EP0325116A2 - Process for the preparation of ultra-fine polymer fibres - Google Patents

Process for the preparation of ultra-fine polymer fibres Download PDF

Info

Publication number
EP0325116A2
EP0325116A2 EP89100124A EP89100124A EP0325116A2 EP 0325116 A2 EP0325116 A2 EP 0325116A2 EP 89100124 A EP89100124 A EP 89100124A EP 89100124 A EP89100124 A EP 89100124A EP 0325116 A2 EP0325116 A2 EP 0325116A2
Authority
EP
European Patent Office
Prior art keywords
melt
bar
gas
nozzle head
radial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP89100124A
Other languages
German (de)
French (fr)
Other versions
EP0325116B1 (en
EP0325116A3 (en
Inventor
Wolfram Dr. Wagner
Peter Roger Dipl.-Ing. Nyssen
Dirk Dipl.-Ing. Berkenhaus
Hans-Theo Van Pey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Priority to AT89100124T priority Critical patent/ATE73507T1/en
Publication of EP0325116A2 publication Critical patent/EP0325116A2/en
Publication of EP0325116A3 publication Critical patent/EP0325116A3/en
Application granted granted Critical
Publication of EP0325116B1 publication Critical patent/EP0325116B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/02Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of forming fleeces or layers, e.g. reorientation of yarns or filaments
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/18Formation of filaments, threads, or the like by means of rotating spinnerets
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/005Synthetic yarns or filaments
    • D04H3/009Condensation or reaction polymers
    • D04H3/011Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/16Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion

Definitions

  • the invention relates to a process for the production of finely long fine polymer fibers with an average fiber diameter of 0.1 to 10 ⁇ m, preferably 0.1 to 4 ⁇ m, from thermoplastic polymers.
  • the method is based on the fact that the molten polymer is spun in a rotating nozzle head from a plurality of outlet bores radially with the formation of fibers and the fibers formed are deposited as a fleece on a support.
  • EP-0 168 817 describes a centrifugal spinning process in which the melt is apparently introduced under pressure into a nozzle rotating at a relatively low peripheral speed. As a result, relatively coarse threads can be produced continuously. A stretching of the threads beyond a centrifugal delay due to a gas dynamic effect does not take place.
  • the object of the invention is to use the centrifugal or centrifugal spinning process to produce very fine polymer fibers from thermoplastic polymers.
  • Fine polymer fibers are understood to mean fibers with an average diameter of 0.1 ⁇ m to 10 ⁇ m, preferably 0.1 ⁇ m to 4 ⁇ m, and a finite fiber length.
  • the process should be able to be used within a wide viscosity range of 20 Pas to 1000 Pas of the polymer melt and should be suitable for polymers whose melting temperature is in the range from 100 ° C to 500 ° C.
  • This task is based on the known centrifugal spinning process, in which the molten polymer is thrown in a rotating nozzle head from a plurality of outlet bores radially with fiber formation is solved, according to the invention, in that the molten polymer is introduced into the nozzle head at a pre-pressure of 1 bar to 200 bar, preferably 1 bar to 50 bar, and the fibers are at a radial distance of 10 mm to 200 mm from the outlet bores a gas stream of high speed is deflected in the axial direction and at the same time stretched and stretched.
  • the melt streams emerging from the outlet bores are additionally drawn by predominantly radial components emerging from gas streams emerging in the vicinity of the outlet bores before they are caught by the deflecting gas stream having a predominantly axial component.
  • the radial gas flows are advantageously at an angle of 0 ° to 45 °, preferably 5 ° to 20 °, against the direction of the melt outlet bores and at a distance of 2 mm to 20 mm from the melt outlet bores at a flow rate of 100 m / s ejected up to 600 m / s.
  • the fibers of the deflecting gas flow at a flow speed of 50 m / s to 500 m / s at an angle of + 60 ° to -60 ° to the axis of rotation and at a radial distance of 10 mm to 200 mm from the Blown out melt outlet openings.
  • one or more gas nozzles are provided, each of which is arranged around the melt outlet openings.
  • melt streams are expediently thrown out of the outlet bores at an angle of 45 ° to 90 ° to the axis of rotation.
  • such a centrifugal acceleration is generated in a chamber upstream of the melt outlet openings that a pressure of 1 bar to 200 bar, preferably 1 bar to 50 bar, is generated in the chamber. prevails.
  • the centrifugal acceleration acts as an additional pressure, which leads to an increase in the velocity of the melt flow in the outlet bore.
  • the ratio of the radial gas flow to the axial gas flow is set to a value between 0 and 5, preferably between 0.4 and 2.
  • the distance on which the fibers are warped can be extended if the temperature of the radially flowing gas is equal to or greater than the temperature of the melt emerging from the outlet openings. This avoids cooling of the melt streams immediately after exiting the holes; i.e. cooling will not start until later.
  • the process according to the invention has been found in particular for the production of very fine fibers made of polyurethane, polyols fin, polyamide, polyester, polycarbonate, polyphenylene sulfide and thermotropic LC polymers are proven.
  • the process is not limited to a relatively narrow viscosity range, but allows the processing of polymer melts in a viscosity range from 20 Pas to 1000 Pas. Furthermore, the process allows the production of very fine fibers from polymers, the decomposition temperature of which is only slightly above the solidification temperature of the melt. In practice, this means that polymers can also be processed that have only a small temperature range that can be used for thread formation.
  • the fibers produced by the process according to the invention also have excellent mechanical properties (high strength) and can be further processed into nonwovens without any problems.
  • polymer granules 1 are melted in an extruder 2 and passed under a constantly regulated pressure in the range from 1 to 200 bar via a rotating seal 3 into a central, rotating melt channel 4 in a housing 5 which is also used for storage.
  • the melt channel 4 is connected to a rotating nozzle head 6, the speed of which is in the range from 1000 to 11,000 rpm, preferably 3000 to 11,000 rpm.
  • the melt emerges radially from the nozzle head 6 through small bores at an angle of 45 ° to 90 ° to the axis of rotation.
  • the drive of the rotating nozzle head 6 with the melt channel 4 opening into it is carried out by a motor 17 with an associated V-belt transmission 18.
  • the heating of the nozzle head 6 is expediently carried out by electrical induction, while the melt channel 4 in the bearing area 5 is heated by resistance heating wires.
  • the deflecting gas 7, 8 is fed to the nozzle head 6 via the connections 19, 20.
  • the melt streams emerging from the outlet bores in the nozzle head 6 are additionally drawn by radial gas streams before they are caught by the deflecting gas streams 7, 8.
  • the rotating nozzle head 6 has been further developed.
  • the polymer melt 21 is here at a temperature above the physical melt temperature required to set the desired viscosity with a pressure of 1 to 200 bar into the central rotating melt channel 4 and from there via radial bores 22 into a melt outlet openings 24 arranged in the nozzle head 6 upstream chamber, directed.
  • the centrifugal force causes the pressure in the pre-chamber 23 to be greater than the pressure specified by the extruder, which leads to an increase in the velocity of the melt flow in the outlet bore 24.
  • the pressure in the pre-chamber 23 is preferably 1 bar to 150 bar, so that the melt viscosity in the bore 24 is reduced by the flow and higher mass throughputs can be achieved.
  • the nozzle head is equipped with an electrical induction heater 25 heated.
  • the gas supply for the radial gas streams 26 takes place at the connection 27.
  • the pressurized gas is passed from the connection 27 into a compressed gas distribution chamber 28 and flows from there through a plurality of gas bores 29 into a compressed gas nozzle chamber 30.
  • the heated air is brought approximately to the speed of sound and flows out via the slot gap 31 in the nozzle head at almost the same speed as a radial gas stream 26. It has proven to be advantageous if the radial gas flow exits at an angle of 0 ° to 45 °, preferably 5 ° to 20 °, to the direction of the melt outlet bores 24.
  • the polymer melt streams emerging from the melt outlet openings 24 form primary threads in the centrifugal field, the heated radial gas streams 26 flowing in almost the same direction either preventing cooling or controlling them in a targeted manner and, in addition to the centrifugal distortion of the primary threads, causing gas-dynamic distortion, as a result of which very fine primary threads 9 from a few microns in diameter without demolition.
  • the gas streams 26 also prevent the primary threads 32 from sticking together and also ensure that the primary threads are not deflected prematurely in an axial direction.
  • the direction of the radial gas flows 26 is expediently chosen so that the geometric intersection of the gas flow direction with the direction of the primary threads 32 falls at a radial distance from the centrifugal axis at which the threads 32 have reached their maximum peripheral speed.
  • the primary threads 32 are gripped by a deflecting gas stream 7, 8 flowing in the axial direction and conveyed further in the axial direction.
  • the deflecting gas flows 7, 8 have a direction of + 60 ° to -60 °, preferably + 30 ° to -30 °, to the axis of rotation and a speed of 50 to 500 m / sec.
  • the deflecting gas streams 7, 8 emerging from the blow ring 33 have a temperature which is below the melt temperature, preferably below the solidification temperature, of the polymer material.
  • the primary threads 32 are cooled by the deflecting gas flows and stretched to the desired end fiber diameter. At the same time, it is torn off, so that polymer fine fibers 9 with a finite length are formed which, as described in connection with FIG. 1, are then further processed to form a fleece 15.
  • the primary threads are produced using the same method as in the device according to FIG. 2; in contrast to the method described above, the primary threads 32 are not blown on one side but on both sides by flanking radial gas streams 26 and 34.
  • two gas bores 29 and 35 emanate from the compressed gas distribution chamber 28 connected to the gas supply 27 and open into separate compressed gas nozzle chambers 30 and 36.
  • the pressure in these two chambers is in the range from 1.5 to 3 bar.
  • two separate gas outlet bores 37, 38 which are adjacent to the melt outlet opening 24, are now provided, which are connected to the compressed gas nozzle chambers 30, 36.
  • the gas flows out of the bores 37, 38 at a speed above the speed of sound radially at an angle ⁇ of 0 ° to 90 °, preferably 30 ° to 90 °, to the axis of rotation on both sides of the melt outlet opening.
  • the gas outlet bores 37, 38 each include an angle ⁇ 1 or ⁇ 2 of 0 ° to 45 °, preferably 5 ° to 20 °, with the direction of the melt outlet opening 24.
  • the direction of the radial gas jets 26, 34 flanking the primary filaments 24 is expediently chosen such that the gas jets strike the primary filament 32 at a point R where the primary filaments have not yet reached their maximum possible peripheral speed. This ensures that the primary threads 32 are distorted both by centrifugal forces and almost simultaneously by gas dynamic forces.
  • warpage is meant that the melt streams are stretched and stretched.
  • the temperature of the radial gas jets 26, 34 is in turn set so high that practically no cooling takes place on this delay line.
  • the primary threads 32 are deflected in the axial direction by axial deflecting gas flows 7, 8 emerging from the blowing ring 33.
  • the angle of the deflecting gas flows is again + 60 ° to -60 °, preferably + 30 ° to -30 °, (measured against the axis of rotation of the nozzle head).
  • the distance x of the exit point of the deflecting gas jets 7, 8 from the melt outlet opening 24 is 10 mm to 200 mm, preferably 20 mm to 100 mm.
  • the deflecting gas jets 7, 8 cause cooling, further expansion and finally the tearing of the polymer threads 9.
  • the polymer melt 21 is in turn fed through the central, rotating melt channel 4 and passed through the radial melt distribution bores 22 into the antechambers 23, which are connected to the melt outlet openings 24.
  • the nozzle head 6 is equipped with a heating winding 39 which is electrically connected via the line 40.
  • Isotactic polypropylene with an MFI 190/5 of 60 g / min was melted at a temperature of 210 ° C in the extruder.
  • the spinning or centrifugal head temperature was 260 ° C.
  • the melt pressure in the centrifugal head was 10 bar, a melt throughput of 0.9 g / min. and hole reached.
  • the centrifugal head rotated at 9700 min ⁇ 1.
  • the primary melt threads emerging from the holes were drawn with a radial hot air flow of 380 Nm3 / h and 280 ° C.
  • the fine fibers spun in this way had an average fiber diameter of 1.1 ⁇ m, a standard deviation of 0.4 ⁇ m and a fiber length of more than 50 mm. With an elongation of less than 60%, the individual fiber strength was 300 to 800 MPa.
  • Nonwovens with basis weights of 2 to 60 g / m2 were produced, which were distinguished by high uniformity, no autogenous nonwoven formation and high nonwoven strength.
  • Radial was stretched with 300 Nm3 / h and 295 ° C hot air.
  • Axial deflection was carried out with 500 Nm3 / h and 20 ° C cold air.
  • Very fine fibers with a thickness of 2 ⁇ m, a standard deviation of 0.8 ⁇ m and a long fiber were obtained.
  • the strength at an elongation of less than 40% was 400 to 900 MPa.
  • the process according to the invention is particularly suitable for the production of fine, very fine and ultra-fine fibers made of thermoplastic materials, such as polyurethane, polyolefin, polyamide, polyester or thermotropic LC polymers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

The polymer granular melt (1) is whirled out of a rotating nozzle head (6) through a plurality of exit holes (24) with fibre formation (32) and the fibres formed (9) are deposited on a collecting surface (12) in web form (15). This polymer melt is introduced into the nozzle head (6) under a preliminary pressure of 1 bar to 200 bar, preferably 1 bar to 50 bar. Furthermore, the fibres (32) are deflected by a high-speed gas stream (7, 8) in a radial direction at a radial distance of 10 mm to 200 mm from the exit holes (24) and, in the course of being deflected, are simultaneously drawn and stretched. The melt streams (32) exiting from the exit holes (24) can be additionally drawn by gas streams (26, 34) exiting in the vicinity of the exit holes (24) at the nozzle head (6) with a predominantly radial component before coming under the influence of the axial deflecting gas stream (7, 8).

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von endlich-langen Feinstpolymerfasern mit einem mittleren Faserdurchmesser von 0,1 bis 10 µm, vorzugsweise 0,1 bis 4 µm, aus thermoplastischen Polymeren. Das Verfahren beruht darauf, daß das geschmolzene Polymer in einem rotierenden Düsenkopf aus einer Vielzahl von Austritts­bohrungen radial unter Faserbildung geschleudert wird und die gebildeten Fasern als Vlies auf einer Ablage ab­geschieden werden.The invention relates to a process for the production of finely long fine polymer fibers with an average fiber diameter of 0.1 to 10 μm, preferably 0.1 to 4 μm, from thermoplastic polymers. The method is based on the fact that the molten polymer is spun in a rotating nozzle head from a plurality of outlet bores radially with the formation of fibers and the fibers formed are deposited as a fleece on a support.

Derartige Schleuder- oder Zentrifugalspinnverfahren sind bekannt und z.B. in US 4 277 436, US 4 237 081, FR 1 298 508 und DE 31 05 784 beschrieben. Insbesondere wird gemäß DE 31 05 784 bei einem Zentrifugalspinnver­fahren von einem axial strömenden Kühlmedium Gebrauch gemacht, wodurch die gebildeten Fasern und das Spinn­organ abgekühlt werden. Damit ist dieses Verfahren na­turgemäß nur für niedrigschmelzende, niedrigviskose Polymere geeignet. Zur Vermeidung eines zu großen Unter­druckes im Zentrum des Zentrifugalfeldes und dadurch bedingtes Ansaugen der gebildeten Fasern muß mit ver­hältnismäßig geringen Kühlluftgeschwindigkeiten gear­beitet werden. Das Kühlmedium kann daher nicht auch gleichzeitig zur Dehnung und Streckung der Fasern (Verzugswirkung) ausgenutzt werden.Spin or centrifugal spinning processes of this type are known and are described, for example, in US Pat. No. 4,277,436, US Pat. No. 4,237,081, FR 1,298,508 and DE 31 05 784. In particular, according to DE 31 05 784, use is made of an axially flowing cooling medium in a centrifugal spinning process, as a result of which the fibers formed and the spinning member are cooled. This process is naturally only suitable for low-melting, low-viscosity polymers. To avoid excessive vacuum in the center of the centrifugal field and thereby Conditional suction of the fibers formed must be carried out at relatively low cooling air speeds. The cooling medium can therefore not be used simultaneously for stretching and stretching the fibers (warping effect).

Ferner wird in EP-0 168 817 ein Zentrifugalspinnver­fahren beschrieben, bei dem die Schmelze offenbar unter Druck in eine mit relativ niedriger Umfangsgeschwindig­keit rotierende Düse eingebracht wird. Dadurch können kontinuierlich relativ grobe Fäden erzeugt werden. Eine über den Zentrifugalverzug hinausgehende Verstreckung der Fäden durch einen gasdynamischen Effekt findet nicht statt.Furthermore, EP-0 168 817 describes a centrifugal spinning process in which the melt is apparently introduced under pressure into a nozzle rotating at a relatively low peripheral speed. As a result, relatively coarse threads can be produced continuously. A stretching of the threads beyond a centrifugal delay due to a gas dynamic effect does not take place.

Der Erfindung liegt die Aufgabe zugrunde, mit Hilfe des Schleuder- oder Zentrifugalspinnverfahrens Feinstpoly­merfasern aus thermoplastischen Polymeren herzustellen. Unter Feinstpolymerfasern werden dabei Fasern mit einem mittleren Durchmesser von 0,1 µm bis 10 µm, vorzugsweise 0,1 µm bis 4 µm, und einer endlichen Faserlänge verstan­den. Dabei soll das Verfahren innerhalb eines weiten Viskositätsbereichs von 20 Pas bis 1000 Pas der Polymer­schmelze angewendet werden können und für Polymere geeignet sein, deren Schmelztemperatur im Bereich von 100°C bis 500°C liegt.The object of the invention is to use the centrifugal or centrifugal spinning process to produce very fine polymer fibers from thermoplastic polymers. Fine polymer fibers are understood to mean fibers with an average diameter of 0.1 μm to 10 μm, preferably 0.1 μm to 4 μm, and a finite fiber length. The process should be able to be used within a wide viscosity range of 20 Pas to 1000 Pas of the polymer melt and should be suitable for polymers whose melting temperature is in the range from 100 ° C to 500 ° C.

Diese Aufgabe wird ausgehend von dem bekannten Zentri­fugalspinnverfahren, bei dem das geschmolzene Polymer in einem rotierenden Düsenkopf aus einer Vielzahl von Austrittsbohrungen radial unter Faserbildung geschleu­ dert wird, erfindungsgemäß dadurch gelöst, daß das ge­schmolzene Polymer unter einem Vordruck von 1 bar bis 200 bar, vorzugsweise 1 bar bis 50 bar, in den Düsenkopf eingebracht wird und die Fasern in einem radialen Ab­stand von 10 mm bis 200 mm von den Austrittsbohrungen durch einen Gasstrom hoher Geschwindigkeit in axiale Richtung umgelenkt und dabei gleichzeitig verstreckt und gedehnt werden.This task is based on the known centrifugal spinning process, in which the molten polymer is thrown in a rotating nozzle head from a plurality of outlet bores radially with fiber formation is solved, according to the invention, in that the molten polymer is introduced into the nozzle head at a pre-pressure of 1 bar to 200 bar, preferably 1 bar to 50 bar, and the fibers are at a radial distance of 10 mm to 200 mm from the outlet bores a gas stream of high speed is deflected in the axial direction and at the same time stretched and stretched.

Vorzugsweise werden die aus den Austrittsbohrungen aus­tretenden Schmelzeströme zusätzlich durch in der Nähe der Austrittsbohrungen am Düsenkopf austretende Gas­ströme mit überwiegend radialer Komponete verstreckt, bevor sie von dem Umlenkgasstrom mit überwiegend axialer Komponente erfaßt werden. Dabei werden die radialen Gas­ströme vorteilhaft jeweils unter einem Winkel von 0° bis 45°, vorzugsweise 5° bis 20°, gegen die Richtung der Schmelzeaustrittsbohrungen und in einem Abstand von 2 mm bis 20 mm von den Schmelzeaustrittsbohrungen mit einer Strömungsgeschwindigkeit von 100 m/s bis 600 m/s ausge­stoßen.Preferably, the melt streams emerging from the outlet bores are additionally drawn by predominantly radial components emerging from gas streams emerging in the vicinity of the outlet bores before they are caught by the deflecting gas stream having a predominantly axial component. The radial gas flows are advantageously at an angle of 0 ° to 45 °, preferably 5 ° to 20 °, against the direction of the melt outlet bores and at a distance of 2 mm to 20 mm from the melt outlet bores at a flow rate of 100 m / s ejected up to 600 m / s.

Gemäß einer Weiterbildung der Erfindung werden die Fasern von dem Umlenkgasstrom mit einer Strömungsge­schwindigkeit von 50 m/s bis 500 m/s unter einem Winkel von +60° bis -60° zur Drehachse und in einem radialen Abstand von 10 mm bis 200 mm von den Schmelzeaustritts­öffnungen angeblasen. Zu diesem Zweck sind eine oder mehrere Gasdüsen vorgesehen, die jeweils um die Schmelzeaustrittsöffnungen herum angeordnet sind.According to a development of the invention, the fibers of the deflecting gas flow at a flow speed of 50 m / s to 500 m / s at an angle of + 60 ° to -60 ° to the axis of rotation and at a radial distance of 10 mm to 200 mm from the Blown out melt outlet openings. For this purpose, one or more gas nozzles are provided, each of which is arranged around the melt outlet openings.

Zweckmäßig werden die Schmelzeströme aus den Austritts­bohrungen unter einem Winkel von 45° bis 90° zur Dreh­achse ausgeschleudert.The melt streams are expediently thrown out of the outlet bores at an angle of 45 ° to 90 ° to the axis of rotation.

Gemäß einer Weiterentwicklung der Erfindung wird zusätz­lich zu der durch den Vordruck der Polymerschmelze im Düsenkopf hervorgerufenen Beschleunigung in einer den Schmelzeaustrittsöffnungen vorgeschalteten Kammer eine so hohe Zentrifugalbeschleunigung erzeugt, daß in der Kammer ein Druck von 1 bar bis 200 bar, vorzugsweise 1 bar bis 50 bar, herrscht. Die Zentrifugalbeschleuni­gung wirkt sich dabei als zusätzlicher Druck aus, der zu einem Geschwindigkeitszuwachs der Schmelzeströmung in der Austrittsbohrung führt.According to a further development of the invention, in addition to the acceleration caused by the pre-pressure of the polymer melt in the nozzle head, such a centrifugal acceleration is generated in a chamber upstream of the melt outlet openings that a pressure of 1 bar to 200 bar, preferably 1 bar to 50 bar, is generated in the chamber. prevails. The centrifugal acceleration acts as an additional pressure, which leads to an increase in the velocity of the melt flow in the outlet bore.

Weiterhin hat es sich als günstig erwiesen, wenn das Verhältnis des radialen Gasmengenstroms zum axialen Gasmengenstrom auf einen Wert zwischen 0 und 5, vorzugsweise zwischen 0,4 und 2, eingestellt wird.Furthermore, it has proven to be advantageous if the ratio of the radial gas flow to the axial gas flow is set to a value between 0 and 5, preferably between 0.4 and 2.

Außerdem wurde gefunden, daß man die Wegstrecke, auf der der Verzug der Fasern erfolgt, verlängern kann, wenn die Temperatur des radial strömenden Gases gleich oder größer ist als die Temperatur der aus den Austritts­öffnungen austretenden Schmelze. Damit wird eine Abküh­lung der Schmelzeströme unmittelbar nach dem Austritt aus den Bohrungen vermieden; d.h. die Kühlung setzt erst zu einem späteren Zeitpunkt ein.It has also been found that the distance on which the fibers are warped can be extended if the temperature of the radially flowing gas is equal to or greater than the temperature of the melt emerging from the outlet openings. This avoids cooling of the melt streams immediately after exiting the holes; i.e. cooling will not start until later.

Das erfindungsgemäße Verfahren hat sich insbesondere zur Herstellung von Feinstfasern aus Polyurethan, Polyole­ fin, Polyamid, Polyester, Polycarbonat, Polyphenylen­sulfid und thermotropen LC-Polymeren bewährt.The process according to the invention has been found in particular for the production of very fine fibers made of polyurethane, polyols fin, polyamide, polyester, polycarbonate, polyphenylene sulfide and thermotropic LC polymers are proven.

Mit der Erfindung werden folgende Vorteile erzielt.The following advantages are achieved with the invention.

Das Verfahren ist nicht auf einen relativ engen Viskosi­tätsbereich festgelegt, sondern erlaubt die Verarbeitung von Polymerschmelzen in einem Viskositätsbereich von 20 Pas bis 1000 Pas. Ferner erlaubt das Verfahren die Herstellung von Feinstfasern aus Polymeren, deren Zersetzungstemperatur nur wenig über der Erstarrungs­temperatur der Schmelze liegt. Dies bedeutet in der Praxis, daß auch Polymere verarbeitet werden können, die nur einen kleinen, für die Fadenbildung nutzbaren Tem­peraturbereich besitzen.The process is not limited to a relatively narrow viscosity range, but allows the processing of polymer melts in a viscosity range from 20 Pas to 1000 Pas. Furthermore, the process allows the production of very fine fibers from polymers, the decomposition temperature of which is only slightly above the solidification temperature of the melt. In practice, this means that polymers can also be processed that have only a small temperature range that can be used for thread formation.

Weitere Vorteile des erfindungsgemäßen Verfahrens liegen darin, daß man Fasern ohne Verklebungen, Verdrillungen oder Dickstellen erhält. Ferner lassen sich Fasern mit hoher Feinheit und großer Faserlänge herstellen (Länge/­Durchmesser = 10³ bis 10⁶). Weiterhin hat sich heraus­gestellt, daß gegenüber den bekannten Verfahren nach dem Stand der Technik sehr viel höhere Massendurchsätze im Bereich von 0,001 g/min bis 2 g/min pro Bohrung erreicht werden können. Die nach dem erfindungsgemäßen Verfahren hergestellten Fasern weisen auch ausgezeichnete mechani­sche Eigenschaften (hohe Festigkeit) auf und lassen sich problemlos zu Vliesen weiterverarbeiten.Further advantages of the method according to the invention are that fibers are obtained without sticking, twisting or thick spots. Furthermore, fibers with high fineness and great fiber length can be produced (length / diameter = 10³ to 10⁶). Furthermore, it has been found that, compared to the known methods according to the prior art, much higher mass throughputs in the range from 0.001 g / min to 2 g / min can be achieved per bore. The fibers produced by the process according to the invention also have excellent mechanical properties (high strength) and can be further processed into nonwovens without any problems.

Im folgenden werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen näher beschrieben. Es zeigen:

  • Fig. 1 ein Verfahrensschema für eine Anlage zur Durch­führung des erfindungsgemäßen Verfahrens,
  • Fig. 2 einen Düsenkopf mit einseitiger Schlitzanströmung der Schmelzeströme und
  • Fig. 3 einen Düsenkopf mit zweiseitiger radialer An­blasung der Schmelzeströme.
Exemplary embodiments of the invention are described in more detail below with reference to drawings. Show it:
  • 1 is a process diagram for a plant for performing the method according to the invention,
  • Fig. 2 shows a nozzle head with one-sided slot flow of the melt streams and
  • Fig. 3 shows a nozzle head with two-sided radial blowing of the melt streams.

Gemäß Figur 1 wird Polymergranulat 1 in einem Extruder 2 aufgeschmolzen und unter einem konstant geregelten Druck im Bereich von 1 bis 200 bar über eine rotierend wirkende Dichtung 3 in einen zentrischen, rotierenden Schmelzekanal 4 in einem gleichzeitig zur Lagerung die­nenden Gehäuse 5 geleitet. Der Schmelzekanal 4 steht mit einem rotierenden Düsenkopf 6 in Verbindung, dessen Drehzahl im Bereich von 1000 bis 11 000 min⁻¹, vorzugs­weise 3000 bis 11 000 min⁻¹, liegt. Aus dem Düsenkopf 6 tritt die Schmelze durch kleine Bohrungen in einem Winkel von 45° bis 90° zur Drehachse radial aus. Auf­grund des anliegenden Schmelzedruckes von 1 bar bis 150 bar, vorzugsweise 1 bar bis 50 bar, werden kontinu­ierliche Massenströme pro Bohrung von 0,001 g/min bis 5 g/min, vorzugsweise 0,01 bis 1 g/min, gebildet. Diese Massenströme werden von einem aus dem Düsenkopf 6 aus­tretenden, überwiegend mit axialer Komponente strömenden Umlenkgasstrom 7, 8 erfaßt und dabei zu endlichen Feinstfasern mit einem Durchmesser von 0,1 µm bis 4 µm verzogen und verstreckt. Die Feinstfasern 9 werden dann über einen Sammeldiffusor 11 auf ein Ablageband 12 mit einer Gasabsaugung 13, 14 zu einem Vlies 15 verdichtet und gegebenenfalls zwischen beheizten Walzen 16 weiter verfestigt.According to FIG. 1, polymer granules 1 are melted in an extruder 2 and passed under a constantly regulated pressure in the range from 1 to 200 bar via a rotating seal 3 into a central, rotating melt channel 4 in a housing 5 which is also used for storage. The melt channel 4 is connected to a rotating nozzle head 6, the speed of which is in the range from 1000 to 11,000 rpm, preferably 3000 to 11,000 rpm. The melt emerges radially from the nozzle head 6 through small bores at an angle of 45 ° to 90 ° to the axis of rotation. Due to the applied melt pressure of 1 bar to 150 bar, preferably 1 bar to 50 bar, continuous mass flows per bore of 0.001 g / min to 5 g / min, preferably 0.01 to 1 g / min, are formed. These mass flows are detected by a deflecting gas flow 7, 8 emerging from the nozzle head 6 and predominantly flowing with an axial component, and are drawn and stretched into finest fine fibers with a diameter of 0.1 μm to 4 μm. The very fine fibers 9 are then compressed via a collecting diffuser 11 onto a storage belt 12 with a gas extraction 13, 14 to form a fleece 15 and, if necessary, further solidified between heated rollers 16.

Der Antrieb des rotierenden Düsenkopfes 6 mit dem darin einmündenden Schmelzekanal 4 erfolgt durch einen Motor 17 mit zugeordnetem Keilriemengetriebe 18. Die Beheizung des Düsenkopfes 6 geschieht zweckmäßig durch elektrische Induktion, während der Schmelzekanal 4 im Lagerbereich 5 durch Widerstandsheizdrähte aufgeheizt wird. Das Um­lenkgas 7, 8 wird dem Düsenkopf 6 über die Anschlüsse 19, 20 zugeführt.The drive of the rotating nozzle head 6 with the melt channel 4 opening into it is carried out by a motor 17 with an associated V-belt transmission 18. The heating of the nozzle head 6 is expediently carried out by electrical induction, while the melt channel 4 in the bearing area 5 is heated by resistance heating wires. The deflecting gas 7, 8 is fed to the nozzle head 6 via the connections 19, 20.

Gemäß Figur 2 werden die aus den Austrittsbohrungen im Düsenkopf 6 austretenden Schmelzeströme zusätzlich durch radiale Gasströme verstreckt, bevor sie von den Umlenk­gasströmen 7, 8 erfaßt werden. Zu diesem Zweck wurde der rotierende Düsenkopf 6 weiterentwickelt. Die Polymer­schmelze 21 wird hier mit einer zur Einstellung der ge­wünschten Viskosität erforderlichen Temperatur oberhalb der physikalischen Schmelzetemperatur mit einem Druck von 1 bis 200 bar in den zentrischen rotierenden Schmel­zekanal 4 und von dort über radiale Bohrungen 22 in eine, im Düsenkopf 6 angeordnete, den Schmelzeaustritts­öffnungen 24 vorgeschaltete Kammer, geleitet. Die Zen­trifugalkraft bewirkt, daß der Druck in der Vorkammer 23 größer ist als der vom Extruder vorgegebene Druck, was zu einem Geschwindigkeitszuwachs der Schmelzeströ­mung in der Austrittsbohrung 24 führt. Der Druck in der Vorkammer 23 beträgt vorzugsweise 1 bar bis 150 bar, so daß die Schmelzeviskosität in der Bohrung 24 durch die Strömung erniedrigt wird und höhere Massendurchsätze erzielt werden können. Zur Einstellung der gewünschten Schmelzetemperatur am Austritt der Bohrung 24 wird der Düsenkopf mit einer elektrischen Induktionsheizung 25 beheizt. Die Gaszufuhr für die radialen Gasströme 26 erfolgt am Anschluß 27. Das unter Druck stehende Gas wird vom Anschluß 27 in eine Druckgasverteilungskammer 28 geleitet und strömt von dort durch eine Vielzahl von Gasbohrungen 29 in eine Druckgasdüsenkammer 30. Dabei wird die erhitzte Luft näherungsweise auf Schallge­schwindigkeit gebracht und strömt über den Schlitzspalt 31 im Düsenkopf mit nahezu gleich hoher Geschwindigkeit als radialer Gasstrom 26 aus. Dabei hat es sich als günstig herausgestellt, wenn der radiale Gasstrom unter einem Winkel von 0° bis 45°, vorzugsweise 5° bis 20°, zur Richtung der Schmelzeaustrittsbohrungen 24 aus­tritt.According to FIG. 2, the melt streams emerging from the outlet bores in the nozzle head 6 are additionally drawn by radial gas streams before they are caught by the deflecting gas streams 7, 8. For this purpose, the rotating nozzle head 6 has been further developed. The polymer melt 21 is here at a temperature above the physical melt temperature required to set the desired viscosity with a pressure of 1 to 200 bar into the central rotating melt channel 4 and from there via radial bores 22 into a melt outlet openings 24 arranged in the nozzle head 6 upstream chamber, directed. The centrifugal force causes the pressure in the pre-chamber 23 to be greater than the pressure specified by the extruder, which leads to an increase in the velocity of the melt flow in the outlet bore 24. The pressure in the pre-chamber 23 is preferably 1 bar to 150 bar, so that the melt viscosity in the bore 24 is reduced by the flow and higher mass throughputs can be achieved. To set the desired melt temperature at the outlet of the bore 24, the nozzle head is equipped with an electrical induction heater 25 heated. The gas supply for the radial gas streams 26 takes place at the connection 27. The pressurized gas is passed from the connection 27 into a compressed gas distribution chamber 28 and flows from there through a plurality of gas bores 29 into a compressed gas nozzle chamber 30. The heated air is brought approximately to the speed of sound and flows out via the slot gap 31 in the nozzle head at almost the same speed as a radial gas stream 26. It has proven to be advantageous if the radial gas flow exits at an angle of 0 ° to 45 °, preferably 5 ° to 20 °, to the direction of the melt outlet bores 24.

Die aus den Schmelzeaustrittsöffnungen 24 austretenden Polymerschmelzeströme bilden Primärfäden im Zentrifugal­feld, wobei die nahezu in gleicher Richtung strömenden, beheizten radialen Gasströme 26 eine Abkühlung entweder verhindern oder gezielt steuern und zusätzlich zu dem zentrifugalen Verzug der Primärfäden einen gasdyna­mischen Verzug bewirken, wodurch sehr feine Primärfäden 9 von wenigen µm Durchmesser ohne Abriß entstehen. Die Gasströme 26 verhindern zudem ein Verkleben der Primär­fäden 32 und sorgen ferner dafür, daß die Primärfäden nicht vorzeitig in eine axiale Richtung umgelenkt wer­den. Die Richtung der radialen Gasströme 26 wird zweck­mäßig so gewählt, daß der geometrische Schnittpunkt der Gasstromrichtung mit der Richtung der Primärfäden 32 in einem radialen Abstand von der Zentrifugalachse fällt, bei dem die Fäden 32 ihre maximale Umfangsgeschwindig­keit erreicht haben.The polymer melt streams emerging from the melt outlet openings 24 form primary threads in the centrifugal field, the heated radial gas streams 26 flowing in almost the same direction either preventing cooling or controlling them in a targeted manner and, in addition to the centrifugal distortion of the primary threads, causing gas-dynamic distortion, as a result of which very fine primary threads 9 from a few microns in diameter without demolition. The gas streams 26 also prevent the primary threads 32 from sticking together and also ensure that the primary threads are not deflected prematurely in an axial direction. The direction of the radial gas flows 26 is expediently chosen so that the geometric intersection of the gas flow direction with the direction of the primary threads 32 falls at a radial distance from the centrifugal axis at which the threads 32 have reached their maximum peripheral speed.

In einem radialen Abstand von 10 mm bis 200 mm von den Austrittsbohrungen 24 werden die Primärfäden 32 von einem in axialer Richtung strömenden Umlenkgasstrom 7, 8 erfaßt und in axialer Richtung weitergefördert. Die umlenkgasströme 7, 8 haben eine Richtung von +60° bis -60°, vorzugsweise +30° bis -30°, zur Drehachse und eine Geschwindigkeit von 50 bis 500 m/sec. Die aus dem Blas­ring 33 austretenden Umlenkgasströme 7, 8 weisen eine Temperatur auf, die unterhalb der Schmelzetemperatur, vorzugsweise unterhalb der Erstarrungstemperatur, des Polymermaterials liegt. Durch die Umlenkgasströme werden die Primärfäden 32 abgekühlt und auf den gewünschten Endfaserdurchmesser verstreckt. Gleichzeitig erfolgt ein Abriß, so daß Polymerfeinfasern 9 mit endlicher Länge gebildet werden, die dann, wie in Verbindung mit Figur 1 beschrieben, zu einem Vlies 15 weiterverarbeitet werden.At a radial distance of 10 mm to 200 mm from the outlet bores 24, the primary threads 32 are gripped by a deflecting gas stream 7, 8 flowing in the axial direction and conveyed further in the axial direction. The deflecting gas flows 7, 8 have a direction of + 60 ° to -60 °, preferably + 30 ° to -30 °, to the axis of rotation and a speed of 50 to 500 m / sec. The deflecting gas streams 7, 8 emerging from the blow ring 33 have a temperature which is below the melt temperature, preferably below the solidification temperature, of the polymer material. The primary threads 32 are cooled by the deflecting gas flows and stretched to the desired end fiber diameter. At the same time, it is torn off, so that polymer fine fibers 9 with a finite length are formed which, as described in connection with FIG. 1, are then further processed to form a fleece 15.

Eine weitere Variante des Verfahrens wird nachfolgend anhand von Figur 3 erläutert. Die Erzeugung der Primär­fäden geschieht im Prinzip nach dem gleichen Verfahren wie bei der Vorrichtung nach Figur 2; im Unterschied zu dem vorbeschriebenen Verfahren werden die Primärfäden 32 jedoch nicht einseitig, sondern beidseitig von flan­kierenden radialen Gasströmen 26 und 34 angeblasen. Zu diesem Zweck gehen von der, mit der Gaszuführung 27 ver­bundenen Druckgasverteilungskammer 28 zwei Gasbohrungen 29 und 35 aus, die in getrennte Druckgasdüsenkammern 30 und 36 einmünden. Der Druck in diesen beiden Kammern liegt im Bereich von 1,5 bis 3 bar. Anstelle eines Schlitzspaltes 31 für den Austritt des radialen Gas­ stromes (Figur 2) sind hier nun zwei getrennte, der Schmelzeaustrittsöffnung 24 benachbarte Gasaustritts­bohrungen 37, 38 vorgesehen, die mit den Druckgasdüsen­kammern 30, 36 verbunden sind. Aus den Bohrungen 37, 38 strömt das Gas mit einer Geschwindigkeit oberhalb der Schallgeschwindigkeit radial in einem Winkel β von 0° bis 90°, vorzugsweise 30° bis 90°, zur Drehachse beid­seitig der Schmelzeaustrittsöffnung aus. Die Gasaus­trittsbohrungen 37, 38 schließen dabei jeweils einen Winkel α₁ bzw. α₂ von 0° bis 45°, vorzugsweise 5° bis 20°, mit der Richtung der Schmelzeaustrittsöffnung 24 ein.Another variant of the method is explained below with reference to FIG. 3. In principle, the primary threads are produced using the same method as in the device according to FIG. 2; in contrast to the method described above, the primary threads 32 are not blown on one side but on both sides by flanking radial gas streams 26 and 34. For this purpose, two gas bores 29 and 35 emanate from the compressed gas distribution chamber 28 connected to the gas supply 27 and open into separate compressed gas nozzle chambers 30 and 36. The pressure in these two chambers is in the range from 1.5 to 3 bar. Instead of a slot gap 31 for the exit of the radial gas stream (FIG. 2), two separate gas outlet bores 37, 38, which are adjacent to the melt outlet opening 24, are now provided, which are connected to the compressed gas nozzle chambers 30, 36. The gas flows out of the bores 37, 38 at a speed above the speed of sound radially at an angle β of 0 ° to 90 °, preferably 30 ° to 90 °, to the axis of rotation on both sides of the melt outlet opening. The gas outlet bores 37, 38 each include an angle α₁ or α₂ of 0 ° to 45 °, preferably 5 ° to 20 °, with the direction of the melt outlet opening 24.

Die Richtung der die Primärfäden 24 flankierenden radialen Gasstrahlen 26, 34 wird zweckmäßig so gewählt, daß die Gasstrahlen den Primärfaden 32 an einem Punkt R treffen, wo die Primärfäden noch nicht ihre maximal mögliche Umfangsgeschwindigkeit erreicht haben. Dadurch wird sichergestellt, daß die Primärfäden 32 sowohl durch Zentrifugalkräfte als auch nahezu gleichzeitig durch gasdynamische Kräfte verzogen werden. Unter "Verzug" wird hierbei verstanden, daß die Schmelzeströme ver­streckt und gedehnt werden. Die Temperatur der radialen Gasstrahlen 26, 34 ist wiederum so hoch eingestellt, daß auf dieser Verzugsstrecke praktisch keine Abkühlung stattfindet.The direction of the radial gas jets 26, 34 flanking the primary filaments 24 is expediently chosen such that the gas jets strike the primary filament 32 at a point R where the primary filaments have not yet reached their maximum possible peripheral speed. This ensures that the primary threads 32 are distorted both by centrifugal forces and almost simultaneously by gas dynamic forces. By "warpage" is meant that the melt streams are stretched and stretched. The temperature of the radial gas jets 26, 34 is in turn set so high that practically no cooling takes place on this delay line.

Anschließend werden die Primärfäden 32 wie bei dem Ver­fahren nach Figur 2 durch axiale, aus dem Blasring 33 austretende Umlenkgasströme 7, 8 in axiale Richtung um­gelenkt. Der Winkel der Umlenkgasströme beträgt dabei wieder +60° bis -60°, vorzugsweise +30° bis -30°, (ge­messen gegen die Drehachse des Düsenkopfes). Der Abstand x der Austrittsstelle der Umlenkgasstrahlen 7, 8 von der Schmelzeaustrittsöffnung 24 beträgt 10 mm bis 200 mm, vorzugsweise 20 mm bis 100 mm. Die Umlenkgasstrahlen 7, 8 bewirken neben der Richtungsänderung die Abkühlung, weitere Dehnung und schließlich den Abriß der Polymer­fäden 9.Then, as in the method according to FIG. 2, the primary threads 32 are deflected in the axial direction by axial deflecting gas flows 7, 8 emerging from the blowing ring 33. The angle of the deflecting gas flows is again + 60 ° to -60 °, preferably + 30 ° to -30 °, (measured against the axis of rotation of the nozzle head). The distance x of the exit point of the deflecting gas jets 7, 8 from the melt outlet opening 24 is 10 mm to 200 mm, preferably 20 mm to 100 mm. In addition to the change in direction, the deflecting gas jets 7, 8 cause cooling, further expansion and finally the tearing of the polymer threads 9.

Die Polymerschmelze 21 wird wiederum durch den zen­tralen, rotierenden Schmelzekanal 4 zugeführt und durch die radialen Schmelzeverteilbohrungen 22 in die Vor­kammern 23 weitergeleitet, die mit den Schmelzeaus­trittsöffnungen 24 verbunden sind. Zur Beheizung ist der Düsenkopf 6 mit einer Heizwicklung 39 ausgerüstet, die über die Leitung 40 elektrisch angeschlossen wird.The polymer melt 21 is in turn fed through the central, rotating melt channel 4 and passed through the radial melt distribution bores 22 into the antechambers 23, which are connected to the melt outlet openings 24. For heating, the nozzle head 6 is equipped with a heating winding 39 which is electrically connected via the line 40.

Zusammenfassend werden noch einmal die wichtigen Verfah­renskriterien hervorgehoben.

  • 1. Die Polymerschmelze wird unter einem relativ hohen Vordruck in den rotierenden Düsenkopf eingebracht.
  • 2. Die Umlenkung und Kühlung der Primärfäden durch Um­lenkgasströme erfolgt erst nach Durchlaufen einer radialen Verstreckungszone, in der die Polymerfäden mit Heißluft mit überwiegend radialer Komponente angeblasen werden.
  • 3. Die radialen Heißgasströme werden dem rotierenden Düsenkopf zentral zugeführt und innerhalb des Düsenkopfes radial aufgeteilt.
  • 4. Durch den radialen Heißgasstrom erfolgt eine ein- oder beidseitige Anblasung der Primärfäden.
  • 5. Der Düsenkopf rotiert mit einer hohen Umfangsge­schwindigkeit von 20 bis 150 m/sec.
  • 6. Die Anblasung durch den Umlenkgasstrom erfolgt be­vorzugt mit Schall- oder Überschallgeschwindig­keit.
  • 7. Der rotierende Düsenkopf wird nicht gekühlt, son­dern beheizt.
In summary, the important procedural criteria are emphasized once again.
  • 1. The polymer melt is introduced into the rotating die head under a relatively high pre-pressure.
  • 2. The deflection and cooling of the primary threads by deflecting gas flows takes place only after passing through a radial stretching zone in which the polymer threads are blown with hot air with a predominantly radial component.
  • 3. The radial hot gas streams are fed centrally to the rotating nozzle head and divided radially within the nozzle head.
  • 4. The radial hot gas flow blows the primary threads on one or both sides.
  • 5. The nozzle head rotates at a high peripheral speed of 20 to 150 m / sec.
  • 6. The blowing through the deflection gas flow is preferably carried out at sonic or supersonic speed.
  • 7. The rotating nozzle head is not cooled, but heated.

AusführungsbeispieleEmbodiments Beispiel 1example 1 Versuchsapparatur nach Figur 2Experimental apparatus according to Figure 2

Isotaktisches Polypropylen mit einem MFI 190/5 von 60 g/min wurde mit einer Temperatur von 210°C im Extru­der erschmolzen.Isotactic polypropylene with an MFI 190/5 of 60 g / min was melted at a temperature of 210 ° C in the extruder.

Die Spinn- bzw. Schleuderkopftemperatur lag bei 260°C. Der Schmelzedruck im Schleuderkopf betrug 10 bar, hier­bei wurde ein Schmelzedurchsatz von 0,9 g/min. und Boh­rung erreicht. Der Schleuderkopf rotierte mit 9700 min⁻¹. Die aus den Bohrungen austretenden Primärschmel­zefäden wurden mit einem radialen Heißluftstrom von 380 Nm³/h und 280°C verstreckt. Anschließend mit 500 Nm³/h und 20°C kalter Luft axial umgelenkt. Die so gesponnenen Feinstfasern hatten einen mittleren Faserdurchmesser von 1,1 µm, eine Standardabweichung von 0,4 µm und eine Fa­serlänge von mehr als 50 mm. Bei einer Dehnung von weni­ger als 60 % betrug die Einzelfaserfestigkeit 300 bis 800 MPa. Es wurden Vliese mit Flächengewichten von 2 bis 60 g/m² hergestellt, die sich durch hohe Gleichmäßig­keit, keine autogene Vliesbildung und hohe Vliesfestig­keit auszeichneten.The spinning or centrifugal head temperature was 260 ° C. The melt pressure in the centrifugal head was 10 bar, a melt throughput of 0.9 g / min. and hole reached. The centrifugal head rotated at 9700 min⁻¹. The primary melt threads emerging from the holes were drawn with a radial hot air flow of 380 Nm³ / h and 280 ° C. Then axially deflected with 500 Nm³ / h and 20 ° C cold air. The fine fibers spun in this way had an average fiber diameter of 1.1 µm, a standard deviation of 0.4 µm and a fiber length of more than 50 mm. With an elongation of less than 60%, the individual fiber strength was 300 to 800 MPa. Nonwovens with basis weights of 2 to 60 g / m² were produced, which were distinguished by high uniformity, no autogenous nonwoven formation and high nonwoven strength.

Beispiel 2Example 2 Versuchsapparatur nach Figur 2Experimental apparatus according to Figure 2

Polyamid 6 mit einer relativen Viskosität von ηR = 3,1 wurde bei 270°C im Extruder erschmolzen und mit einer Spinntemperatur von 300°C und Massendurchsätzen von 0,1 g/min pro Bohrung bei einem Schmelzevordruck von 25 bar nach dem erfindungsgemäßen Verfahren versponnen. Radial wurde mit 300 Nm³/h und 295°C heißer Luft ver­streckt. Axial umgelenkt wurde mit 500 Nm³/h und 20°C kalter Luft. Dabei wurden Feinstfasern mit einer Stärke von 2 µm, einer Standardabweichung von 0,8 µm und großer Faserlänge erzielt. Die Festigkeit betrug bei einer Dehnung von weniger als 40 % 400 bis 900 MPa.Polyamide 6 with a relative viscosity of η R = 3.1 was melted at 270 ° C in the extruder and with a spinning temperature of 300 ° C and mass flow rates of 0.1 g / min per bore at a melt pre-pressure of 25 bar spun according to the inventive method. Radial was stretched with 300 Nm³ / h and 295 ° C hot air. Axial deflection was carried out with 500 Nm³ / h and 20 ° C cold air. Very fine fibers with a thickness of 2 µm, a standard deviation of 0.8 µm and a long fiber were obtained. The strength at an elongation of less than 40% was 400 to 900 MPa.

Das erfindungsgemäße Verfahren ist insbesondere zur Her­stellung von Fein-, Feinst- und Ultrafeinfasern aus thermoplastischen Materialien, wie Polyurethan, Polyole­fin, Polyamid, Polyester oder thermotropen LC-Polymeren geeignet.The process according to the invention is particularly suitable for the production of fine, very fine and ultra-fine fibers made of thermoplastic materials, such as polyurethane, polyolefin, polyamide, polyester or thermotropic LC polymers.

Claims (10)

1. Verfahren zur Herstellung von endlich langen Feinstpolymerfasern mit einem mittleren Faserdurch­messer von 0,1 µm bis 10 µm, vorzugsweise 0,1 µm bis 4 µm, aus thermoplastischen Polymeren, bei dem das geschmolzene Polymer in einem rotierenden Düsenkopf aus einer Vielzahl von Austrittsbohrungen radial unter Faserbildung geschleudert wird und die gebildeten Fasern als Vlies auf eine Ablage abge­schieden werden, dadurch gekennzeichnet, daß das geschmolzene Polymer unter einem Vordruck von 1 bar bis 200 bar, vorzugsweise 1 bar bis 50 bar, in den Düsenkopf eingebracht wird und daß die Fasern in einem radialen Abstand von 10 mm bis 200 mm von den Austrittsbohrungen durch einen Gasstrom hoher Ge­schwindigkeit in axiale Richtung umgelenkt und dabei gleichzeitig verstreckt und gedehnt werden.1. A process for producing finely long fine polymer fibers with an average fiber diameter of 0.1 microns to 10 microns, preferably 0.1 microns to 4 microns, from thermoplastic polymers, in which the molten polymer in a rotating nozzle head from a plurality of outlet bores radially is spun with the formation of fibers and the fibers formed are deposited as a fleece on a tray, characterized in that the molten polymer is introduced into the nozzle head under a pressure of 1 bar to 200 bar, preferably 1 bar to 50 bar, and that the fibers are in a radial distance of 10 mm to 200 mm from the outlet bores are deflected in the axial direction by a high-speed gas stream and at the same time are stretched and stretched. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß die aus den Austrittsbohrungen austretenden Schmelzeströme zusätzlich durch in der Nähe der Austrittsbohrungen am Düsenkopf austretende Gas­ströme mit überwiegend radialer Komponente ver­streckt werden, bevor sie von dem Umlenkgasstrom mit überwiegend axialer Komponente erfaßt werden.2. The method according to claim 1, characterized in that the melt streams emerging from the outlet bores are additionally drawn by gas streams escaping in the vicinity of the outlet bores on the nozzle head with a predominantly radial component before they are detected by the deflecting gas stream with a predominantly axial component. 3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß die radialen Gasströme jeweils unter einem Win­kel von 0° bis 45°, vorzugsweise 5° bis 20°, gegen die Richtung der Schmelzeaustrittsbohrungen und in einem Abstand von 2 mm bis 20 mm von den Schmelze­austrittsbohrungen austreten.3. The method according to claim 2, characterized in that the radial gas flows each at an angle of 0 ° to 45 °, preferably 5 ° to 20 °, against the direction of the melt outlet bores and in emerge at a distance of 2 mm to 20 mm from the melt outlet holes. 4. Verfahren nach Anspruch 2 bis 3, dadurch gekenn­zeichnet, daß die radialen Gasströme mit einer Strömungsgeschwindigkeit von 100 m/s bis 600 m/s austreten.4. The method according to claim 2 to 3, characterized in that the radial gas flows emerge at a flow rate of 100 m / s to 600 m / s. 5. Verfahren nach Anspruch 1 bis 4, dadurch gekenn­zeichnet, daß die Fasern von dem Umlenkgasstrom mit einer Strömungsgeschwindigkeit von 50 m/s bis 500 m/s unter einem Winkel von +60° bis -60° zur Drehachse und in einem radialen Abstand von 10 mm bis 200 mm von den Schmelzeaustrittsöffnungen ange­blasen werden.5. The method according to claim 1 to 4, characterized in that the fibers of the deflecting gas flow at a flow rate of 50 m / s to 500 m / s at an angle of + 60 ° to -60 ° to the axis of rotation and at a radial distance from 10 mm to 200 mm from the melt outlet openings. 6. Verfahren nach Anspruch 1 bis 5, dadurch gekenn­zeichnet, daß die Schmelzeströme aus den Austritts­bohrungen unter einem Winkel von 45° bis 90° zur Drehachse ausgeschleudert werden.6. The method according to claim 1 to 5, characterized in that the melt streams are ejected from the outlet bores at an angle of 45 ° to 90 ° to the axis of rotation. 7. Verfahren nach Anspruch 1 bis 6, dadurch gekenn­zeichnet, daß zusätzlich zu der durch den Vordruck der Polymerschmelze im Düsenkopf hervorgerufenen Beschleunigung der Schmelzeströmung in einer der Schmelzeaustrittsöffnungen vorgeschalteten Kammer eine so hohe Zentrifugalbeschleunigung erzeugt wird, daß in der Kammer ein Druck von 1 bar bis 200 bar, vorzugsweise 1 bar bis 50 bar, herrscht.7. The method according to claim 1 to 6, characterized in that in addition to the acceleration of the melt flow caused by the upstream pressure of the polymer melt in the nozzle head in a chamber upstream of the melt outlet openings, such a high centrifugal acceleration is generated that in the chamber a pressure of 1 bar to 200 bar, preferably 1 bar to 50 bar, prevails. 8. Verfahren nach Anspruch 1 bis 7, dadurch gekenn­zeichnet, daß das Verhältnis des radial strömenden Mengengasstroms zum axial gerichteten Mengengas­strom auf einen Wert zwischen 0 bit 5, vorzugsweise 0,4 bis 2, eingestellt wird.8. The method according to claim 1 to 7, characterized in that the ratio of the radially flowing Bulk gas flow to the axially directed bulk gas flow is set to a value between 0 bit 5, preferably 0.4 to 2. 9. Verfahren nach Anspruch 1 bis 8, dadurch gekenn­zeichnet, daß das radial strömende Gas auf eine Temperatur beheizt wird, die gleich oder größer ist als die Temperatur der Polymerschmelze an den Aus­trittsöffnungen.9. The method according to claim 1 to 8, characterized in that the radially flowing gas is heated to a temperature which is equal to or greater than the temperature of the polymer melt at the outlet openings. 10. Verfahren nach Anspruch 1 bis 9, dadurch gekenn­zeichnet, daß als thermoplastisches Material Poly­urethan, Polyolefin, Polyamid, Polyester, Poly­phenylensulfid oder thermotrope LC-Polymere verwendet werden.10. The method according to claim 1 to 9, characterized in that polyurethane, polyolefin, polyamide, polyester, polyphenylene sulfide or thermotropic LC polymers are used as the thermoplastic material.
EP89100124A 1988-01-16 1989-01-05 Process for the preparation of ultra-fine polymer fibres Expired - Lifetime EP0325116B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT89100124T ATE73507T1 (en) 1988-01-16 1989-01-05 PROCESS FOR THE MANUFACTURE OF FINEST POLYMER FIBERS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3801080 1988-01-16
DE3801080A DE3801080A1 (en) 1988-01-16 1988-01-16 METHOD FOR PRODUCING FINE POLYMER FIBERS

Publications (3)

Publication Number Publication Date
EP0325116A2 true EP0325116A2 (en) 1989-07-26
EP0325116A3 EP0325116A3 (en) 1989-12-06
EP0325116B1 EP0325116B1 (en) 1992-03-11

Family

ID=6345374

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89100124A Expired - Lifetime EP0325116B1 (en) 1988-01-16 1989-01-05 Process for the preparation of ultra-fine polymer fibres

Country Status (6)

Country Link
US (1) US4937020A (en)
EP (1) EP0325116B1 (en)
JP (1) JPH01213406A (en)
AT (1) ATE73507T1 (en)
DE (2) DE3801080A1 (en)
ES (1) ES2030214T3 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453819A1 (en) * 1990-04-12 1991-10-30 Bayer Ag Method for producing micro fibre fleeces from thermoplastic polymers
EP0601277A1 (en) * 1992-12-10 1994-06-15 Firma Carl Freudenberg Method and apparatus for making a non woven spunbonded
CN104178830A (en) * 2014-08-13 2014-12-03 杭州大铭光电复合材料研究院有限公司 Continuous collection device for nanofibers spun through centrifugation and static electricity

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3810596A1 (en) * 1988-03-29 1989-10-12 Bayer Ag FINE FIBERS FROM POLYPHENYL SULFIDE
US5242633A (en) * 1991-04-25 1993-09-07 Manville Corporation Method for producing organic fibers
US5230905A (en) * 1991-06-14 1993-07-27 Fare' S.P.A. Polymer extruding device
DE4241514C2 (en) * 1992-12-10 1995-09-07 Freudenberg Carl Fa Method for producing a sheet loaded with dipoles and device for carrying out the method
US5523031A (en) * 1994-12-23 1996-06-04 Owens-Corning Fiberglas Technology, Inc. Method for fiberizing mineral material with organic material
US5622671A (en) * 1995-12-12 1997-04-22 Owens-Corning Fiberglass Technology, Inc. Hollow polymer fibers using rotary process
AU1440801A (en) 1999-10-29 2001-05-14 Hollingsworth And Vose Company Filter media
JP4621658B2 (en) * 2003-04-03 2011-01-26 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Rotor method for forming homogeneous material
CN1813085A (en) * 2003-06-30 2006-08-02 宝洁公司 Coated nanofiber webs
US8487156B2 (en) * 2003-06-30 2013-07-16 The Procter & Gamble Company Hygiene articles containing nanofibers
WO2005005704A2 (en) * 2003-06-30 2005-01-20 The Procter & Gamble Company Particulates in nanofiber webs
US20040266300A1 (en) * 2003-06-30 2004-12-30 Isele Olaf Erik Alexander Articles containing nanofibers produced from a low energy process
US8395016B2 (en) 2003-06-30 2013-03-12 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
EP1740748B1 (en) 2004-04-19 2013-08-07 The Procter and Gamble Company Fibers, nonwovens and articles containing nanofibers produced from broad molecular weight distribution polymers
ES2354617T3 (en) * 2004-04-19 2011-03-16 The Procter And Gamble Company FIBERS, NON-FABRICED MATERIALS AND ITEMS CONTAINING NANOFIBERS PRODUCED FROM POLYMERS WITH HIGH TEMPERATURE OF GLASS TRANSITION.
EP1738006B1 (en) * 2004-04-19 2011-03-02 The Procter & Gamble Company Articles containing nanofibers for use as barriers
US8303874B2 (en) * 2006-03-28 2012-11-06 E I Du Pont De Nemours And Company Solution spun fiber process
US8277711B2 (en) * 2007-03-29 2012-10-02 E I Du Pont De Nemours And Company Production of nanofibers by melt spinning
US20090102100A1 (en) * 2007-10-23 2009-04-23 Ppg Industries Ohio, Inc. Fiber formation by electrical-mechanical spinning
JP5216551B2 (en) * 2008-11-21 2013-06-19 パナソニック株式会社 Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP2012520176A (en) 2009-03-16 2012-09-06 ガバエ テクノロジーズ,エルエルシー Apparatus, system and method for generating particles using a rotating capillary
CN105473296A (en) 2013-07-05 2016-04-06 北面服饰公司 Forcespinning of fibers and filaments
US10793983B2 (en) 2014-11-10 2020-10-06 The North Face Apparel Corp. Footwear and other articles formed by jet extrusion processes
JP6425023B2 (en) * 2015-01-14 2018-11-21 パナソニックIpマネジメント株式会社 Ultra-fine fiber production method and production apparatus
TWI602965B (en) * 2015-01-22 2017-10-21 財團法人紡織產業綜合研究所 Textile machine and method for manufacturing melt blown fabric using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1298508A (en) * 1961-06-02 1962-07-13 Saint Gobain Method and device for the manufacture of fine fibers in thermoplastic organic materials
US3466352A (en) * 1967-12-18 1969-09-09 Corbett Ass Inc Process for producing fibers
DE2637536A1 (en) * 1975-08-20 1977-02-24 Nippon Sheet Glass Co Ltd METHOD AND APPARATUS FOR THE PRODUCTION OF FIBERS FROM A MATERIAL SOFTENING UNDER HEAT
EP0019383A1 (en) * 1979-05-15 1980-11-26 Imperial Chemical Industries Plc Spinning process
US4277436A (en) * 1978-04-26 1981-07-07 Owens-Corning Fiberglas Corporation Method for forming filaments
DE3105784A1 (en) * 1981-02-16 1982-09-02 Petro Fiber Oljesanering AB, 21156 Malmö Spinning process for the production of thermoplastic fibres and apparatus for carrying out the process
EP0168817A2 (en) * 1984-07-20 1986-01-22 Herbert W. Keuchel Method and apparatus for providing centrifugal fibre spinning coupled with extrusion

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USB202877I5 (en) * 1954-10-26
FR1228095A (en) * 1959-01-27 1960-08-26 Saint Gobain Improvement in processes for the manufacture of fibers in thermoplastic materials, in particular glass fibers
US3928009A (en) * 1972-03-02 1975-12-23 Walter Merton Perry Rotary forming unit for fine mineral fibers
US4058386A (en) * 1972-12-22 1977-11-15 Johns-Manville Corporation Method and apparatus for eliminating external hot gas attenuation in the rotary fiberization of glass
US4237081A (en) * 1978-04-03 1980-12-02 Gulf Oil Corporation Method for preparation of fibrils
US4246017A (en) * 1979-11-16 1981-01-20 Owens-Corning Fiberglas Corporation Method and apparatus for forming mineral fibers

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1298508A (en) * 1961-06-02 1962-07-13 Saint Gobain Method and device for the manufacture of fine fibers in thermoplastic organic materials
US3466352A (en) * 1967-12-18 1969-09-09 Corbett Ass Inc Process for producing fibers
DE2637536A1 (en) * 1975-08-20 1977-02-24 Nippon Sheet Glass Co Ltd METHOD AND APPARATUS FOR THE PRODUCTION OF FIBERS FROM A MATERIAL SOFTENING UNDER HEAT
US4277436A (en) * 1978-04-26 1981-07-07 Owens-Corning Fiberglas Corporation Method for forming filaments
EP0019383A1 (en) * 1979-05-15 1980-11-26 Imperial Chemical Industries Plc Spinning process
DE3105784A1 (en) * 1981-02-16 1982-09-02 Petro Fiber Oljesanering AB, 21156 Malmö Spinning process for the production of thermoplastic fibres and apparatus for carrying out the process
EP0168817A2 (en) * 1984-07-20 1986-01-22 Herbert W. Keuchel Method and apparatus for providing centrifugal fibre spinning coupled with extrusion

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0453819A1 (en) * 1990-04-12 1991-10-30 Bayer Ag Method for producing micro fibre fleeces from thermoplastic polymers
EP0601277A1 (en) * 1992-12-10 1994-06-15 Firma Carl Freudenberg Method and apparatus for making a non woven spunbonded
CN104178830A (en) * 2014-08-13 2014-12-03 杭州大铭光电复合材料研究院有限公司 Continuous collection device for nanofibers spun through centrifugation and static electricity

Also Published As

Publication number Publication date
DE3801080A1 (en) 1989-07-27
EP0325116B1 (en) 1992-03-11
EP0325116A3 (en) 1989-12-06
DE58900934D1 (en) 1992-04-16
ATE73507T1 (en) 1992-03-15
ES2030214T3 (en) 1992-10-16
US4937020A (en) 1990-06-26
JPH01213406A (en) 1989-08-28

Similar Documents

Publication Publication Date Title
EP0325116B1 (en) Process for the preparation of ultra-fine polymer fibres
EP0453819B1 (en) Method for producing micro fibre fleeces from thermoplastic polymers
EP1192301B1 (en) Method and device for the production of an essentially continuous fine thread
DE3781313T2 (en) METHOD AND DEVICE.
DE3586699T2 (en) METHOD AND APPARATUS FOR CENTRIFUGAL SPIDERS COMBINED WITH EXTRUSION.
EP0339240A2 (en) Polyphenylene sulfide microfibres
EP0515593A1 (en) Method and device for manufacturing ultrafine fibres from thermoplastics.
DE102006012052A1 (en) Spinning device for producing fine threads by splicing
EP2344688B1 (en) Apparatus for producing a spunbonded fabric
JPH05263307A (en) Spinneret for conjugate melt blowing
EP1463850B1 (en) Spinning method having turbulent cooling by blowing
EP1630265B1 (en) Apparatus for the continuous production of a spunbonded web
DE2314264C2 (en) Process for the production of non-woven, self-bonded fiber composites from randomly arranged synthetic thread material and device for carrying out the process
DE2208921C3 (en)
WO2011138056A1 (en) Spinneret for spinning threads, spinning device for spinning threads and method for spinning threads
DE4102650A1 (en) METHOD AND DEVICE FOR PRODUCING A SPINNING FLEECE FROM SYNTHETIC POLYMER
EP1637632B1 (en) Device for producing filaments from thermoplastic material
EP0455897B1 (en) Apparatus for the preparation of very fine fibres
EP0527134B1 (en) Device for cooling melt-extruded filaments
DE68902404T2 (en) BUBBLE NOZZLE FOR FRINGING MATERIAL.
EP0724029A1 (en) Yarns from melts using cold gas jets
DE1635479C3 (en) Method and device for the production of drawn continuous fibers
CH652382A5 (en) Process and apparatus for spinning inorganic fibres
DD140679A1 (en) SPINNDUESENPLATTE
DD231814A1 (en) PROCESS FOR PRODUCING POLYFILER FAEDES WITH TARGETED THREAD EFFECT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19890112

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17Q First examination report despatched

Effective date: 19910620

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 73507

Country of ref document: AT

Date of ref document: 19920315

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 58900934

Country of ref document: DE

Date of ref document: 19920416

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2030214

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19941212

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19941229

Year of fee payment: 7

Ref country code: FR

Payment date: 19941229

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19950109

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19950113

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19950117

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950118

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950131

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960105

Ref country code: AT

Effective date: 19960105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19960108

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19960131

Ref country code: CH

Effective date: 19960131

Ref country code: BE

Effective date: 19960131

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19960131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19960801

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960105

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960930

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19960801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961001

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 19990405

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050105