aromas during adsorption by first mixing and separating the adsorbent with the terpene fraction from a previous batch as described above. In this case, the mixture of terpene fraction and adsorbent can be poured into a column and the essential oil to be enriched can be passed through in a type of column chromatography.
  • the adsorbent loaded with aroma component is subjected to a high pressure extraction with compressed CO2, the aroma substances being desorbed or extracted.
  • the high pressure extraction should take place at pressures above 70 bar and temperatures from 10 to 80 ° C in order to achieve a complete extraction of the aroma substances.
  • the preferred extraction conditions are pressures of> 100 bar, in particular from 200 to 300 bar and / or temperatures from 30 to 70 ° C., because the aroma substances are obtained particularly quickly and gently under these conditions. It is clear that in addition to the desired flavoring substances, this high-pressure extraction also extracts the rest of the terpenes, which was also adsorbed onto the polar adsorbent in the first stage.
  • a pre-extraction is carried out in a preferred embodiment before the high-pressure extraction (step c) in order to obtain the flavorings performed, in which the remaining terpenes are first removed from the adsorbent.
  • This pre-extraction is also carried out with compressed carbon dioxide, but in contrast to the process conditions of stage c) (main extraction) at pressures below 100 bar, preferably at 70 to 90 bar.
  • the temperature range for the pre-extraction is 30 to 80 ° C, preferably 50 to 70 ° C.
  • a largely selective extraction of the terpenes takes place under these process conditions, while the aroma substances remain on the adsorbent.
  • the terpene hydrocarbon content of these pre-extracts is generally higher than the terpene content of the starting oil.
  • This pre-extraction is followed, as already described, by the main extraction (stage c), in which the oxygen-containing aroma substances are then obtained under gentle conditions.
  • the CO2 aroma extracts obtained in this way can then be completely removed from the CO2 by lowering the density by the usual methods.
  • Example 2 5 kg of orange oil with a lime content of 95.7% were stirred according to Example 1 with 1 kg of silica gel at room temperature for 120 minutes.
  • the loaded silica gel was then separated from the liquid phase by centrifugation and extracted in a high-pressure extraction system with 40 kg of CO2 at 280 bar and 35 ° C. 625 g of concentrate with a lime content of 89.6% were obtained as the extract.
  • the specific CO2 consumption was 8 kg CO2 per kg of starting oil.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Fats And Perfumes (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Lubricants (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

Es wird ein Verfahren zur Entfernung von Terpenen aus etherischen Ölen beschrieben, wobei man a) die terpenhaltigen etherischen Öle mit einem polaren Feststoff (Adsorbens) kontaktiert, b) eine Abtrennung des beladenen Adsorbens von der flüssigen, mit Terpenen angereicherten Phase vornimmt und c) das mit etherischem Öl beladene Adsorbens einer Extraktion mit verdichtetem CO2 unterwirft. Auf diese Weise kann man die Terpene weitgehend entfernen und gleichzeitig die etherischen Öle in hoher Ausbeute und guter Qualität gewinnen.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Entfer­nung von Terpenen aus etherischen Ölen in einem dreistufigen Verfahren.
  • Etherische Öle stellen wichtige Aromaträger in der Lebensmit­telindustrie dar. So werden beispielsweise kaltgepreßte Öle aus Zitrusfrüchten in großem Umfang zur Herstellung von Es­senzen für die Getränkeindustrie sowie zur Aromatisierung von Backwaren eingesetzt. Häufig enthalten diese etherischen Öle Terpenkohlenwasserstoffe der Mono- und Sesquiterpenreihe, die nur begrenzt lagerstabil sowie thermolabil sind und überdies eine geringere Aromaintensität aufweisen als die eigentlichen Aromastoffe, die sich überwiegend aus flüchtigen sauerstoff­haltigen Verbindungen wie Aldehyden, Ketonen, Estern, Säuren, Phenolen, Alkoholen und Lactonen zusammensetzen. Aus diesen Gründen ist die Entfernung der Terpene ein wichtiger Schritt zur Verbesserung der Lagerstabilität und zur Verstärkung der Aromaintensität von etherischen Ölen.
  • Außerdem wird durch die Entfernung der unpolaren Terpenkoh­lenwasserstoffe die Wasserlöslichkeit der etherischen Öle verbessert, was insbesondere für die Getränkeindustrie von Bedeutung ist.
  • Es sind eine Reihe von Verfahren zur Entterpenisierung von etherischen Ölen bekannt, die zur Abtrennung der Terpene Unterschiede im Dampfdruck, in der Polarität oder in der Löslichkeit der Terpenkomponenten im Vergleich zu den sauer­stoffhaltigen Verbindungen ausnutzen. Alle diese Verfahren besitzen gewisse Nachteile, die sich entweder in der Produkt­qualität, in den Verfahrenskosten oder aber in der Ausbeute niederschlagen. So ist beispielsweise beschrieben worden, etherische Öle in wäßrigen Alkoholen aufzulösen, wobei sich die Terpene abscheiden und anschließend die gewünschten Aro­mafraktionen durch Aussalzen oder Flüssig-Flüssig-Extraktion zu gewinnen. Die Trennwirkung und die Ausbeute bei diesen Verfahren sind nicht befriedigend. Außerdem können je nach Art des verwendeten Extraktionsmittels technische oder Umweltprobleme auftreten.
  • Eine weitere bekannte Methode beispielsweise zur Anreicherung von Zitrusölen stellt die Chromatographie dar. Diese Verfah­ren sind sehr aufwendig und kostspielig, da in stark verdünn­ten Lösungen gearbeitet werden muß. Beim anschließenden Eindampfen der Lösungen besteht außerdem die Gefahr der ther­mischen Zersetzung empfindlicher Inhaltsstoffe oder des Ver­lustes an niedrigsiedenden Aromastoffen.
  • Weit verbreitet ist die Entfernung von Terpenen mittels Rek­tifikation oder Destillation im Vakuum sowie der Wasserdampf­destillation. Diese Verfahren liefern keine hochwertigen Qualitäten, da die Aromakomponenten durch die thermische Belastung erheblich geschädigt werden.
  • Wesentlich schonender sind hingegen die Verfahren der Hoch­druckextraktion zur Anreicherung von etherischen Ölen, die in jüngster Zeit bekannt geworden sind. So wird beispielsweise in Chem. Ing. Tech. 56, S. 794 (1984) ein Verfahren zur Ent­fernung von Terpenen aus Zitrusölen beschrieben, wobei die Zitrusöle einer Gegenstromextraktion mit Kohlendioxid bei 70 bis 90 bar und ca. 55 bis 85°C in einer Gegenstromkolonne unterworfen werden, an der ein Temperaturgradient angelegt wird. Mit Hilfe der Gegenstromextraktion lassen sich entweder hohe Anreicherungsraten oder hohe Ausbeuten erreichen, aber nicht beides zusammen (vgl. Food Technology, 6, 145 (1988), da entweder die Selektivität des Prozesses gering oder die Beladung des CO₂ mit Terpenen niedrig ist.
  • Schließlich wird in der US-PS 46 47 466 ein Verfahren zur Extraktion von leicht flüchtigen sauerstoffhaltigen Stoffen wie Ethylbutyrat oder Hexanal aus Zitrusölen mit Hilfe von verdichteten Gasen offenbart, wobei Limonen angereichert wird. Da Zitrusöle wie z.B. Orangenöle aber aus bis zu 95 % Limonen bestehen, sind zur Durchführung des Verfahrens sehr große CO₂-Mengen bzw. lange Extraktionszeiten erforderlich, um einen hohen Anteil an Limonen mit der notwendigen Selekti­vität aus dem Aromaöl zu entfernen.
  • Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, ein Verfahren zur Entfernung von Terpenen aus etherischen Ölen zu entwickeln, welches die genannten Nachteile des Stan­des der Technik nicht aufweist, sondern mit geringem tech­nischen Aufwand und unter schonenden Bedingungen eine selektive Anreicherung der etherischen Öle mit guten Ausbeu­ten ermöglicht.
  • Diese Aufgabe wurde erfindungsgemäß dadurch gelöst, daß man
    • a) die terpenhaltigen etherischen Öle mit einem polaren Feststoff (Adsorbens) kontaktiert,
    • b) eine Abtrennung des beladenen Adsorbens von der flüssi­gen, mit Terpenen angereicherten Phase vornimmt und
    • c) das mit etherischem Öl beladene Adsorbens einer Extrak­tion mit verdichtetem CO₂ unterwirft.
  • Es hat sich nämlich überraschenderweise gezeigt, daß man auf diese Weise eine weitgehende Entfernung der Terpene erreicht und gleichzeitig die etherischen Öle in hoher Ausbeute und guter Qualität gewinnen kann.
  • Das Verfahren entsprechend der vorliegenden Erfindung besteht aus mindestens drei Stufen. In der ersten Stufe a) wird das terpenhaltige etherische Öl mit einem polaren Feststoff (Ad­sorbens) kontaktiert. Im Rahmen der vorliegenden Erfindung können im Prinzip alle terpenhaltigen etherischen Öle einge­setzt werden. Hierbei kommen vor allem Zitrusöle in Frage, die aus Zitrusfrüchten wie Orangen, Zitronen, Mandarinen, Limonen, Limetten, Grapefruit oder Cravos gewonnen wurden. Aber auch andere Aromaöle wie Hopfen-, Nelken-, Lorbeer-, Ingwer-, Pfefferminz- oder Zedernholzöl sind einsetzbar. Statt der reinen etherischen Öle können auch CO₂-Extrakte oder Oleoresine verwendet werden. Die etherischen Öle weisen je nach Art und Herkunft Terpengehalte bis zu 95 % auf.
  • Die Beladung des Adsorbens mit dem etherischen Öl kann nach den bekannten Methoden wie z.B. durch einfaches Vermischen erfolgen. Als polare Adsorbenzien können dafür übliche Fest­stoffe, wie z.B. Kieselgel, Aluminiumoxid, Kieselgur, Cellu­lose, Bentonit, Magnesiumsilikate usw., verwendet werden. Kieselgel und Aluminiumoxid haben sich hierbei als besonders vorteilhaft erwiesen.
  • Die Menge des polaren Adsorptionsmittels kann in weiten Gren­zen variiert werden, doch werden vorzugweise 10 bis 60 Gew.-% polares Adsorbens bezogen auf die Ausgangsmenge an etheri­schem Öl eingesetzt. Bei dieser Beladung des Adsorbens gemäß Stufe a) werden die sauerstoffhaltigen Aromastoffe am Fest­stoff größtenteils adsorbiert, während die Terpene weitgehend in der flüssigen Phase verbleiben. Je nach Art des verwende­ten Aromaöls und Menge des eingesetzten Adsorbens werden etwa 60 bis 95 % der Aromastoffe adsorbiert.
  • In der zweiten Stufe b) des erfindungsgemäßen Verfahrens erfolgt dann die Abtrennung des mit den Aromastoffen belade­nen Adsorbens von den in der flüssigen Phase verbliebenen Terpenen. Hierbei können die in der Technik üblichen Methoden zur Trennung von Feststoffen und Flüssigkeiten angewendet werden. Wegen der raschen und vollständigen Trennung wird hierbei die Zentrifugation erfindungsgemäß bevorzugt einge­setzt. Es ist jedoch ohne weiteres möglich, bei dieser Stufe andere Trennverfahren wie z.B. die Filtration heranzuziehen. Auf diese Weise kann in der Regel bereits der Hauptanteil der in den etherischen Ölen enthaltenen Terpene entfernt werden, ohne daß es zu merklichen Verlusten an den wertvollen Aroma­stoffen kommt.
  • Im allgemeinen kann das Adsorbens mehrfach für die Adsorption eingesetzt werden. Es ist möglich, die Ausbeute an Aromastof­fen bei der Adsorption zu erhöhen, indem man zunächst das Adsorbens mit der Terpenfraktion einer vorhergehenden Charge mischt und abtrennt wie vorhergehend beschrieben. In diesem Fall kann man das Gemisch aus Terpenfraktion und Adsorbens in eine Säule einfüllen und das anzureichernde etherische Öl in einer Art Säulen-Chromatographie hindurchleiten.
  • Bei der nachfolgenden dritten Stufe c) wird das mit Aromakom­ponente beladene Adsorbens einer Hochdruckextraktion mit verdichtetem CO₂ unterworfen, wobei die Aromastoffe desor­biert bzw. extrahiert werden. Die Hochdruckextraktion sollte bei Drucken oberhalb von 70 bar und Temperaturen von 10 bis 80°C erfolgen, um eine vollständige Extraktion der Aromastof­fe zu erreichen. Als bevorzugte Extraktionsbedingungen sind Drucke von >100 bar, insbesondere von 200 bis 300 bar und/oder Temperaturen von 30 bis 70°C anzusehen, weil unter diesen Bedingungen die Aromastoffe besonders rasch und scho­nend gewonnen werden. Es ist klar, daß man bei dieser Hoch­druckextraktion außer den gewünschten Aromastoffen auch den Rest an Terpenen mitextrahiert, der bei der ersten Stufe an das polare Adsorbens mitadsorbiert wurde.
  • Will man deshalb eine praktisch vollständige Entfernung der Terpene aus den etherischen Ölen erreichen, wird in einer bevorzugten Ausführungsform vor der Hochdruckextraktion (Stu­fe c) zur Gewinnung der Aromastoffe eine Vorextraktion durch­ geführt, bei der zunächst die restlichen Terpene aus dem Adsorptionsmittel entfernt werden. Diese Vorextraktion wird ebenfalls mit verdichetem Kohlendioxid durchgeführt, doch im Gegensatz zu den Verfahrensbedingungen der Stufe c) (Hauptex­traktion) bei Drucken unterhalb von 100 bar, vorzugsweise bei 70 bis 90 bar.
  • Der Temperaturbereich für die Vorextraktion beträgt 30 bis 80°C, vorzugsweise 50 bis 70°C. Unter diesen Verfahrensbedin­gungen findet eine weitgehend selektive Extraktion der Terpe­ne statt, während die Aromastoffe auf dem Adsorbens zurück­bleiben. Der Terpenkohlenwasserstoff-Gehalt dieser Vorextrak­te liegt im allgemeinen über dem Terpengehalt des Ausgangs­öls. An diese Vorextraktion schließt sich dann, wie bereits beschrieben, die Hauptextraktion (Stufe c) an, bei der dann die sauerstoffhaltigen Aromastoffe unter schonenden Bedingun­gen gewonnen werden. Die auf diese Weise erhaltenen CO₂-Aro­maextrakte lassen sich dann nach den üblichen Methoden durch Dichteerniedrigung vom CO₂ restlos befreien. Auf diese Weise ist es mgölich, hochkonzentrierte Extrakte von etherischen Ölen mit niedrigen Terpengehalten (Reduktion der Terpene bis zu 95 %) in hoher Ausbeute zu gewinnen, die wegen der scho­nenden Behandlung eine sehr gute Qualität aufweisen. Da die Hauptmenge der Terpene bereits vor der CO₂-Extraktion ent­fernt wird, sind für die Extraktion der wichtigen Aromastoffe nur noch vergleichsweise geringe Mengen an CO₂ erforderlich.
  • Die nachfolgenden Beispiele sollen die Erfindung näher erläu­tern, ohne sie jedoch darauf zu beschränken.
  • Beispiel 1 Gewinnung von terpenarmem Zitronen-Schalenölkonzentrat
  • 3 kg Zitronenöl mit einem Limonengehalt von 64,1 % wurden mit 1 kg Kieselgel bei Raumtemperatur 90 Minuten lang durch Rüh­ren innig vermischt. Danach wurde das beladene Kieselgel durch Zentrifugation von der flüssigen Phase abgetrennt und in einer Hochdruck-Extraktionsanlage einer Vorextraktion bei 70 bar und 50°C mit 80 kg CO₂ unterworfen. Nach der Entfer­nung der terpenreichen Fraktion aus dem Abscheider wurde bei 280 bar und 50°C die Hauptextraktion durchgeführt, wobei die adsorbierten Aromastoffe mit 40 kg CO₂ aus dem Kieselgel extrahiert wurden.
  • Als Extrakt wurden 30 g Konzentrat mit einem Limonengehalt von 6,7 % erhalten. Der spezifische CO₂-Bedarf betrug insge­samt 40 kg CO₂ pro kg Ausgangsöl.
  • Beispiel 2 Gewinnung von terpenreduziertem Orangen-Schalenölkonzentrat
  • 5 kg Orangenöl mit einem Limonengehalt von 95,7 % wurden entsprechend Beispiel 1 mit 1 kg Kieselgel bei Raumtemperatur 120 Minuten lang gerührt. Danach wurde das beladene Kieselgel durch Zentrifugation von der Flüssigphase abgetrennt und in einer Hochdruck-Extraktionsanlage mit 40 kg CO₂ bei 280 bar und 35°C extrahiert. Als Extrakt wurden 625 g Konzentrat mit einem Limonengehalt von 89,6 % erhalten. Der spezifische CO₂-Verbrauch betrug 8 kg CO₂ pro kg Ausgangsöl.
  • Beispiel 3 Gewinnung von terpenreduziertem Zitronen-Schalenölkonzentrat
  • 3 kg Zitronenöl mit einem Limonengehalt von 64,1 % wurden mit 1 kg aktivem Aluminiumoxid bei Raumtemperatur 90 Minuten lang gerührt. Anschließend wurde das beladene Aluminiumoxid durch Zentrifugation von der Flüssigphase abgetrennt und in einer Hochdruck-Extraktionsanlage mit 30 kg CO₂ bei 90 bar und 70°C einer Vorextraktion unterworfen. Nach der Entfernung der abgeschiedenen terpenreichen Fraktion aus dem Abscheider wurde die Hauptextraktion bei 280 bar und 70°C durchgeführt und die adsorbierten Aromastoffe mit 40 kg CO₂ aus dem Alu­miniumoxid extrahiert.
  • Als Extrakt wurden 230 g Konzentrat mit einem Limonengehalt von 41,9 % gewonnen. Der spezifische CO₂-Verbrauch betrug insgesamt 23 kg CO₂ pro kg Ausgangsöl.

Claims (10)

1. Verfahren zur Entfernung von Terpenen aus etherischen Ölen,
dadurch gekennzeichnet,
daß man
a) die terpenhaltigen etherischen Öle mit einem polaren Feststoff (Adsorbens) kontaktiert,
b) eine Abtrennung des beladenen Adsorbens von der flüs­sigen, mit Terpenen angereicherten Phase vornimmt und
c) das mit etherischem Öl beladene Adsorbens einer Ex­traktion mit verdichtetem CO₂ unterwirft.
2. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß man als Adsorbens Kieselgel verwendet.
3. Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
daß man als Adsorbens Aluminiumoxid einsetzt.
4. Verfahren nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet,
daß die Menge des eingesetzten Adsorbens 10 bis 60 Gew.-% bezogen auf die Ausgangsmenge an etherischem Öl beträgt.
5. Verfahren nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet,
daß man die Abtrennung des beladenen Adsorbens von der Flüssigphase durch Zentrifugation durchführt.
6. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß man das Adsorbens mehrfach einsetzt.
7. Verfahren nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet,
daß man das Adsorbens mit einer Terpenfraktion aus einem vorangegangenen Schritt kontaktiert, die Mischung in eine Säule füllt und nach Ablassen des Überstandes etherisches Öl durch die Säule hindurchlaufen läßt.
8. Verfahren nach einem der Ansprüche 1 bis 7,
dadurch gekennzeichnet,
daß man die CO₂-Extraktion bei einem Druck von >70 bar, vorzugsweise von 200 bis 300 bar und einer Temperatur von 10 bis 80°C, vorzugsweise von 30 bis 70°C vornimmt.
9. Verfahren nach einem der Ansprüche 1 bis 8,
dadurch gekennzeichnet,
daß man vor der Stufe c) noch eine Vorextraktion mit verdichtetem Kohlendioxid bei einem Druck von <100 bar durchführt.
10. Verfahren nach Anspruch 9,
dadurch gekennzeichnet,
daß die Vorextraktion bei einem Druck von 70 bis 90 bar und einer Temperatur von 30 bis 80°C, vorzugsweise 50 bis 70°C, erfolgt.
EP89119001A 1988-10-14 1989-10-12 Verfahren zur Entfernung von Terpenen aus etherischen Ölen Expired - Lifetime EP0363971B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3834988A DE3834988A1 (de) 1988-10-14 1988-10-14 Verfahren zur entfernung von terpenen aus etherischen oelen
DE3834988 1988-10-14

Publications (3)

Publication Number Publication Date
EP0363971A2 true EP0363971A2 (de) 1990-04-18
EP0363971A3 EP0363971A3 (de) 1991-03-20
EP0363971B1 EP0363971B1 (de) 1995-04-19

Family

ID=6365099

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89119001A Expired - Lifetime EP0363971B1 (de) 1988-10-14 1989-10-12 Verfahren zur Entfernung von Terpenen aus etherischen Ölen

Country Status (10)

Country Link
US (1) US5061502A (de)
EP (1) EP0363971B1 (de)
JP (1) JP2541670B2 (de)
AT (1) ATE121447T1 (de)
DE (2) DE3834988A1 (de)
ES (1) ES2070877T3 (de)
GR (1) GR3015902T3 (de)
MX (1) MX171557B (de)
RU (1) RU1769761C (de)
ZA (1) ZA897691B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036720A1 (en) * 2000-11-06 2002-05-10 Ineos Fluor Holdings Limited Process for reducing the concentration of undesired compounds in a composition
EP1818388A1 (de) 2006-02-10 2007-08-15 Carotech SDN. BHD Verfahren zur Gewinnung hochangereicherter Naturstoff-fraktionen aus Palmöl unter Verwendung von superkritischen und beinahe superkritischen Flüssigmedien

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124477A (en) * 1996-06-27 2000-09-26 Bioavailability Systems, Llc Anti-first-pass effect compounds
US6063809A (en) * 1997-08-26 2000-05-16 Bioavailability Systems, Llc Anti-first-pass effect compounds
US6248776B1 (en) * 1997-08-26 2001-06-19 Bioavailability Systems, L.L.C. Anti-first-pass effect compounds
US20040058982A1 (en) * 1999-02-17 2004-03-25 Bioavailability System, Llc Pharmaceutical compositions
JP2003001002A (ja) * 2001-06-18 2003-01-07 Higashimaru Shoyu Co Ltd 液状物の抽出方法
ITMI20031390A1 (it) * 2003-07-08 2005-01-09 Turispharma S R L Metodo di estrazione di strutture molecolari attive da resine naturali e/o da oli essenziali.
US7727401B2 (en) * 2004-11-09 2010-06-01 Air Products And Chemicals, Inc. Selective purification of mono-terpenes for removal of oxygen containing species
EP3063260B1 (de) * 2013-10-28 2019-01-09 Totally Natural Solutions Ltd Fraktionierung von hopfenölen mit flüssigem und überkritischem kohlendioxid
EP3002327A1 (de) * 2014-10-02 2016-04-06 Sensient Flavors Limited Verfahren zur Modifikation der Zusammensetzung von ätherischen Ölen
US11078137B1 (en) * 2019-03-08 2021-08-03 Buddies IP Holding, Inc. Sustainable terpene extraction method
CN111363624B (zh) * 2020-03-26 2022-06-21 华东理工大学 一种精油脱萜烯的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2712008A (en) * 1951-06-29 1955-06-28 Justus G Kirchner Production of terpeneless essential oils
US3867262A (en) * 1973-05-21 1975-02-18 Us Agriculture Production of terpeneless essential oils
EP0206738A2 (de) * 1985-06-19 1986-12-30 The Procter & Gamble Company Verfahren zur Herstellung von Zitrusaroma und Aromazusammensetzungen

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3294550A (en) * 1961-10-12 1966-12-27 Robert M Ikeda Production of full-flavored stable essential oils
US3477856A (en) * 1965-11-10 1969-11-11 Us Agriculture Process for extraction of flavors
JPS5410539A (en) * 1977-06-24 1979-01-26 Matsushita Electric Works Ltd Door
JPS59117593A (ja) * 1982-12-24 1984-07-06 長谷川香料株式会社 天然精油の精製方法
JPS6135802A (ja) * 1984-07-27 1986-02-20 Daicel Chem Ind Ltd 有機物の抽出方法
JPH0664032B2 (ja) * 1985-10-12 1994-08-22 出光石油化学株式会社 超臨界流体による混合物からの特定成分の分離方法
JPS63118399A (ja) * 1986-11-07 1988-05-23 株式会社資生堂 テルペンレス精油

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2712008A (en) * 1951-06-29 1955-06-28 Justus G Kirchner Production of terpeneless essential oils
US3867262A (en) * 1973-05-21 1975-02-18 Us Agriculture Production of terpeneless essential oils
EP0206738A2 (de) * 1985-06-19 1986-12-30 The Procter & Gamble Company Verfahren zur Herstellung von Zitrusaroma und Aromazusammensetzungen

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 99, no. 12, September 1983 Columbus, Ohio, USA ref. no. 93512A *
CHEMIE. INGENIEUR. TECHNIK. vol. 56, 1984, WEINHEIM DE Seiten 794 - 795; D.Gerard: "Kontinuierliche Deterpenierung {therischer Oele durch Gegenstromextration mit verdichtem Kohlendioxid" *
FOOD TECHNOLOGY. vol. 42, no. 6, Juni 1988, CHICAGO US Seiten 145 - 150; F.Temelli et al.: "Supercritical fluid extraction in citrus oil processing" *
RIECHSTOFFE AROMEN KORPERPFLEGEMITTEL. no. 2-3, 1976, HANNOVER-BEMRODE DE Seiten 28 - 33; S.Anandaraman et al.: "Untersuchung }ber die Deterpenisierung einiger Orangen-Oele auf chromatographischem Wege" *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002036720A1 (en) * 2000-11-06 2002-05-10 Ineos Fluor Holdings Limited Process for reducing the concentration of undesired compounds in a composition
US7250185B2 (en) 2000-11-06 2007-07-31 Ineos Fluor Holdings Limited Process for reducing the concentration of undesired compounds in a composition
EP1818388A1 (de) 2006-02-10 2007-08-15 Carotech SDN. BHD Verfahren zur Gewinnung hochangereicherter Naturstoff-fraktionen aus Palmöl unter Verwendung von superkritischen und beinahe superkritischen Flüssigmedien
CN101379174B (zh) * 2006-02-10 2013-01-16 卡罗技术有限责任公司 用超临界和近临界流体从棕榈油制备天然化合物高度富集的馏分的方法

Also Published As

Publication number Publication date
DE58909186D1 (de) 1995-05-24
RU1769761C (en) 1992-10-15
US5061502A (en) 1991-10-29
EP0363971B1 (de) 1995-04-19
ES2070877T3 (es) 1995-06-16
ZA897691B (en) 1990-07-25
ATE121447T1 (de) 1995-05-15
MX171557B (es) 1993-11-05
DE3834988A1 (de) 1990-04-19
JP2541670B2 (ja) 1996-10-09
EP0363971A3 (de) 1991-03-20
JPH02180997A (ja) 1990-07-13
GR3015902T3 (en) 1995-07-31

Similar Documents

Publication Publication Date Title
EP0010665B1 (de) Verfahren zur extraktiven Bearbeitung von pflanzlichen und tierischen Materialien
EP0065106B1 (de) Verfahren zur Herstellung von konzentrierten Extrakten aus frischen Pflanzen oder Teilen davon, insbesondere frischen Küchenkräutern
EP0415287B1 (de) Verfahren zur Entfernung von Cholesterin bzw. Cholesterinestern aus Eigelb
EP0363971B1 (de) Verfahren zur Entfernung von Terpenen aus etherischen Ölen
DE3811149C2 (de) Entfernung von schädlichen, geruchsbildenden Verunreinigungen aus Hopfengeschmacksstoffen
DE3609046A1 (de) Die gewinnung ausgewaehlter komponenten aus kohlendioxyd-hopfenextrakt
DE3632401C2 (de)
DE60118234T2 (de) Verfahren zur verminderung der konzentration von unerwünschten bestandteilen in einer zusammensetzung
DE3148335A1 (de) &#34;verfahren zur gewinnung von aromastoffen aus einem tabakextrakt und deren verwendung
EP0560291B1 (de) Verfahren zur Herstellung von natürlichen Antioxidantien
DE2519676A1 (de) Verfahren zur herstellung eines hopfenoelpraeparates
DE10240065A1 (de) Verfahren zur Gewinnung von in Hopfen enthaltenem Yanthohumol und damit erhältlicher Xanthohumol-reicher Hopfenextrakt
EP0376193B1 (de) Verfahren zur Entfernung von Ethanol aus durch Vergärung erzeugten Getränken
EP0062893A1 (de) Verfahren zur Herstellung von Pflanzenextrakten mit verbesserten sensorischen Eigenschaften
DE2127611A1 (de) Verfahren zur Herstellung von Gewürzextrakten mit natürlicher Zusammensetzung
DE2336637A1 (de) Verfahren zur extraktion von duftund geschmacksstoffen aus pflanzlichem material
DE60002553T2 (de) Verfahren zur gewinnung von natürlichen antioxidantien aus pflanzen
DE1807308A1 (de) Verfahren zur Entfernung von Koffein
DE3322005A1 (de) Verfahren zur reinigung von phenol
EP0874550A1 (de) Extraktion von inhaltsstoffen aus bestandteilen des neem-baumes
DE3643848A1 (de) Verfahren zur herstellung hochraffinierter essbarer glyceridoele mit einem anteil an ungesaettigten fettsaeuren im triglyceridverband und ihre verwendung
EP1567020B1 (de) Verfahren zur selektiven abtrennung von flüchtigen aromastoffen aus einphasigen, (halb-)flüssigen ausgangsmaterialien mit einem fett- und/oder öl-gehalt 20gew.-%
DE1442079A1 (de) Verfahren zur Gewinnung von Hopfenkonzentraten
DE2813147A1 (de) Verfahren zur herstellung von dekoffeiniertem kaffee
DE2452693A1 (de) Verfahren zur aromatisierung von nahrungsmitteln

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL

17P Request for examination filed

Effective date: 19910626

17Q First examination report despatched

Effective date: 19940125

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB GR IT LI NL

REF Corresponds to:

Ref document number: 121447

Country of ref document: AT

Date of ref document: 19950515

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950425

REF Corresponds to:

Ref document number: 58909186

Country of ref document: DE

Date of ref document: 19950524

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2070877

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: GR

Ref legal event code: FG4A

Free format text: 3015902

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 19950929

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19970430

REG Reference to a national code

Ref country code: GR

Ref legal event code: MM2A

Free format text: 3015902

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: DEGUSSA AG

Free format text: SKW TROSTBERG AKTIENGESELLSCHAFT#DR.-ALBERT-FRANK-STRASSE 32 POSTFACH 11 50 / 11 60#D-83038 TROSTBERG (DE) -TRANSFER TO- DEGUSSA AG#STANDORT TROSTBERG, DR.-ALBERT-FRANK-STRASSE 32#83308 TROSTBERG (DE)

NLS Nl: assignments of ep-patents

Owner name: DEGUSSA AG

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: FR

Ref legal event code: RM

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20051003

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20051013

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20051014

Year of fee payment: 17

Ref country code: FR

Payment date: 20051014

Year of fee payment: 17

Ref country code: CH

Payment date: 20051014

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20051017

Year of fee payment: 17

Ref country code: AT

Payment date: 20051017

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20051108

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061012

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20061031

Year of fee payment: 18

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20061012

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20070501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20070629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061012

BERE Be: lapsed

Owner name: *DEGUSSA A.G.

Effective date: 20061031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20061013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061031

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061013

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071012

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20061031