EP0362797B1 - Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage - Google Patents

Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage Download PDF

Info

Publication number
EP0362797B1
EP0362797B1 EP89118338A EP89118338A EP0362797B1 EP 0362797 B1 EP0362797 B1 EP 0362797B1 EP 89118338 A EP89118338 A EP 89118338A EP 89118338 A EP89118338 A EP 89118338A EP 0362797 B1 EP0362797 B1 EP 0362797B1
Authority
EP
European Patent Office
Prior art keywords
detector
time
voltage
detectors
microcomputer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP89118338A
Other languages
English (en)
French (fr)
Other versions
EP0362797A3 (de
EP0362797B2 (de
EP0362797A2 (de
Inventor
Klaus Kaiser
Peer Dr.-Ing. Thilo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6364534&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0362797(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0362797A2 publication Critical patent/EP0362797A2/de
Publication of EP0362797A3 publication Critical patent/EP0362797A3/de
Publication of EP0362797B1 publication Critical patent/EP0362797B1/de
Application granted granted Critical
Publication of EP0362797B2 publication Critical patent/EP0362797B2/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B26/00Alarm systems in which substations are interrogated in succession by a central station
    • G08B26/005Alarm systems in which substations are interrogated in succession by a central station with substations connected in series, e.g. cascade

Definitions

  • the invention relates to a method for energy-saving operation of hazard detectors in a hazard detection system according to the preamble of claim 1.
  • Such a hazard detection system is known from DE-PS 25 33 382.
  • the individual detectors are connected in a chain to the detection line.
  • the measured values of the individual detectors are queried cyclically from the control center and sent to the central evaluation device in order to obtain differentiated fault or alarm messages from the analog values to be linked.
  • all detectors are separated from the detection line by a voltage change and then switched on again in a predetermined order in such a way that each detector, after a time delay corresponding to its measured value, by means of a switching transistor arranged in one of the wires of the detection line, additionally the following detectors turns on.
  • the respective detector address is derived from the number of previous increases in line current and the analog measured value from the length of the relevant switching delays.
  • the detectors are operated from their energy stores during this time. After the query, the energy stores are recharged during the so-called rest period with increased line voltage.
  • Hazard detectors increasingly require high-quality sensors and transmission technology. Instead of a collective address, individual addressing is required, as is the case with the hazard alarm system described above.
  • Control commands can also be transmitted from the control center to the individual detectors, which are received by the individual detectors, as is already known from DE-PS 25 33 354.
  • the data received and reported by the individual detectors can also be transmitted in the form of pulse telegrams within certain time windows.
  • CMOS complementary metal-oxide-semiconductor
  • special sensors e.g. to operate the measuring part of an optical scattered light smoke detector in a pulsed manner, as described in EP - 125 485 - AI.
  • the possibility of completely or partially separating the necessary energy e.g. to be supplied via a separate line, which also increases the complexity and the costs of a hazard detection system.
  • the object of the invention is to provide, while avoiding the disadvantages described above, a method for the energy-saving operation of hazard detectors in a hazard detection system, which allows a relatively simple and reliable switching on and off of a microcomputer.
  • switching criteria are used for switching the microcomputer on and off in the respective detector, which are specific to a hazard detection system and already exist, i.e. which are used and designed in a special way for this.
  • each detector receives a certain voltage (an activation voltage) which switches on the microcomputer, but only activates the detector after a predetermined start-up time. Then the data traffic takes place with the head office, i.e. the detector receives and sends (reports) signals. The microcomputer is then switched off by switching to the next detector.
  • the connection voltage is expediently formed by the interrogation voltage.
  • the method according to the invention modifies the known chain modulation in such a way that each detector initially remains inactive for a predetermined start-up time after the application of the interrogation voltage processes its data traffic with the control center in a certain reception time and response time and then switches through to the next detector.
  • the microcomputer of each detector can start up with the specified start-up time. When switching to the next detector, the microcomputer is switched off again. The microcomputer is switched on for an optimally short time and consequently less energy is consumed on average.
  • the start-up time for the microcomputer is obtained in a special way without having to provide a separate start-up time for each detector. All that is required is a first start-up time for the microcomputer of the first detector. After this start-up time, the first detector switches directly to the second detector. In the subsequent reception and transmission time of the first detector, the data communication between the first detector and the control center takes place. This reception and response time is also the start-up time for the microcomputer of the second detector. This process continues until the last detector. This procedure considerably reduces the time required and thus extends the available rest period in which the energy storage devices of the detectors are charged. This allows an increase in the sampling rate and / or an increased energy supply.
  • a plurality of detectors M1 to Mn are connected to a central station Z here, for example, only on one reporting primary line ML.
  • the line current IL flows on the signal line ML and the line voltage UL is present, which can be switched to different values (FIG. 1).
  • the detector M shown in FIG. 2 has, in addition to the switching transistor T switched on in the one line of the detection line ML, the logic logic VL, which represents the heart of the detector and is formed by a microcomputer.
  • the logic logic serves the actual sensor part.
  • the logic logic VL is acted upon by the voltage measuring device MU, which monitors the line voltage UL and outputs switching signals to the logic logic VL in accordance with the line voltage applied.
  • This logic logic causes signals to a control device ST and also signals for switching DS of the switching transistor T so that the following detector is connected to the line voltage.
  • Fig. 3 shows how the individual detectors are switched on in sequence.
  • the line voltage UL is plotted against the time t for the detectors M1 to M3.
  • the rest voltage UR is present on the detection line ML.
  • An interrogation cycle then begins with the separation of the line from the line voltage UL, i.e. the starting voltage US, which is preferably equal to zero, is applied for the starting time ts.
  • the interrogation voltage UA is preferably below the value of the quiescent voltage UR. It is shown for the detector M2 that it only receives the interrogation voltage UA after the DS of the first detector M1 has been switched through. The same applies to detector M3.
  • the data transmission to the detector is generally done by modulating the line voltage UL in the control center, while data transmission to the control center is done by modulating the line current IL in the detector.
  • FIG. 4 shows the profile of the line voltage UL over time t at the input of the detectors M1, M2 and M3.
  • the open circuit voltage UR is applied for the rest time tr.
  • the application of the interrogation voltage UA which is also the switch-on voltage UAN for the microcomputer, is applied to the first detector, which is activated after the start-up time tan and thus receives receive signals E1 from the control center for the receive time te and then response signals A1 in time Ta can report to the headquarters.
  • the detector M1 then switches to detector M2 through (DS).
  • the detector M2 is in turn activated within the start-up time tan and then begins data traffic to the control center.
  • the third detector is then switched through. If the primary signal line ML is queried, the open circuit voltage UR is applied to the signal line. With the respective switching through DS to the next detector, the microcomputer of the detector in question is switched off again, so that the microcomputer only requires energy for an optimally short time.
  • Fig. 5 is a voltage diagram for three detectors, another embodiment of the Invention according to the procedure. All that is required is a single start-up time for all detectors on a line, which advantageously reduces the polling time per detector. This can increase the number of detectors that can be connected and / or speed up the query. In any case, the respective microcomputer is only switched on for a short time. When the interrogation voltage UA is applied, the microcomputer of the first detector starts up. During this time, the detector receives received signals EO from the control center and could then report an AO response to the control center. Neither is possible because the microcomputer is still starting up and is therefore not functional.
  • the functionality is only awakened during the response time ta0, so that the first detector can receive and process the receive signal E1 intended for it only after this start-up time tan1.
  • detector M1 switches through to detector M2 (DS).
  • the start-up time tan2 runs for the second detector M2, which then switches through to the third detector M3 (DS) as soon as it receives the data E2 from the control center.
  • each detector switches through to the next detector immediately upon receipt of the first signals from the control center . This process is repeated in the same way for the other detectors on the line, until after the last detector has been processed, the line is again connected to the rest voltage.
  • the received signals can be carried out in part with the voltage level which corresponds to the quiescent voltage, as a result of which the time required for energy supply is advantageously shortened and the number of detectors that can be connected is increased and / or the query is accelerated.

Landscapes

  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Alarm Systems (AREA)
  • Emergency Alarm Devices (AREA)

Description

  • Die Erfindung bezieht sich auf ein Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage gemäß dem Oberbegriff des Anspruchs 1.
  • Eine derartige Gefahrenmeldeanlage ist aus der DE-PS 25 33 382 bekannt. Bei dieser Gefahrenmeldeanlage, insbesondere Brandmeldeanlage, zur Übertragung von analogen Meldermeßwerten sind die einzelnen Melder kettenförmig an der Meldelinie angeschlossen. Dabei werden die Meßwerte der einzelnen Melder zyklisch von der Zentrale aus abgefragt und zur zentralen Auswerteeinrichtung gegeben, um dort daraus differenzierte Störungs- bzw. Alarmmeldungen aus den zu verknüpfenden Analogwerten zu gewinnen. Zu Beginn eines jeden Abfragezyklus werden alle Melder durch eine Spannungsänderung von der Meldelinie abgetrennt und dann in vorgegebener Reihenfolge in der Weise wieder angeschaltet, daß jeder Melder nach einer seinem Meßwert entsprechenden Zeitverzögerung mittels eines in einer der Adern der Meldelinie angeordneten Durchschaltetransistors den jeweils nachfolgenden Melder zusätzlich anschaltet.
  • In derzentralen Auswerteeinrichtung wird die jeweilige Melderadresse aus derAnzahl dervorhergehenden Erhöhungen des Linienstroms und der analoge Meßwert aus der Länge der betreffenden Schaltverzögerungen abgeleitet. Die Melder werden während dieser Zeit aus ihren Energiespeichern betrieben. Die Energiespeicher werden nach der Abfrage in der sogenannten Ruhezeit mit erhöhter Linienspannung wieder aufgeladen.
  • In zunehmendem Maße benötigen Gefahrenmelder eine hochwertige Sensorik und Übertragungstechnik. Anstatt einer Kollektivadresse wird eine Einzeladressierung verlangt, wie dies bei der oben geschilderten Gefahrenmeldeanlage der Fall ist. Es können auch von der Zentrale aus Steuerbefehle an die einzelnen Melder übertragen werden, die von den einzelnen Meldern empfangen werden, wie bereits aus der DE-PS 25 33 354 bekannt ist. Es können die Daten, die von den einzelnen Meldern empfangen und gemeldet werden, auch in Form von Pulstelegrammen innerhalb bestimmter Zeitfenster übermittelt werden.
  • Wegen der hohen Kosten des Leitungsnetzes werden immer mehr Melder an einer Meldeprimärleitung betrieben. Alle diese Einflüsse vergrößern den Energiebedarf der einzelnen Melder und erst recht den Energiebedarf der mit mehreren Meldern bestückten Meldeprimärleitung. Besonders problematisch wird es, wenn die Funktionsanforderungen den Einsatz von schnellen Mikrorechnern mit ihrem erheblichen Energiebedarf auch in den Meldern erforderlich machen und wenn über dieselbe Leitung auch noch die notwendige Energie zugeführt wird, wie bisher üblich.
  • Es ist beispielsweise bekannt, stromsparende Schaltkreistechniken, z.B. CMOS zu verwenden und spezielle Sensoren, z.B. den Meßteil eines optischen Streulicht-Rauchmelders gepulst zu betreiben, wie dies in der EP - 125 485 - AI beschrieben ist. Ferner ist bekannt, um den Spannungsabfall auf der Meldelinie genügend klein zu halten, diese mit dickem Draht und kurz auszuführen, was natürlich die Kosten erhöht und/oder dem Wunsch zuwiderläuft, eine Vielzahl von Meldern auf einer Leitung zu betreiben. Ebenfalls bekannt ist die Möglichkeit, die nötige Energie ganz oder teilweise getrennt, z.B. über eine eigene Leitung zuzuführen, was ebenfalls die Komplexität und die Kosten einer Gefahrenmeldeanlage erhöht.
  • Es ist ganz allgemein schon vorgeschlagen worden, Mikrorechner abzuschalten, wenn sie nicht benötigt werden, um deren Energieverbrauch zu reduzieren. Das hat aber in der Regel den Nachteil, daß einerseits geeignete Kriterien für das Aus- und Einschalten nicht verfügbar bzw. nur mit großem, zusätzlichen Aufwand herstellbar sind und andererseits das Einschalten eines Mikrorechners relativ lange dauert, weil z.B. der Taktgenerator mehrere Millisekunden lang anschwingen muß, bevor er funktionsfähig ist.
  • Aufgabe der Erfindung ist es, unter Vermeidung der oben geschilderten Nachteile ein Verfahren zum energiesparenden Betreiben von Gefahrenmeldern einer Gefahrenmeldeanlage anzugeben, welches ein verhältnismäßig einfaches und zuverlässiges An- und Abschalten eines Mikrorechners gestattet.
  • Diese Aufgabe wird bei einem eingangs beschriebenen Verfahren mit den kennzeichnenden Merkmalen der Ansprüche 1 und 2 gelöst.
  • Das besondere bei diesem Verfahren besteht darin, daß keine zusätzlichen und aufwendigen Kriterien eigens geschaffen werden müssen. Vielmehrwerden fürdas An- und Abschalten des Mi krorechners im jeweiliger Melder Schaltkriterien herangezogen, die für eine Gefahrenmeldeanlage spezifisch sind und bereits vorhanden sind, d.h. die in besonderer Weise hierfür genutzt und ausgestaltet werden.
  • So erhält in vorteilhafter Weise mit der zyklischen Abfrage der Reihe nach jeder Melder eine bestimmte Spannung (eine Anschaltspannung), die den Mikrorechner einschaltet, aber erst nach einervorgegebenen Anlaufzeit den Melder aktiviert. Danach erfolgt der Datenverkehr mit der Zentrale, d.h. der Melder empfängt und sendet (meldet) Signale. Anschließend wird mit dem Durchschalten zum nächsten Melder der Mikrorechner abgeschaltet. Zweckmäßigerweise wird die Anschaltspannung von der Abfragespannung gebildet.
  • Das erfindungsgemäße Verfahren modifiziert die bekannte Kettenmodulation derart, daß jeder Melder nach dem Anlegen der Abfragespannung zunächst während einervorgegebenen Anlaufzeit inaktiv bleibt, dann seinen Datenverkehr in einer bestimmten Empfangszeit und Antwortzeit mit der Zentrale abwickelt und anschließend zum nächsten Melder durchschaltet. Mit der vorgegebenen Anlaufzeit kann der Mikrorechner eines jeweiligen Melders anlaufen. Mit dem Durchschalten zum nächsten Melder wird der Mikrorechner wieder abgeschaltet. Damit ist für eine optimal kurze Zeit der Mikrorechner eingeschaltet und demzufolge wird im Mittel weniger Energie verbraucht.
  • In einer anderen Ausgestaltung der Erfindung wird die Anlaufzeitfürden Mikrorechner in einer besonderen Weise gewonnen, ohne dabei für jeden Melder eine eigene Anlaufzeit vorsehen zu müssen. Es wird lediglich eine erste Anlaufzeit für den Mikrorechner des ersten Melders benötigt. Nach dieser Anlaufzeit schaltet der erste Melder unmittelbar zum zweiten Melder durch. In der anschließenden Empfangs- und Sendezeit des ersten Melders erfolgt der Datenverkehr des ersten Melders mit der Zentrale. Diese Empfangs- und Antwortzeit ist aber zugleich die Anlaufzeit für den Mikrorechner des zweiten Melders. Dieser Vorgang setzt sich bis zum letzten Melder fort. Dieses Verfahren verringert den Zeitbedarf erheblich und verlängert damit die verfügbare Ruhezeit, in der die Energiespeicher der Melder aufgeladen werden. Damit ist eine Erhöhung der Abtastrate und/oder eine erhöhte Energiezufuhr möglich.
  • Im folgenden wird das erfindungsgemäße Verfahren anhand der Zeichnung näher erläutert. Dabei wird zum besseren Verständnis zuerst das bekannte Pulsmeldesystem und danach an Ausführungsbeispielen die Erfindung beschrieben. Dabei zeigen
    • Fig. 1 eine schematische Darstellung einer Gefahrenmeldeanlage,
    • Fig. 2 schematisch einen Melder in der Melderprimärleitung,
    • Fig. 3 Linienspannungsdiagramme für drei Melder.
    • Fig. 4 ein Ausführungsbeispiel für das erfindungsgemäße Verfahren an einem Spannungsdiagramm und
    • Fig. 5 ein weiteres Ausführungsbeispiel an einem Spannungsdiagramm.
  • Bekanntermaßen sind an eine Zentrale Z beispielsweise hier nur an einer Meldeprimärleitung MLeine Vielzahl von Meldern M1 bis Mn angeschlossen. Auf der Meldeleitung MLfließt der Linienstrom IL und es liegt die Linienspannung UL an, die auf verschiedene Werte umschaltbar ist (Fig.1).
  • Der in Fig.2 gezeigte Melder M weist neben den in der einen Aderder Meldelinie MLeingeschalteten Durchschaltetransistor T die Verknüpfungslogik VL auf, die das Herzstück des Melders darstellt und von einem Mikrorechner gebildet ist. Die Verknüpfungslogik bedient das eigentliche Sensorteil. Die Verknüpfungslogik VL ist von der Spannungsmeßeinrichtung MU beaufschlagt, welche die Linienspannung UL überwacht und entsprechend der angelegten Linienspannung Schaltsignale an die Verknüpfungslogik VL gibt. Diese Verknüpfungslogik veranlaßt Signale an eine Steuereinrichtung ST und auch Signale zum Durchschalten DS des Durchschaltetransistors T, damit der nachfolgende Melder an die Linienspannung angeschlossen wird.
  • Es ist noch durch einen Kondensator C im Melder der Energiespeicher angedeutet, der im Ruhezustand beim Anliegen einer Ruhespannung UR aufgeladen wird und im abgetrennten Zustand den Melder bei Bedarf mit Energie versorgt.
  • In Fig.3 ist veranschaulicht, wie die einzelnen Melder der Reihe nach angeschaltet werden. Dabei ist die Linienspannung UL über der Zeit t aufgetragen für die Melder M1 bis M3. Während der Ruhezeit tr liegt auf der Meldelinie ML die Ruhespannung UR an. Ein Abfragezyklus beginnt dann mit dem Abtrennen der Linie von der Linienspannung UL, d.h. es wird für die Startzeit ts die Startspannung US, die bevorzugt gleich Null ist, angelegt. Nach Ablauf der Startzeit ts beginnt die eigentliche Abfrage der gesamten Meldelinie für die Zeit tla. Die Abfragespannung UA liegt hierfür bevorzugt unter dem Wert der Ruhespannung UR. Für den Melder M2 ist gezeigt, daß er erst nach dem Durchschalten DS des ersten Melders M1 die Abfragespannung UA erhält. Gleiches gilt für den Melder M3.
  • Die Datenübertragung zum Melder geschieht im allgemeinen durch Modulation der Linienspannung UL in der Zentrale, während eine Datenübertragung zurZentrale durch die Modulation des Linienstroms IL im Melder vorgenommen wird.
  • In Fig. 4 ist der Verlauf der Linienspannung UL über der Zeit t am Eingang der Melder M1,M2 und M3 dargestellt. Die Ruhespannung UR liegt für die Ruhezeit tr an. Für die Startzeit ts wird die Linienspannung UL auf die Startspannung US = 0 gesetzt. Danach wird mit dem Anlegen der Abfragespannung UA, die zugleich die Anschaltespannung UAN für den Mikrorechner ist, der erste Melder beaufschlagt, der nach der Anlaufzeit tan aktiviert ist und somit Empfangssignale E1 von der Zentrale für die Empfangszeit te empfangen und anschließend Antwortsignale A1 in der Zeit ta zur Zentrale melden kann. Danach schaltet der Melder M1 zum Melder M2 durch (DS). Der Melder M2 wird seinerseits innerhalb der Anlaufzeit tan aktiviert und beginnt dann mit dem Datenverkehr zur Zentrale. Anschließend erfolgt die Durchschaltung zum dritten Melder. Ist die Meldeprimärleitung ML abgefragt, so wird an die Meldelinie die Ruhespannung UR gelegt. Mit dem jeweiligen Durchschalten DS zum nächsten Melderwird der Mikrorechner des betreffenden Melders wiederabgeschaltet, damit ist nur für eine optimal kurze Zeit ein Energiebedarf seitens des Mikrorechners erforderlich.
  • In Fig. 5 ist an einem Spannungsdiagramm für drei Melder eine weitere Ausführungsform des erfindungsgemäßen Verfahrens dargestellt. Dabei wird lediglich eine einzige Anlaufzeit für alle Melder einer Linie benötigt, wodurch in vorteilhafter Weise die Abfragezeit pro Melder reduziert wird. Dadurch kann die Zahl der anschließbaren Melder erhöht und/oder die Abfrage beschleunigt werden. In jedem Fall wird auch hier der jeweilige Mikrorechner nur für kurze Zeit eingeschaltet. Mit dem Anliegen der Abfragespannung UA beginnt der Mikrorechner des ersten Melders anzulaufen. In dieser Zeit empfängt der Melder Empfangssignale EO von der Zentrale und könnte anschließend eine Antwort AO an die Zentrale melden. Beides ist aber nicht möglich, weil der Mikrorechner noch beim Anlaufen und damit nicht funktionsfähig ist. Die Funktionsfähigkeit wird erst während der Antwortzeit ta0 erweckt, so daß der erste Melder das für ihn bestimmte Empfangssignal E1 erst nach dieser Anlaufzeit tan1 empfangen und bearbeiten kann. Mit dem Empfang der Signale E1 von der Zentrale schaltet der Melder M1 sogleich zum Melder M2 durch (DS). Während des Datenverkehrs des ersten Melders M1 in der Zeit te1 plus ta1 läuft die Anlaufzeit tan2 für den zweiten Melder M2, der dann zum dritten Melder M3 durchschaltet (DS), sobald er von der Zentrale die Daten E2 empfängt.
  • Es wird pro Meldelinie nur eine erste Anlaufzeit tan0, bestehend aus te0 und ta0, in der Daten auf die Meldelinie gegeben werden, die jedoch keine Wirkung haben, zur Aktivierung des ersten Melders gegeben, der jedoch danach sogleich mit dem Empfang der Signale von der Zentrale zum nächsten Melder durchschaltet. Die Empfangs- und Sendezeit für den Datenverkehr des ersten Melders bildet zugleich die Anlaufzeit für den Mikrorechner des zweiten Melders, usw. Jeder Melder schaltet dabei im Gegensatz zum bisherigen Verfahren in der Pulsmeldetechnik sogleich mit dem Empfang der ersten Signale seitens der Zentrale zum nächsten Melder durch. Dieser Vorgang wiederholt sich gleichartig bei den weiteren Meldern der Linie, bis nach der Bearbeitung des letzten Melders die Linie wieder an Ruhespannung gelegt wird.
  • In Weiterführung der Erfindung können die Empfangssignale teilweise mit dem Spannungspegel, der der Ruhespannung entspricht, ausgeführt werden, wodurch die zur Energieversorgung benötigte Zeit in vorteilhafter Weise verkürzt und damit die Zahl der anschließbaren Melder erhöht und/oder die Abfrage beschleunigt wird.

Claims (4)

1. Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage , die nach dem Pulsmeldesystem auf dem Prinzip der Kettensynchronisation arbeitet, mit einer Zentrale (Z) mit mehreren zweiadrigen Meldeprimärleitungen (ML), an die kettenförmig eine Vielzahl von Melder (Mn) angeschlossen sind, die regelmäßig von der Zentrale (Z) aus zyklisch angesteuert und auf ihren jeweiligen analogen Meldermeßwert abgefragt werden, wobei jeder Melder (Mn) eine Spannungsmeßeinrichtung (MU), die die angelegte Linienspannung (UL) überwacht, eine nachgeschaltete Verknüpfungslogik (VL) mit zugeordnetem Sensorteil (S), eine nachgeschaltete Steuereinrichtung (St), einen Energiespeicher (C) und einen Durchschaltetransistor (T) aufweist, wobei die Verknüpfungslogik (VL) im wesentlichen von einem Mikrorechner gebildet ist, der in Abhängigkeit von bestimmten Schaltkriterien (UAN, DS), die spezifisch für die Gefahrenmeldeanlage sind, in einen stromsparenden Ruhezustand geschaltet und wiedereingeschaltet wird, wobei eine erforderliche Anlaufzeit (tan) für den Mikrorechner gewährleistet ist,
dadurch gekennzeichnet,
daß mit der zyklischen Abfrage der Reihe nach jeder Melder (Mn) eine bestimmte Spannung (Anschaltspannung UAN) erhält, die den Mikrorechner einschaltet, aber erst nach einer vorgegebenen Anlaufzeit (tan) den betreffenden Melder aktiviert, daß nach Ablauf der Anlaufzeit (tan) der Datenverkehr mit der Zentrale (Z) erfolgt, wobei für den Empfang (E1,E2,...) jeweils eine bestimmte Empfangszeit (te) und für das Antworten (Melden) (A1,A2,...) jeweils eine bestimmte Antwortzeit (ta) vorgesehen ist, und daß anschließend mit dem Durchschalten (DS) zum nächsten Melder der Mikrorechner abgeschaltet wird.
2. Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage, die nach dem Pulsmeldesystem auf dem Prinzip der Kettensynchronisation arbeitet, mit einer Zentrale (Z) mit mehreren zweiadrigen Meldeprimärleitungen (ML), an die kettenförmig eine Vielzahl von Melder (Mn) angeschlossen sind, die regelmäßig von der Zentrale (Z) aus zyklisch angesteuert und auf ihren jeweiligen analogen Meldermeßwert abgefragt werden, wobei jeder Melder (Mn) eine Spannungsmeßeinrichtung (MU), die die angelegte Linienspannung (UL) überwacht, eine nachgeschaltete Verknüpfungslogik (VL) mit zugeordnetem Sensorteil (S), eine nachgeschaltete Steuereinrichtung (St), einen Energiespeicher (C) und einen Durchschaltetransistor (T) aufweist, wobei die Verknüpfungslogik (VL) im wesentlichen von einem Mikrorechner gebildet ist, der in Abhängigkeit von bestimmten Schaltkriterien (UAN, DS), die spezifisch für die Gefahrenmeldeanlage sind, in einen stromsparenden Ruhezustand geschaltet und wiedereingeschaltet wird, wobei eine erforderliche Anlaufzeit (tan) für den Mikrorechner gewährleistet ist,
dadurch gekennzeichnet, daß bei der zyklischen Abfrage mit dem Anlegen der Abfragespannung (UA) der Mikrorechner des jeweiligen Melders eingeschaltet wird, daß eine erste Empfangs- und Antwortzeit (te0 und ta0) vorgesehen ist, die die Anlaufzeit (tan1) für den ersten Melder (M1) bildet, daß nach dieser Anlaufzeit (tan1) der erste Melder (M1) in der Empfangszeit (te1) Daten (E1) von der Zentrale (Z) empfängt und in der Antwortzeit (ta1) Daten (A1) an die Zentrale meldet, und mit dem Empfang der Empfangsdaten zum zweiten Melder (M2) durchschaltet (DS), wodurch der Mikrorechner des zweiten Melders eingeschaltet wird, daß die Empfangs- und Antwortzeit (te1 und ta1) des ersten Melders (M1) zugleich die Anlaufzeit (tan2) für den Mikrorechner des zweiten Melders (M2) ist, und daß dieser Vorgang sich bis zum letzten Melder einer Melderlinie (ML) wiederholt.
3. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß die Anschaltspannung (UAN) gleich der Abfragespannung (UA) ist.
4. Verfahren nach Anspruch 1 oder 2,
dadurch gekennzeichnet, daß die Empfangssignale (E0, E1,...) teilweise den Spannungspegel, der der Ruhespannung entspricht, aufweisen.
EP89118338A 1988-10-06 1989-10-03 Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage Expired - Lifetime EP0362797B2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3834043 1988-10-06
DE3834043 1988-10-06

Publications (4)

Publication Number Publication Date
EP0362797A2 EP0362797A2 (de) 1990-04-11
EP0362797A3 EP0362797A3 (de) 1991-01-16
EP0362797B1 true EP0362797B1 (de) 1994-12-28
EP0362797B2 EP0362797B2 (de) 2000-05-17

Family

ID=6364534

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89118338A Expired - Lifetime EP0362797B2 (de) 1988-10-06 1989-10-03 Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage

Country Status (3)

Country Link
EP (1) EP0362797B2 (de)
AT (1) ATE116464T1 (de)
DE (1) DE58908831D1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4030298A1 (de) * 1990-09-25 1992-03-26 Siemens Ag Gefahrenmeldeanlage
DE102009050692B4 (de) * 2009-10-26 2011-12-01 Phoenix Contact Gmbh & Co. Kg Sicherheits-Kommunikationssystem zur Signalisierung von Systemzuständen
DE102011018630B4 (de) * 2011-04-21 2013-02-07 Phoenix Contact Gmbh & Co. Kg Sicherheits-Kommunikationssystem zur Signalisierung von Systemzuständen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2131991B (en) * 1982-11-12 1986-05-29 Robert Philp Telemetry and like signaling systems
DE3313137A1 (de) * 1983-04-12 1984-10-18 Siemens AG, 1000 Berlin und 8000 München Schaltungsanordnung zur stoersignalunterdrueckung in optischen rauchmeldern
KR910008738B1 (ko) * 1987-02-20 1991-10-19 닛본 덴기 가부시기가이샤 밧데리 절약 채널 스캔 기능을 갖고 있는 휴대용 무선 송수신기

Also Published As

Publication number Publication date
EP0362797A3 (de) 1991-01-16
DE58908831D1 (de) 1995-02-09
ATE116464T1 (de) 1995-01-15
EP0362797B2 (de) 2000-05-17
EP0362797A2 (de) 1990-04-11

Similar Documents

Publication Publication Date Title
EP0067339B1 (de) Verfahren und Anordnung zur Störungserkennung in Gefahren-, insbesondere Brandmeldeanlagen
DE68924615T2 (de) Überwachungssystem für Funkkommunikationsapparate.
EP2478671B1 (de) Verfahren und vorrichtung zum aufwecken von teilnehmern eines bussystems und entsprechender teilnehmer
EP1206765B1 (de) Verfahren und vorrichtung zur automatischen zuweisung von melderadressen bei einer gefahrenmeldeanlage
EP0093872A1 (de) Verfahren zur Übertragung von Messwerten in einem Überwachungssystem
DE2533354C3 (de) Einrichtung zum Übertragen von Steuerbefehlen in einem Brandschutzsystem
DE2533330B2 (de) Verfahren und einrichtung zur uebertragung von messwerten in einem brandmeldesystem
EP0362797B1 (de) Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage
DE19705365A1 (de) Vorrichtung zur zeitmultiplexen Übertragung von Informationen
EP0211344A2 (de) Adressierbare Schaltungsanordnung
DE3128796C2 (de)
DE3150313C2 (de) Anordnung zur Ermittlung und Rückmeldung der Stellung einer Reihe von Schaltern und zur Überwachung der Verbindungsleitung
EP0362798B1 (de) Verfahren zum energiesparenden Betrieb von Gefahrenmeldern in einer Gefahrenmeldeanlage
DE3614692C2 (de)
DE3424294A1 (de) Abfrageeinrichtung zur identifikation der stellung von schaltern
EP0212106B1 (de) Verfahren zur Uebertragung von Messwerten
DE3225032C2 (de) Verfahren und Einrichtung zur wahlweisen automatischen Abfrage der Melderkennung oder des Meldermeßwerts in einer Gefahrenmeldeanlage
DE2308736C2 (de) Einrichtung zum Übertragen von Datentelegrammen über einen ersten Funkkanal und von Sprachinformationen über einen zweiten Funkkanal
EP0510354B1 (de) Verfahren zur Überwachung der Funktion einer Busankopplungseinheit
DE3022058C2 (de) Einrichtung zur signaltechnisch sicheren Steuerung eines Schaltgliedes
EP2515553B1 (de) Sicherheits-Kommunikationssystem zur Signalisierung von Systemzuständen
DE3225044C2 (de) Verfahren und Einrichtung zur automatischen Abfrage des Meldermeßwerts und der Melderkennung in einer Gefahrenmeldeanlage
EP0622734B1 (de) Schnittstelle
DE2715320A1 (de) Station fuer signaluebertragungseinrichtungen mit signaluebertragung im anreizbetrieb
DD147013A1 (de) Verfahren zur melderkennung,insbesondere fuer brandmeldeanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19901205

17Q First examination report despatched

Effective date: 19931105

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 116464

Country of ref document: AT

Date of ref document: 19950115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 58908831

Country of ref document: DE

Date of ref document: 19950209

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950303

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: PREUSSAG AG

Effective date: 19950926

NLR1 Nl: opposition has been filed with the epo

Opponent name: PREUSSAG AG

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19971013

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981003

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PLAW Interlocutory decision in opposition

Free format text: ORIGINAL CODE: EPIDOS IDOP

PUAH Patent maintained in amended form

Free format text: ORIGINAL CODE: 0009272

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT MAINTAINED AS AMENDED

27A Patent maintained in amended form

Effective date: 20000517

AK Designated contracting states

Kind code of ref document: B2

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: AEN

Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM

NLR2 Nl: decision of opposition
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBTA Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977)
ET3 Fr: translation filed ** decision concerning opposition
NLR3 Nl: receipt of modified translations in the netherlands language after an opposition procedure
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20021004

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021010

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021016

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20021021

Year of fee payment: 14

Ref country code: BE

Payment date: 20021021

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021023

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021216

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030115

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031003

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031031

BERE Be: lapsed

Owner name: *SIEMENS A.G.

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031003

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040630

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051003