EP0333712B1 - Installation de forage et d'extraction destinee a l'exploitation miniere - Google Patents

Installation de forage et d'extraction destinee a l'exploitation miniere Download PDF

Info

Publication number
EP0333712B1
EP0333712B1 EP87905960A EP87905960A EP0333712B1 EP 0333712 B1 EP0333712 B1 EP 0333712B1 EP 87905960 A EP87905960 A EP 87905960A EP 87905960 A EP87905960 A EP 87905960A EP 0333712 B1 EP0333712 B1 EP 0333712B1
Authority
EP
European Patent Office
Prior art keywords
drilling
mining
tools
extraction
head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87905960A
Other languages
German (de)
English (en)
Other versions
EP0333712A1 (fr
Inventor
Béla BOGDANY
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT87905960T priority Critical patent/ATE107736T1/de
Publication of EP0333712A1 publication Critical patent/EP0333712A1/fr
Application granted granted Critical
Publication of EP0333712B1 publication Critical patent/EP0333712B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/10Making by using boring or cutting machines
    • E21D9/1093Devices for supporting, advancing or orientating the machine or the tool-carrier
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B15/00Supports for the drilling machine, e.g. derricks or masts
    • E21B15/006Means for anchoring the drilling machine to the ground
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/006Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries by making use of blasting methods

Definitions

  • the invention relates to a drilling extraction system for mining, with the aid of which drilling and extraction can be carried out with high productivity and economically.
  • the drilling or extraction of rocks from mining objects, as well as tunnels, trenches, pits, canals, underpasses and the like, is carried out essentially in two ways.
  • the rock is loosened by blasting holes drilled by hand drills or, in the case of rock with a loose structure, by extraction using hand breakers or sharp hand tools.
  • the disadvantage of this method is that a working space of 0.8-1 m is required per man, which means e.g. A maximum of 4-5 men can be seated side by side in a 4 m wide route, which limits the performance.
  • a frame In the case of longer stretches, a frame must be set up to extract the rock material above, which is dismantled after completion of the work required to extract a layer with a width of 1-1.5 m and then again to carry out the next work cycle must be rebuilt. The extraction work is suspended while the frame is being assembled and dismantled.
  • the known drilling rigs generally only work with 1 to 3 drilling machines and drilling tools, one of each separate support structure is assigned. In this way, the operations for each borehole on each of the drilling tools must be controlled separately. This task places a considerable strain on the operating personnel of the drilling rig, furthermore, because of the circumstances described above, additional work steps associated with a lot of loss of time have to be carried out which render the use of these drilling rigs ineffective.
  • the drill support described in HU-PS 169 650 for jointly engaging several rock drilling tools in which the drilling mount is mounted on an articulated mechanism which can be rotated about an axis, essentially has the aim of avoiding the problems mentioned above.
  • DE-OS 2 361 566 describes a drilling rig in which the freedom of movement of the drill carriages is larger due to the lighter design and the smaller space requirement, and also the expedient mounting of the cantilever arm carrying the drill carriages, whereby the zones previously inaccessible for drilling are essentially larger become accessible and the drilling rig is suitable for drilling rock anchor drill holes.
  • the system described above can therefore be used well because of its great degree of freedom in pit sections with different inclinations and shapes, however, due to its console-like design, the tool holder is suitable for receiving a limited number of extraction tools, as a result of which only a relatively low output can be achieved.
  • the system only has extraction tools suitable for the extraction, so that it cannot be used either for the formation of a blast hole or for the formation of a rock bolt hole; therefore a separate facility is required for this purpose.
  • variable rock strengths to which these known rock combinations can only be adapted to a limited extent, ie that their use in solid rock is no longer economical. For this reason, it is necessary for a single section excavation work to use both the continuously operating rock extraction combination and the drilling rig which is provided for the production of the drill holes required for rock blasting. Since these devices can never be used together, but only separately, because of the relatively small cross-sectional area and the variable rock strength, one of the devices is always unused. This fact significantly increases the cost of driving up the route.
  • the invention solves the problem of creating a universal drilling extraction system which can be used for the design of construction objects and the like and which has a relatively large number of mining tools which are suitable for drilling and / or extraction and which process a relatively small rock surface are easily and quickly interchangeable or their function can be switched, the system being able to be adapted well to the shape and inclination of the cross-section of the mining objects, tunnels and the like, determined by different aspects, due to the high degree of freedom of its work-performing construction unit, and thus beyond productive extraction can also be used for sinking wells and for knocking out excavations.
  • the construction of the plant should also enable the productive production of drill holes required for blasting, as well as rock anchor drill holes and other drill holes required for the expansion of the mining objects for exploration and security purposes with an optimal arrangement.
  • a drilling and extraction system for mining which preferably a mobile support frame, one attached to this, from Working cylinders and / or supports existing supporting structure and a work-carrying construction unit mounted on this supporting structure via a supporting structure connecting element, optionally provided with a rotary drive, and receiving a plurality of dismantling tools assigned to the supporting, driving and driving elements
  • the system being characterized in the sense of the invention, that the work-performing construction unit has a plurality of coupled tool holders, each of which holds a plurality of dismantling tools arranged parallel to one another, the dismantling tools for connecting a drilling head and a extraction head being equally assigned suitable drive elements.
  • the neighboring tool holders are connected to one another via their mutual adjustment, suitably arranged in pairs.
  • the drilling and extraction system according to the invention can also be provided with drilling or extraction tools that are easily interchangeable.
  • the dismantling tool of the installation is provided with a separately and also jointly operable combined drilling and extraction head, the shaft of the drilling head connected to the drive member being coaxial and supported by the cutting knife provided conical extraction head is passed, in the narrower end of which a recess suitable for the rotationally fixed and form-fitting reception of the drilling head is formed.
  • the construction unit consists of five tool holders 1, 2, 3, 4 and 5, which each combine a plurality of dismantling tools 12 arranged parallel to one another to form a tool group.
  • the middle tool holder 1 is connected to the adjacent tool holders 2 and 3 by means of joint devices 6 and 7, while the tool holders 2 and 3 are connected to the outer tool holders 4 and 5 by means of joint devices 8 and 9.
  • These Joint devices are designed such that the intermediate tool holder 2 and 3 can be pivoted up and down relative to the tool holder 1.
  • the outer tool holders 4 and 5 are pivotable relative to the tool holders 2 and 3.
  • the swivel angle can also reach 140 °.
  • the middle tool holder 1, the intermediate tool holder 2 and 3, and also the outer tool holder 4 and 5 can also be made into a fan shape relative to one another.
  • the connecting elements of the hinge devices 6 and 8 are released, which enables the tool holders 1, 2, 3, 4, 5 to be placed in a fan shape around the hinge devices 7 and 9.
  • the middle tool holder 1, the intermediate tool holder 2 and 3, and also the outer tool holder 4 and 5 are connected to each other, in addition to the articulation devices 6 to 9, preferably also via hydraulically actuatable pivotable working cylinders 10.
  • the working cylinders 10 are arranged in pairs, the pairs, as seen in FIG. 4 in the direction of the longitudinal axis of the central tool holder 1, crossing each other in a shape reminiscent of the St. Andrew's cross, the lower and upper edges of the sides of the tool holders connected to one another connect.
  • the middle tool holder 1 is provided with a supporting structure connecting element 11, and the work-performing structural unit is attached to the mechanism built on the undercarriage, ie to the supporting structure, which is described with reference to FIG. 2.
  • the supporting structure connecting element 11 is provided with a rotary drive, in particular in the case of lines with a circular cross section, which makes it possible to rotate the entire work-performing structural unit together or to rotate the horizontal longitudinal axis of the central tool holder 1 at the desired angle.
  • the middle tool holder 1, the intermediate tool holder 2 and 3 and the outer tool holder 4 and 5 are essentially designed as support frames 36, 45 made of section steel, steel plates.
  • Carriage holders 44, 49 are connected to the support frames 36, 45, on which drive elements 13 for removal tools 12 provided with drilling heads and / or extraction heads, as well as lines, fastening means and other actuating devices are arranged.
  • the number of drive elements 13 or removal tools 12, which are adjustably fastened on the slide holders 44, 49 assigned to the tool holders 1 to 5, can in principle be arbitrary.
  • the construction unit performing the work is fastened via the supporting structure connecting member 11 to the prismatic supporting structure 75 consisting of hydraulic working cylinders 14, 15 and 16 and rear supporting beams 74. Eyes 17 and bolts are arranged on the rear surface of the housing of the supporting structure connecting element 11, to which the one ends of the upper and lower working cylinders 16 are articulated, whereby one side of the supporting structure 75 is actually formed by the supporting structure connecting element 11.
  • the side of the support structure 75 opposite the support structure connecting element 11 is formed by two rear support beams 74 - shown vertically in FIG. 2 - which are connected to one another at the top by a beam which is not visible in the figure and are articulated at the bottom to a slide 18.
  • the other ends of the upper and lower working cylinders 16 are connected to the upper and lower ends of the vertically drawn rear support beams 74.
  • the support structure connecting member 11 together with the to it connected work-performing construction unit to a degree dependent on the dimensions of the working cylinders 16 and the rear support beams 74 raised and lowered, furthermore in the plane corresponding to the plane of the drawing, for example for the purpose of drilling rock bolt drill holes.
  • the length of the working cylinder 16 is also changed.
  • the carriage 18 is arranged on the turntable 19, on the guide surface 20 of which the carriage 18 can be displaced in the longitudinal direction of the lying surface 22 by means of the working cylinder 21.
  • the movability of the slide 18 in the longitudinal direction, its rotatability on the turntable 19, the elevation and lowerability of the supporting structure connecting element 11, its rotatability in the plane of the drawing and the rotatability of the tool holder 1 by means of the supporting structure connecting element 11 enable the removal tools 12 to be set in any position and direction inside the work space.
  • the guide surface 20 is mounted on a crawler tractor 23. Between the caterpillars of the tractor 23 there is arranged a conveyor device known per se and in front of this a loading device 24 also known per se.
  • While the drilling and extraction system shown in FIG. 2 is mounted on the tractor 23 that can be moved on the lying end 22, the system in the arrangement shown in FIG. 3 is suspended on two parallel hanging rails 26 attached to the hanging end 25.
  • the hanging rails 26 can be extended in advance in accordance with the progress of the extraction.
  • a correspondingly designed, slidable and consisting of sleeves lockable in their set positions existing slide 27 is arranged, which arranged the support structure 75 correspondingly arranged working cylinder 16 and the rear support beams 74 and the working cylinders 14 and 15 and the supporting structure connecting member 11 substantially same Way carries the carriage 18 in the arrangement according to FIG. 2.
  • the tool holders designed as support frames 36, 45 are always designed depending on the number of drive elements 13, i.e. the design of the tool holder changes depending on whether more or fewer drive members 13 are arranged on the support frames 36, 45 by directly carrying the slide carriers 44 49.
  • the system is stabilized at the dismantling front with fastening mandrels 126.
  • feed lines supplying electrical energy and / or high-pressure liquid are passed.
  • the feed lines 28 supply the energy through a suitable distributor for driving the removal tools 12 and for actuating the pulling, locking and conveying devices of the installation.
  • An annular groove 29 is formed in the interior of the housing of the supporting structure connecting element 11, into which the flange 30 of the rear end of the central tool holder 1 fits.
  • the flange 30 is held and guided by the annular groove 29 around the longitudinal axis during the rotation of the tool holder 1.
  • a circular ring 31 protrudes from the rear surface of the flange 30, on the inner surface of which there is a ring gear.
  • the teeth of the ring gear are continuously toothed with the teeth of the small toothed wheel 33 which can be rotated by means of the motor 32 fastened on the housing of the supporting structure connecting element 11, so that the circular ring 31 and thus together the middle tool holder 1 and the tool holders 1 to 5 shown in FIG. 1 are rotated when the gear 33 rotates.
  • FIG. 4 shows the work-performing construction unit of the drilling and extraction system according to the invention shown in FIG. 1 in a front view, seen from the dismantling front 80.
  • the middle tool holder 1 is set for carrying and actuating five removal tools 12, which are arranged at the points marked with circles.
  • the intermediate tool holder 2 and 3 are with the sides of the tool holder 1 in the manner shown in the figure by means of working cylinders 10 crossing each other in view and by means of the upper and lower joint devices 6 in the drawing, further, behind the joint devices 6, by means of which in the the support structure connecting element 11 facing end of the middle tool holder located articulation devices 7 rotatably connected to each other.
  • Two rows of removal tools 12 are arranged one below the other in the tool holders 2 and 3. Between these rows (shown horizontally in FIG. 4) there is a free space 34 of adjustable height.
  • the tool holders 2 and 3 are rotatably connected to the outer tool holders 4 and 5, similarly as set out above, by means of working cylinders 10 or joint devices 8 and 9.
  • the twisting can be carried out with a corresponding actuation of the working cylinders 10 located in a pair.
  • the removal tools 12 are arranged in four positions or rows one below the other. From the figure it can be seen that the system according to the invention can be built in many embodiments or versions in accordance with the respective drilling and extraction requirements.
  • the rows of Removal tools 12 carrying separate support frames 36, 45 are held one above the other by means of four working cylinders 35 which have the position shown in FIG. 4 with dash-dotted lines.
  • the rows of the removal tools 12 located in the outer tool holders 4 and 5 are held one above the other by two working cylinders 35.
  • the distance between the rows, ie the height of the free spaces 34, can be adjusted using the working cylinders 35 belonging to the tool holders 1.
  • Figure 5 shows an embodiment of the conventional drilling or extraction head of the mining tool 12 replacing combined drilling and extraction head 77 or the connection of this drilling and extraction head 77 with the tool holder designed as a support frame 45 in side view, partially in section.
  • the drilling 78 or extraction heads 79 of the mining tools 12, which serve both the drilling and extraction activities are arranged together along the sides of the support frames 36, 45 facing the mining front 80.
  • the drill heads 78 are provided with drive edges 81, while the conical spiral-edged extraction heads 79 are provided with cutting blades 82.
  • the drilling heads 78 are connected to the shaft of the mining tool 12, which is coaxial and supported through the inside of the extraction head 79, while the extraction heads 79 are connected to the support frames 36, 45 by means of the hollow bolt elements 84 provided with bolt eyes 83 and ending as a truncated cone in such a way that the extraction heads 79 can be carried forward and backward with the actuation of the pistons 86 of the working cylinders 85 fastened to the support frame along the axis line of the removal tools 12.
  • the inner cylindrical surface of the extraction heads 79 is provided with a groove-like extraction head ring gear 87.
  • plug-in insert driving inserts 91 provided with outer 89 and inner 90 toothed rings or edges are connected.
  • the plug-in inserts 91 driving the extraction head can be carried forward and backward in the longitudinal direction of the removal tools 12, because the plug-in inserts 91 driving the extraction head in the exemplary embodiment by designing the ends of the plug-in inserts 91 opposite the removal front 80 as pistons 92 and by providing the hollow bolt elements 84 with sealing rings 93 and power line connections 94 are designed as working cylinders.
  • the extraction heads 79 are driven by taking the drive edges 81 with them from the internal toothed ring 90 which positively adjoins them and by actuating the drive elements 13 of the removal tools 9, 12.
  • the extraction head driving plug inserts 91 can also be used directly to drive the extraction heads 79 if their ends opposite the extraction front 80 are directly connected to the drive elements 13.
  • This embodiment can be used in the extraction of hard rock with high extraction resistance, this embodiment allowing greater torque to be transmitted to the extraction heads 79 without deformation of the mining tools 12 due to torsion thereof.
  • Figure 6 shows the drilling and extraction system for mining in a rotated into the vertical position part of an embodiment in which the supporting structure connecting element 11 are connected to the working cylinders 14, 15 and 16 via sliding eyes 95 which can be towed.
  • This embodiment may be necessary because of the advantageous rotation of the system that can be carried out from the horizontal to the vertical position (for example for the purpose of making rock bolt drill holes).
  • a pair of grooves 96 is formed at the bottom thereof.
  • working cylinders 97 which are suitable for locking and releasing the sliding eyes 95, are connected to the lower and upper base parts.
  • the grooved bolts 103 of the pistons of the working cylinders 101 (which serve to receive the piston rods 102 of the working cylinders 99) connected, which are arranged along the leading pair of elements 100 which adjoin the tool holder designed as a support frame 36.
  • FIG. 7 shows a perspective view of such an embodiment of the drilling and extraction system for mining, in which a support structure connecting element 11 is used to support the structure 75 carried by the carriage 27, which can be moved in the hanging rail 26 mounted on the hanging wall 25 of a pit section such tool holder is connected, which consists of a frame system 104, which is formed by the joining of working cylinders 105 and support members 106.
  • This enables the setting of both the distance between the removal tools 12 and their directions of travel.
  • Separate driver and drive elements 13 are arranged on each of the components located in the longitudinal direction, ie support elements 106, of the frame system 104.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Earth Drilling (AREA)

Abstract

Installation de forage et d'extraction destinée à l'exploitation minière, comportant un cadre sur lequel plusieurs outils de travail sont montés de manière réglable dans la position voulue et reliés à des moyens de support, de commande et/ou d'entraînement. Les outils de travail forment avec les moyens de support, de commande et/ou d'entraînement, un module capable de commander et/ou d'entraîner tous ensemble les groupes associés d'outils de travail, et/ou de commander et/ou d'entraîner séparément les outils individuels formant un groupe d'outils de travail, au moyen du mécanisme de commande et/ou d'entraînement. Chaque groupe donné d'outils de travail prévu pour exécuter un procédé technologique donné, a la forme d'une unité capable de mettre à exécution les étapes de travail correpondantes.

Claims (6)

  1. Installation de forage ou d'extraction pour l'exploitation minière, comprenant un châssis de support, de préférence mobile, une structure de support (75) rapportée sur ce châssis et constituée avantageusement de vérins d'actionnement (14, 15, 16) et/ou de supports (74) ainsi qu'une unité de structure à grand rendement, disposée sur un organe de raccordement de structure de support (11) muni, le cas échéant, d'un entraînement en rotation, sur laquelle unité sont montés, sur un porte-outils une pluralité d'outils d'abattage (12) disposés parallèlement les uns aux autres, associés à des organes de support, de prise et d'entraînement (36, 45; 76; 13), caractérisée en ce que l'unité de structure à grand rendement comporte plusieurs porte-outils (1, 2, 3, 4, 5) couplés les uns aux autres et sur chacun desquels sont montés plusieurs outils d'abattage (12) disposés parallèlement les uns aux autres, et en ce que les organes d'entraînement (13) associés aux outils d'abattage (12) sont également aptes à être raccordés à une tête de forage et à une tête d'extraction et en ce que les porte-outils voisins (1, 2, 3, 4, 5) sont reliés les uns aux autres par des vérins (10) disposés avantageusement par paires, et permettant des déplacements de sens opposé.
  2. Installation de forage et d'extraction selon la revendication 1, caractérisée en ce que les porte-outils (1, 2, 3, 4, 5) sont réalisés sous la forme de cadres de support multi-étagés (36, 45), assemblés à partir d'un ou de plusieurs éléments rigides et/ou articulés.
  3. Installation de forage et d'extraction selon la revendication 2, caractérisée en ce qu'elle comporte des vérins d'actionnement (35) disposés sur des cadres de support déterminés (45) et servant au réglage de la distance entre les étages.
  4. Installation de forage et d'extraction selon l'une des revendications 2 ou 3, caractérisée en ce que sur les porte-outils (1, 2, 3, 4, 5) réalisés sous la forme de cadre de support (36, 45), sont montés des supports d'organes d'entraînement réalisés sous la forme de supports de chariot mobiles.
  5. Installation de forage et d'extraction selon l'une des revendications 1 à 4, caractérisée en ce qu'elle comporte des têtes de forage et des têtes d'extraction interchangeables les unes par rapport aux autres.
  6. Installation de forage et d'extraction selon l'une des revendications 1 à 4, caractérisée en ce que ses outils d'abattage(12) sont munis de têtes de forage et de têtes d'extraction combinées (77), séparées mais également susceptibles d'être actionnées simultanément, l'arbre de la tête de forage (78) accouplé à l'organe d'entraînement (13) étant monté coaxial et supporté par la tête d'extraction conique (79) munie de couteaux (82), en ce que la petite extrémité est réalisée de la tête d'extraction est réalisée sous la forme d'un évidement apte à recevoir, de façon solidaire en rotation et avec ajustement de forme, la tête de forage (78).
EP87905960A 1987-09-08 1987-09-08 Installation de forage et d'extraction destinee a l'exploitation miniere Expired - Lifetime EP0333712B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87905960T ATE107736T1 (de) 1987-09-08 1987-09-08 Bohr-gewinnungsanlage für den bergbau.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/HU1987/000037 WO1989002513A1 (fr) 1987-09-08 1987-09-08 Installation de forage et d'extraction destinee a l'exploitation miniere

Publications (2)

Publication Number Publication Date
EP0333712A1 EP0333712A1 (fr) 1989-09-27
EP0333712B1 true EP0333712B1 (fr) 1994-06-22

Family

ID=10980759

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87905960A Expired - Lifetime EP0333712B1 (fr) 1987-09-08 1987-09-08 Installation de forage et d'extraction destinee a l'exploitation miniere

Country Status (3)

Country Link
EP (1) EP0333712B1 (fr)
DE (1) DE3750141D1 (fr)
WO (1) WO1989002513A1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2079990B1 (es) * 1991-07-11 1996-08-01 Ingemas S A Maquina polivalente para trabajos de mineria y similares.
WO2000060211A1 (fr) * 1999-04-07 2000-10-12 Byron Percy Christos Ensemble de forage pour mine souterraine
ITUB20159252A1 (it) * 2015-12-28 2017-06-28 Termigas S P A Apparato e metodo per eseguire fori per il montaggio di elementi di attrezzature su pareti di galleria
RU200611U1 (ru) * 2019-05-24 2020-11-02 Ооо "Корум Груп" Манипулятор для бурильной машины
AT526723A1 (de) * 2022-11-29 2024-06-15 Franz Friesenbichler Dipl Ing Verfahren zur systematisch selektiven Gewinnung von festen mineralischen Rohstoffen

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3729056A1 (de) * 1987-08-31 1989-03-09 Metzeler Gmbh Verfahren zur herstellung einer formschlauchverzweigung aus gummi und nach diesem verfahren hergestellte verzweigung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2017738B2 (de) * 1970-04-14 1974-07-25 Maschinenfabrik Moenninghoff, 4630 Bochum Bohrbühne mit Bohreinrichtungen und Verfahren zum Ein- und Ausrichten der Bohrbühne und der Bohreinrichtungen
DE2018778A1 (fr) * 1970-04-18 1971-12-30
DE2019039C3 (de) * 1970-04-21 1975-03-20 Maschinenfabrik Moenninghoff, 4630 Bochum An Hängebahnschienen verfahrbare Bohreinrichtung zum Bohren der Sprenglöcher beim Vortrieb einer Abbaustrecke im Untertagebergbau
FI45374C (fi) * 1970-10-19 1972-05-10 Tampella Oy Ab Viuhkaporauslaite.
US3813126A (en) * 1972-10-02 1974-05-28 Bendix Corp Continuously operable underground mining vehicle
DE2437669C3 (de) * 1974-08-05 1978-04-27 Gewerkschaft Eisenhuette Westfalia, 4670 Luenen Vortriebsvorrichtung für das Auffahren von Tunneln, Stollen und Strecken
DE2836659C3 (de) * 1978-08-22 1982-04-15 Wolfgang Dipl.-Ing. 3000 Hannover Ebeling Kombinationsbohrvorrichtung

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3729056A1 (de) * 1987-08-31 1989-03-09 Metzeler Gmbh Verfahren zur herstellung einer formschlauchverzweigung aus gummi und nach diesem verfahren hergestellte verzweigung

Also Published As

Publication number Publication date
DE3750141D1 (de) 1994-07-28
WO1989002513A1 (fr) 1989-03-23
EP0333712A1 (fr) 1989-09-27

Similar Documents

Publication Publication Date Title
DE2930136A1 (de) Streckenvortriebsmaschine fuer den untertagebau
DE2621674C3 (de) Verfahren und Vorrichtung zum Vortrieb und Ausbau einer untertägigen Strecke sowie Streckenausbau zur Ausübung des Verfahrens
DE2737330C2 (de) Verfahren zum Auffahren und Ausbauen eines Tunnels und Bohreinrichtung zur Durchführung des Verfahrens
DE3920011C3 (de) Stetig arbeitendes Gewinnungsgerät für Tagebaue mit einem walzenförmigen Gewinnungsorgan
DE2810386C2 (de) Vorrichtung zum Vortrieb von Gräben
DE3108877A1 (de) Verfahren zum herstellen eines ankerausbaues, sowie vorrichtung zur durchfuehrung dieses verfahrens
DE2615597A1 (de) Erdbearbeitungseinrichtung fuer eine tunnelvortriebsmaschine
EP0333712B1 (fr) Installation de forage et d'extraction destinee a l'exploitation miniere
EP0169393B1 (fr) Dispositif pour la production de forages d'une section transversale inaccessible
DE2932062A1 (de) Grubenbohrerausleger
DE8336736U1 (de) Verfahrbare bohreinrichtung
CH644933A5 (de) Schraemeinheitanordnung fuer eine vortriebsmaschine fuer strecken im bergbau und fuer tunnels und vortriebsmaschine.
DE3804214C2 (fr)
DE3140707C3 (de) Streckenvortriebsmaschine
DE10346583A1 (de) Bohr- und Ankersetzeinrichtung für eine Teilschnittmaschine
EP0153567B1 (fr) Dispositif pour le forage de trou de grand diamètre et de trou pour explosifs
EP0561858B1 (fr) Machine pour tracages en veine
DE2514150C3 (de) Schildvortriebsmaschine zum Auffahren von Tunneln und Strecken
DE3421704C2 (de) Vorrichtung zum Aufweiten des Querschnittsprofils eines Stollens, Tunnels od.dgl.
DE1583078A1 (de) Verfahren und Vorrichtung zum Vortreiben von Strecken,Tunneln,Bohrloechern od.dgl.
DE3809768A1 (de) Verfahren und geraet fuer den abbau unter tage
DE3525595C2 (de) Einrichtung zum Abteufen von Schächten, insbesondere von Blindschächten und Gefrierschächten, aus dem Vollen
DE2651474C3 (de) Verwendung einer Teilschnitt-Streckenvortriebsmaschine zum Durchbauen (Nachreißen) von deformierten Strecken im untertagigen Bergbau
DE2031877B2 (de) Gewinnungsmaschine, insbesondere für den Langfrontabbau von Kohlenlagerstätten
DE2009271C3 (de) Vorrichtung zur Richtungssteuerung einer Vollschnitt-Streckenvortriebsmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19890922

18D Application deemed to be withdrawn

Effective date: 19910403

18RA Request filed for re-establishment of rights before grant

Effective date: 19910928

18RR Decision to grant the request for re-establishment of rights before grant

Free format text: 911028 ANGENOMMEN

D18D Application deemed to be withdrawn (deleted)
17Q First examination report despatched

Effective date: 19911111

REG Reference to a national code

Ref country code: DE

Ref legal event code: 8570

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940622

REF Corresponds to:

Ref document number: 107736

Country of ref document: AT

Date of ref document: 19940715

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3750141

Country of ref document: DE

Date of ref document: 19940728

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940930

Ref country code: LI

Effective date: 19940930

Ref country code: CH

Effective date: 19940930

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940927

ET Fr: translation filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EAL Se: european patent in force in sweden

Ref document number: 87905960.8

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980901

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19980908

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981127

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19990907

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19990910

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990930

BERE Be: lapsed

Owner name: BOGDANY BELA

Effective date: 19990930

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000908

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20000922

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010909

EUG Se: european patent has lapsed

Ref document number: 87905960.8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050908