EP0453819B1 - Method for producing micro fibre fleeces from thermoplastic polymers - Google Patents

Method for producing micro fibre fleeces from thermoplastic polymers Download PDF

Info

Publication number
EP0453819B1
EP0453819B1 EP91105117A EP91105117A EP0453819B1 EP 0453819 B1 EP0453819 B1 EP 0453819B1 EP 91105117 A EP91105117 A EP 91105117A EP 91105117 A EP91105117 A EP 91105117A EP 0453819 B1 EP0453819 B1 EP 0453819B1
Authority
EP
European Patent Office
Prior art keywords
nozzle head
process according
gas stream
gas
delimiting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91105117A
Other languages
German (de)
French (fr)
Other versions
EP0453819A1 (en
Inventor
Peter Roger Dipl.-Ing. Nyssen
Dirk Dipl.-Ing. Berkenhaus
Hans-Theo Van Pey
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0453819A1 publication Critical patent/EP0453819A1/en
Application granted granted Critical
Publication of EP0453819B1 publication Critical patent/EP0453819B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/18Formation of filaments, threads, or the like by means of rotating spinnerets
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/56Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving in association with fibre formation, e.g. immediately following extrusion of staple fibres

Definitions

  • the invention is based on a process for the production of very fine polymer fiber webs made of thermoplastic polymers with an average fiber diameter of 0.1 ⁇ m - 20 ⁇ m, preferably 0.5 ⁇ m - 10 ⁇ m, in which the molten polymer in a rotating die head under a pressure of 1 bar -200 bar is thrown radially from a large number of outlet bores with the formation of fibers and the fibers which have not yet completely solidified are deflected in the axial direction at a radial distance of 10 mm-200 mm from the outlet bores by an external gas stream and then as a fleece on a circumferential, air-permeable carrier are separated.
  • Such a method is described in DE-A 3 801 080.
  • nonwovens are made from meltable polymers primarily by the so-called melt-blown process (see, for example, US Pat. No. 4,048,364, US Pat. No. 4,622,259, US Pat. No. 4,623,576, DE 2,948,821, EP 92 819, EP 0 239 080).
  • the manufactured according to EP 239 080 Elastic nonwovens are characterized, for example, by an average fiber diameter that is over 10 ⁇ m. This area is also easily accessible with conventional staple or continuous fiber spinning processes.
  • the elastic nonwovens produced in this way can therefore strictly speaking not be called microfiber or very fine fiber nonwovens.
  • melt-blown process is based on purely aerodynamic fiber formation, whereby the polymer melt is blown directly with high-speed air (100-300 m / sec) below a temperature above the melt temperature, special requirements with regard to the material properties of the polymer have to be achieved very fine fiber diameters.
  • the melt must have a low melt viscosity and low viscosity.
  • Polymers with low interaction forces between the molecular chains, such as polyolefins have proven to be particularly suitable. If, on the other hand, there are higher interaction forces, such as, for example, PA, TP and polyurethane, the fiber formation process is hindered by the high expansion viscosity, which generally leads to coarser fiber diameters.
  • EP-A-0 239 080 describes, for example, the use of the melt-blown process using copolymers, such as ethylene-vinyl acetate (EVA) or ethylene-methyl acrylate (EMA) copolymers.
  • EVA ethylene-vinyl acetate
  • EMA ethylene-methyl acrylate
  • Example 7 of this publication specifies a fiber diameter of more than 10 ⁇ m for EVA.
  • the fleece strength as well as the extensibility show great differences in the longitudinal and transverse directions.
  • the centrifugal blowing process described in DE 3 801 080 and EP-A-0 325 116 allows the production of very fine polymer fibers with a fiber diameter of 0.1-10 ⁇ m.
  • This method is based on the fact that the primary threads formed are first drawn out in the centrifugal field (preliminary draft) and then further drawn out into fine fibers by an axial gas flow at high speed (final draft).
  • This process enables the production of very fine fibers from polymers in a large melting and expansion viscosity range, so that polymers with a high molecular weight and large interaction forces between the molecular chains can also be used as the starting material. This is where the invention comes in.
  • the gas flows of the inner and outer gas stream are advantageously set so that their ratio is between 0.2 and 2.0.
  • the ratio of the sum of these limiting gas flow rates to the sum of the outer and inner gas flow rate is preferably set to a value between 0.1 and 1, preferably between 0.1 and 0.5. It has also proven to be advantageous if the limiting gas flows are blown in at a radial distance from the axis of the nozzle head that is 1.5 to 5 times, preferably 1.5 to 3 times, the radius of the nozzle head.
  • the new improved centrifugal blowing process has proven itself for the production of very fine fiber nonwovens made of polyolefins, polyester, polyamide, in particular of polyester, polyether or polyether carbonate urethane nonwovens.
  • the invention thus also relates to the polyurethane nonwovens produced by this process with outstanding physical properties.
  • the fine fiber nonwovens manufactured using the new process have an average fiber diameter that is significantly lower than that of comparable polyurethane nonwovens manufactured using other spinning processes. Despite the special fiber fineness, the individual fibers are unusually long. Elastic nonwovens can be made from different fiber finenesses (fiber diameter between 0.1 ⁇ m and 20 ⁇ m), which already have excellent strength, elasticity and abrasion resistance without further treatment.
  • polyurethane melts can be processed in a melt viscosity range of 20 to 1,000 Pa.s, in particular also those polyurethanes with a high molecular weight.
  • the primary thread formation in a centrifugal field with a superimposed homogeneous, rotationally symmetrical flow field allows the use of high melt viscosities and low melting temperatures, so that thermal decomposition (degradation) of the polymers is avoided.
  • the nonwovens produced are characterized by a high degree of uniformity and are particularly low in bonds, twists and thick spots. They have uniform strength properties in the longitudinal and transverse directions.
  • Elastic nonwovens can be easily manufactured using this process with basis weights of 4 to 500 g / m2; especially with low basis weights, they have excellent area coverage due to the high fiber fineness.
  • the nonwovens made of special polyurethanes also have excellent chemical and biological resistance (microbe stability).
  • the elastic fine fiber nonwovens can also be combined in a variety of ways with nonwovens of other polymers.
  • the manufacturing process also allows the processing of polymer blends made of polyurethane and e.g. Polyolefins, whereby in particular the elastic properties can be specifically adjusted.
  • the method according to the invention is characterized by excellent economy.
  • the polymer granules 1 of a thermoplastic polyurethane are melted in an extruder 2 and passed under a constantly regulated pressure in the range of 5 bar via a rotating seal 3 into a central, rotating melt channel 4 in a housing 5 which is also used for storage.
  • the melt channel 4 is connected to a rotating nozzle head 6, the speed of which is in the range from 1,000 to 11,000 rpm, preferably 6,000 to 9,000 rpm.
  • the polymer melt emerges radially from the nozzle head 6 through small bores on the circumference at an angle of 90 ° to the axis of rotation. Due to the melt admission pressure of 5 to 20 bar at the holes, continuous mass flows of 0.01 to 2 g / min are formed per hole.
  • the rotating nozzle head 6 is driven by a motor 17 with a V-belt transmission 18.
  • the nozzle head 6 is expediently heated by an electric induction heater or by radiant heating by means of an electric heating winding.
  • the gas supply for the deflecting gas streams 8 takes place through the connection 19.
  • FIG. 2 The aerodynamic flow field relevant for the extraction process is explained with reference to FIG. 2.
  • an additional gas stream 21 is introduced into the rear area of the nozzle head 6 via the train guide 22.
  • This gas flow exits through 4 rotationally symmetrical axial bores 23 on the end face of the nozzle head 6 and is fanned out into a radial flow field 24 by centrifugal forces.
  • This flow field has an essentially radial component.
  • the polyurethane melt 25 to be spun is heated to the temperature required to set the desired viscosity above the physical melting point and with a pressure of 5 bar into the centrally rotating melt channel 4 and from there via radial bores 26 into a melt outlet openings 27 arranged in the nozzle head 6 upstream annular chamber 28 passed.
  • the nozzle head 6 is heated with electric radiant heaters 29, 30.
  • the inner additional gas stream 21 should have a temperature at its outlet at the nozzle head which is equal to or slightly higher than the temperature of the nozzle head 6. Due to the geometry and the rotation of the nozzle head 6, a symmetrically fanned flow field results, which ensures a uniform distortion (with regard to the Angular distribution) of those emerging from the bores 27 Primary melt streams 9 provides. In addition, the cooling of the primary melt streams is delayed. Subsequently, the melt streams are detected by the outer gas streams 8 emerging from the blow ring 7, deflected axially and drawn out into fine fibers 10 (see also FIG. 1).
  • gas flows 34a, 34b are generated, which are directed as limiting gas flows at an angle ⁇ of 30 ° against the axis onto the axially deflected fiber flow.
  • the gas is supplied to the distributors 33a, 33b under pressure via the feed lines 32a, 32b.
  • the radial distance of the distributors from the axis of rotation is twice the radius of the nozzle head.
  • the eg sinusoidal pulsation can take place in the common mode or alternating mode (push-pull).
  • the pulsation frequency can range from 0.5 s von1 to 5 s ⁇ 1.
  • Another advantageous variant consists in aligning the limiting gas flows 34a, 34b parallel to one another and pivoting them over an angular range of ⁇ 10 ° ⁇ ⁇ ⁇ 70 ° to the axis of the fiber stream at a frequency of 0.5 s ⁇ 1 to 5 s ⁇ 1 . This results in a more uniform fiber placement, in particular in the case of several nozzle heads 6 operated in parallel (FIG. 3).
  • thermoplastic polyester polyurethane with the designation Desmopan® was spun.
  • the material had a density of 1.2 g / cm3, a glass transition temperature of -42 ° C, a softening temperature of + 91 ° C and a melt temperature range of 180 ° C to 250 ° C.
  • the viscosity of the melt was 60 Pa.s at a temperature of 230 ° C and a shear rate of 400 s ⁇ 1.
  • the melt temperature was 225 ° C
  • the temperature of the die head was 240 ° C.
  • the nozzle head 6 rotated at a speed of 9,000 rpm. A mass throughput of 0.2 g / min per bore 27 was achieved.
  • the quantitative ratio of the inner gas stream 21 and the outer exhaust gas stream 19 was 0.4, the temperature of the outer deflecting gas stream 19 was 20 ° C., that of the inner auxiliary gas stream 21 was 260 ° C.
  • the two opposing limiting gas flows 34a and 34b had an axial distance a of 40 mm (see FIG. 2) and a radial distance 2r from the axis of rotation, where r is the nozzle head radius.
  • the angle of attack ⁇ to the normal was 30 ° C.
  • the mass flow ratio of these two gas streams 34a and 34b and the sum of the gas streams 19 and 21 introduced at the nozzle head was 0.3, and the temperature of the limiting gas streams was 20 ° C.
  • the very fine fibers 10 spun in this way had an average fiber diameter of 3.5 ⁇ m with a standard deviation of 1.9 ⁇ m. The result was found by counting 250 fibers in a scanning electron microscope.
  • the separated nonwoven had excellent uniformity across the width and, depending on the weight per unit area, the following strength properties:
  • the mass throughput was reduced to 0.1 g / min per bore and the limiting gas flows 34a, 34b in accordance with a quantitative ratio of 0.2, based on the total sum of the gas flows 19, 21 fed into the nozzle head 6 set.
  • the strength properties already defined in connection with Example 1 are summarized in Table II below.
  • Example 2 Compared to Example 1, the nonwoven fabric according to Example 2 had a higher internal uniformity and area coverage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Nonwoven Fabrics (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Description

Die Erfindung geht aus von einem Verfahren zur Herstellung von Feinstpolymerfaservliesen aus thermoplastischen Polymeren mit einem mittleren Faserdurchmesser von 0,1 µm - 20 µm, vorzugsweise 0,5 µm - 10 µm, bei dem das geschmolzene Polymer in einem rotierenden Düsenkopf unter einem Vordruck von 1 bar -200 bar aus einer Vielzahl von Austrittsbohrungen radial unter Faserbildung geschleudert wird und die noch nicht vollständig erstarrten Fasern in einem radialen Abstand von 10 mm - 200 mm von den Austrittsbohrungen durch einen äußeren Gasstrom in axiale Richtung umgelenkt und anschließend als Vlies auf einem umlaufenden, luftdurchlässigen Träger abgeschieden werden. Ein derartiges Verfahren wird in DE-A 3 801 080 beschrieben.The invention is based on a process for the production of very fine polymer fiber webs made of thermoplastic polymers with an average fiber diameter of 0.1 µm - 20 µm, preferably 0.5 µm - 10 µm, in which the molten polymer in a rotating die head under a pressure of 1 bar -200 bar is thrown radially from a large number of outlet bores with the formation of fibers and the fibers which have not yet completely solidified are deflected in the axial direction at a radial distance of 10 mm-200 mm from the outlet bores by an external gas stream and then as a fleece on a circumferential, air-permeable carrier are separated. Such a method is described in DE-A 3 801 080.

Gemäß dem Stand der Technik werden Faservliese aus schmelzbaren Polymeren in erster Linie nach dem sogenannten Melt-Blown-Verfahren hergestellt (siehe z.B. US 4 048 364, US 4 622 259, US 4 623 576, DE 2 948 821, EP 92 819, EP 0 239 080). Die gemäß EP 239 080 hergestellten elastischen Vliesstoffe sind z.B. durch einen mittleren Faserdurchmesser gekennzeichnet, der über 10 µm liegt. Dieser Bereich ist auch mit konventionellen Stapel- oder Endlosfaserspinnverfahren ohne Probleme zugänglich. Die so hergestellten elastischen Vliesstoffe können daher streng genommen nicht als Mikrofaser- oder Feinstfaservliesstoffe bezeichnet werden. Da das Melt-Blown-Verfahren auf einer rein aerodynamischen Faserbildung beruht, wobei die Polymerschmelze mit Luft hoher Geschwindigkeit (100 -300 m/sec) unter einer Temperatur oberhalb der Schmelzetemperatur direkt verblasen wird, müssen spezielle Voraussetzungen hinsichtlich der Materialeigenschaften des Polymers zur Erzielung von sehr feinen Faserdurchmessern erfüllt sein. Die Schmelze muß insbesondere eine niedrige Schmelzviskosität und Dehnviskosität besitzen. Polymere mit geringen Wechselwirkungskräften zwischen den Molekülketten, wie z.B. Polyolefine, haben sich als besonders geeignet herausgestellt. Liegen dagegen höhere Wechselwirkungskräfte vor, wie z.B. bei PA, TP und Polyurethan vor, so wird der Faserbildungsprozeß durch die hohe Dehnviskosität behindert, was in der Regel zu gröberen Faserdurchmessern führt. Selbst eine Erniedrigung des Molekulargewichts ist mit Rücksicht auf die Faser- und Vlieseigenschaften nur begrenzt hilfreich. Die Verfahrensparameter wie die Schmelzetemperatur und die Lufttemperatur können im Gegensatz zu Polyolefinen nur in einem sehr engen Bereich variiert werden, da sonst mit einer thermischen Zersetzung und Schädigung des Polymers gerechnet werden muß. Dies trifft in besonderem Maße auf den Rohstoff Polyurethan zu.According to the prior art, nonwovens are made from meltable polymers primarily by the so-called melt-blown process (see, for example, US Pat. No. 4,048,364, US Pat. No. 4,622,259, US Pat. No. 4,623,576, DE 2,948,821, EP 92 819, EP 0 239 080). The manufactured according to EP 239 080 Elastic nonwovens are characterized, for example, by an average fiber diameter that is over 10 µm. This area is also easily accessible with conventional staple or continuous fiber spinning processes. The elastic nonwovens produced in this way can therefore strictly speaking not be called microfiber or very fine fiber nonwovens. Since the melt-blown process is based on purely aerodynamic fiber formation, whereby the polymer melt is blown directly with high-speed air (100-300 m / sec) below a temperature above the melt temperature, special requirements with regard to the material properties of the polymer have to be achieved very fine fiber diameters. In particular, the melt must have a low melt viscosity and low viscosity. Polymers with low interaction forces between the molecular chains, such as polyolefins, have proven to be particularly suitable. If, on the other hand, there are higher interaction forces, such as, for example, PA, TP and polyurethane, the fiber formation process is hindered by the high expansion viscosity, which generally leads to coarser fiber diameters. Even a lowering of the molecular weight is only of limited help with regard to the fiber and nonwoven properties. In contrast to polyolefins, the process parameters such as melt temperature and air temperature can only be varied within a very narrow range, since otherwise thermal decomposition and damage to the polymer must be expected. This applies in particular to the raw material polyurethane.

Für die Herstellung elastischer Vliesstoffe wird daher in EP-A-0 239 080 beispielsweise die Anwendung des Melt-Blown-Verfahrens unter Verwendung von Copolymeren, wie Ethylen-Vinylacetat (EVA)- oder Ethylen-Methylacrylat (EMA)-Copolymeren beschrieben. Im Beispiel 7 dieser Veröffentlichung wird für EVA ein Faserdurchmesser von mehr als 10 µm angegeben. Die Vliesfestigkeit ebenso wie die Dehnbarkeit weisen große Unterschiede in Längs- und Querrichtung auf.For the production of elastic nonwovens, EP-A-0 239 080 describes, for example, the use of the melt-blown process using copolymers, such as ethylene-vinyl acetate (EVA) or ethylene-methyl acrylate (EMA) copolymers. Example 7 of this publication specifies a fiber diameter of more than 10 μm for EVA. The fleece strength as well as the extensibility show great differences in the longitudinal and transverse directions.

Dagegen gestattet das in DE 3 801 080 und EP-A-0 325 116 beschriebene Schleuderblasverfahren die Herstellung von Feinstpolymerfasern mit einem Faserdurchmesser von 0,1 -10 µm. Dieses Verfahren beruht darauf, daß die gebildeten Primärfäden zunächst im Zentrifugalfeld ausgezogen werden (Vorverzug) und dann durch einen axialen Gasstrom hoher Geschwindigkeit zu Feinstfasern weiter ausgezogen werden (Endverzug). Mit diesem Verfahren gelingt die Herstellung von Feinstfasern aus Polymeren in einem großen Schmelz- und Dehnviskositätsbereich, so daß auch Polymere mit hohem Molekulargewicht und großen Wechselwirkungskräften zwischen den Molekülketten als Ausgangsmaterial eingesetzt werden können. Hier setzt die Erfindung an.In contrast, the centrifugal blowing process described in DE 3 801 080 and EP-A-0 325 116 allows the production of very fine polymer fibers with a fiber diameter of 0.1-10 µm. This method is based on the fact that the primary threads formed are first drawn out in the centrifugal field (preliminary draft) and then further drawn out into fine fibers by an axial gas flow at high speed (final draft). This process enables the production of very fine fibers from polymers in a large melting and expansion viscosity range, so that polymers with a high molecular weight and large interaction forces between the molecular chains can also be used as the starting material. This is where the invention comes in.

Es liegt die Aufgabe zugrunde, ausgehend von dem vorbeschriebenen Verfahren Vliesstoffe aus thermoplastischen Polymeren, insbesondere aus thermoplastischem Polyurethan, mit folgenden Eigenschaften herzustellen:

  • 1. Der Vliesstoff soll aus Kurzfasern mit einem mittleren Faserdurchmesser von 0,1 µm - 20 µm, vorzugsweise 0,5 µm - 10 µm, bestehen.
  • 2. Die Fasern sollen eine relativ große Länge aufweisen (Verhältnis von Länge zu Durchmesser >20.000)
  • 3. Der Vliesstoff soll eine hohe Abriebfestigkeit sowie eine verbesserte Höchstzugkraft, Höchstkraftdehnung und ein hohes elastisches Rückstellvermögen aufweisen.
  • 4. Der Vliesstoff soll keine oder nur sehr geringe Unterschiede in den Festigkeitseigenschaften in Längs- und Querrichtung besitzen.
It is the object of the invention to produce nonwovens from thermoplastic polymers, in particular from thermoplastic polyurethane, with the following properties, starting from the process described above:
  • 1. The nonwoven should consist of short fibers with an average fiber diameter of 0.1 µm - 20 µm, preferably 0.5 µm - 10 µm.
  • 2. The fibers should have a relatively large length (ratio of length to diameter> 20,000)
  • 3. The nonwoven should have a high abrasion resistance as well as an improved maximum tensile force, maximum elongation and a high elastic resilience.
  • 4. The nonwoven should have little or no differences in the strength properties in the longitudinal and transverse directions.

Diese Aufgabe wird ausgehend von dem in DE 3 801 080 beschriebenen Schleuderblasverfahren dadurch gelöst, daß zusätzlich zu dem äußeren Gasstrom hoher Geschwindigkeit in einem kleineren radialen Abstand als die Schmelzeaustrittsbohrungen ein innerer Gasstrom mit kleinerer Geschwindigkeit aus einer Vielzahl von axialen Bohrungen am Düsenkopf austritt, der unter der Einwirkung der am rotierenden Düsenkopf auftretenden zentrifugalen Schleppkräfte ein rotationssymmetrisches Strömungsfeld mit einer überwiegend radialen Geschwindigkeitskomponente bildet und dessen Temperatur gleich oder größer als die Düsenkopftemperatur ist.This object is achieved on the basis of the centrifugal blowing method described in DE 3 801 080 in that, in addition to the external gas flow at high speed and at a smaller radial distance than the melt outlet bores, an internal gas flow at a lower speed emerges from a plurality of axial bores on the nozzle head, which under the action of the centrifugal drag forces occurring at the rotating nozzle head forms a rotationally symmetrical flow field with a predominantly radial speed component and the temperature of which is equal to or greater than the nozzle head temperature.

Vorteilhaft werden dabei die Gasmengenströme des inneren und des äußeren Gasstromes so eingestellt, daß ihr Verhältnis zwischen 0,2 und 2,0 liegt.The gas flows of the inner and outer gas stream are advantageously set so that their ratio is between 0.2 and 2.0.

Im Hinblick auf die Erzeugung eines über die gesamte Breite und in seinen mechanischen Eigenschaften gleichmäßigen Vliesstoffes besteht eine weitere Verbesserung darin, daß außerhalb des Düsenkopfes in einem axialen Abstand 0 mm ≦a ≦500 mm von den Schmelzeaustrittsbohrungen an mindestens zwei gegenüberliegende Seiten weitere Begrenzungsgasströme unter einem Winkel von 0° bis 70°, vorzugsweise 10° bis 60°, gegen die Achse auf den axial umgelenkten Faserstrom gerichtet werden.With regard to the production of a nonwoven fabric that is uniform over the entire width and in its mechanical properties, there is a further improvement in that outside the nozzle head at an axial distance of 0 mm ≦ a ≦ 500 mm from the melt outlet holes on at least two opposite sides further limiting gas flows under one Angles of 0 ° to 70 °, preferably 10 ° to 60 °, are directed against the axis onto the axially deflected fiber stream.

Vorzugsweise wird dabei das Verhältnis der Summe dieser Begrenzungsgasmengenströme zu der Summe des äußeren und inneren Gasmengenstromes auf einen Wert zwischen 0,1 und 1, vorzugsweise zwischen 0,1 und 0,5, eingestellt. Außerdem hat es sich als günstig erwiesen, wenn die Begrenzungsgasströme in einem radialen Abstand von der Achse des Düsenkopfes eingeblasen werden, der das 1,5 bis 5-fache, vorzugsweise das 1,5 bis 3-fache des Düsenkopfradius beträgt.The ratio of the sum of these limiting gas flow rates to the sum of the outer and inner gas flow rate is preferably set to a value between 0.1 and 1, preferably between 0.1 and 0.5. It has also proven to be advantageous if the limiting gas flows are blown in at a radial distance from the axis of the nozzle head that is 1.5 to 5 times, preferably 1.5 to 3 times, the radius of the nozzle head.

Das neue verbesserte Schleuderblasverfahren hat sich zur Herstellung von Feinstfaservliesen aus Polyolefinen, Polyester, Polyamid, insbesondere aus Polyester-, Polyether- oder Polyethercarbonaturethanvliesen bewährt. Gegenstand der Erfindung sind somit auch die nach diesem Verfahren hergestellten Polyurethanvliese mit herausragenden physikalischen Eigenschaften.The new improved centrifugal blowing process has proven itself for the production of very fine fiber nonwovens made of polyolefins, polyester, polyamide, in particular of polyester, polyether or polyether carbonate urethane nonwovens. The invention thus also relates to the polyurethane nonwovens produced by this process with outstanding physical properties.

Mit der Erfindung werden folgende Vorteile erzielt:
Die nach dem neuen Verfahren hergestellten Feinstfaservliese besitzen einen mittleren Faserdurchmesser, der deutlich niedriger ist als bei vergleichbaren Polyurethanvliesen, die nach anderen Spinnverfahren hergestellt wurden. Trotz der besonderen Faserfeinheit besitzen die Einzelfasern eine ungewöhnlich große Länge. Es können elastische Vliesstoffe aus unterschiedlichen Faserfeinheiten (Faserdurchmesser zwischen 0,1 µm und 20 µm) hergestellt werden, die bereits ohne weitere Nachbehandlung eine hervorragende Festigkeit, Elastizität und Abriebfestigkeit besitzen.
The following advantages are achieved with the invention:
The fine fiber nonwovens manufactured using the new process have an average fiber diameter that is significantly lower than that of comparable polyurethane nonwovens manufactured using other spinning processes. Despite the special fiber fineness, the individual fibers are unusually long. Elastic nonwovens can be made from different fiber finenesses (fiber diameter between 0.1 µm and 20 µm), which already have excellent strength, elasticity and abrasion resistance without further treatment.

Im Gegensatz zu anderen Verfahren können Polyurethanschmelzen in einem Schmelzviskositätsbereich von 20 bis 1.000 Pa.s verarbeitet werden, insbesondere auch solche Polyurethane mit einem hohen Molekulargewicht. Die Primärfadenbildung in einem Zentrifugalfeld mit einem überlagerten homogenen rotationssymmetrischen Strömungsfeld erlaubt die Nutzung hoher Schmelzviskositäten und niedrige Schmelztemperaturen, so daß eine thermische Zersetzung (Degradation) der Polymeren vermieden wird.In contrast to other processes, polyurethane melts can be processed in a melt viscosity range of 20 to 1,000 Pa.s, in particular also those polyurethanes with a high molecular weight. The primary thread formation in a centrifugal field with a superimposed homogeneous, rotationally symmetrical flow field allows the use of high melt viscosities and low melting temperatures, so that thermal decomposition (degradation) of the polymers is avoided.

Die erzeugten Vliesstoffe zeichnen sich trotz der hohen Faserfeinheit durch eine hohe Gleichmäßigkeit aus und sind besonders arm an Verklebungen, Verdrillungen und Dickstellen. Sie weisen gleichmäßige Festigkeitseigenschaften in Längs- und Querrichtung auf.Despite the high fiber fineness, the nonwovens produced are characterized by a high degree of uniformity and are particularly low in bonds, twists and thick spots. They have uniform strength properties in the longitudinal and transverse directions.

Elastische Vliesstoffe können nach diesem Verfahren mit Flächengewichten von 4 bis 500 g/m² problemlos hergestellt werden; insbesondere bei niedrigen Flächengewichten besitzen sie aufgrund der hohen Faserfeinheit eine hervorragende Flächendeckung. Die Vliesstoffe aus speziellen Polyurethanen weisen ferner eine hervorragende chemische und biologische Resistenz (Mikrobenstabilität) auf.Elastic nonwovens can be easily manufactured using this process with basis weights of 4 to 500 g / m²; especially with low basis weights, they have excellent area coverage due to the high fiber fineness. The nonwovens made of special polyurethanes also have excellent chemical and biological resistance (microbe stability).

Die elastischen Feinstfaservliesstoffe können zudem in vielfältiger Weise mit Vliesstoffen anderer Polymeren kombiniert werden. Das Herstellverfahren erlaubt ferner die Verarbeitung von Polymerblends aus Polyurethan und z.B. Polyolefinen, wodurch insbesondere die elastischen Eigenschaften gezielt eingestellt werden können.The elastic fine fiber nonwovens can also be combined in a variety of ways with nonwovens of other polymers. The manufacturing process also allows the processing of polymer blends made of polyurethane and e.g. Polyolefins, whereby in particular the elastic properties can be specifically adjusted.

Ferner zeichnet sich das erfindungsgemäße Verfahren durch eine hervorragende Wirtschaftlichkeit aus.Furthermore, the method according to the invention is characterized by excellent economy.

Im folgenden werden Ausführungsbeispiele der Erfindung anhand von Zeichnungen näher beschrieben.Exemplary embodiments of the invention are described in more detail below with reference to drawings.

Es zeigen:

Fig 1
ein Verfahrensschema für eine Anlage zur Durchführung des Verfahrens
Fig 2
den Aufbau des Düsenkopfes mit Vorrichtungen zur Erzeugung von Begrenzungsgasströmen und
Fig 3
einen Düsenkopf mit schwenkbaren Vorrichtungen zur Erzeugung der Begrenzungsgasströme.
Show it:
Fig. 1
a process diagram for a plant for performing the method
Fig. 2
the structure of the nozzle head with devices for generating limiting gas flows and
Fig 3
a nozzle head with pivotable devices for generating the limiting gas flows.

Gemäß Fig. 1 wird das Polymergranulat 1 eines thermoplastischen Polyurethans in einem Extruder 2 aufgeschmolzen und unter einem konstant geregelten Druck im Bereich von 5 bar über eine rotierende Dichtung 3 in einen zentrischen, rotierenden Schmelzekanal 4 in einem gleichzeitig zur Lagerung dienenden Gehäuse 5 geleitet. Der Schmelzekanal 4 steht mit einem rotierenden Düsenkopf 6 in Verbindung, dessen Drehzahl im Bereich von 1.000 bis 11.000 min⁻¹, vorzugsweise 6.000 bis 9.000 min⁻¹, liegt. Aus dem Düsenkopf 6 tritt die Polymerschmelze durch kleine Bohrungen am Umfang unter einem Winkel von 90° zur Drehachse radial aus. Aufgrund des an den Bohrungen anliegenden Schmelzevordrucks von 5 bis 20 bar werden kontinuierliche Massenströme pro Bohrung von 0,01 bis 2 g/min gebildet. Diese Massenströme werden von einem aus dem Ringkanal 7 austretenden, überwiegend mit axialer Komponente strömenden Umlenkgasstrom 8 erfaßt und dabei zu endlich langen Feinstfasern 10 verzogen und verstreckt. Die Fasern 10 werden dann durch einen Schacht 11 auf ein Ablageband 12 mit einer Gasabsaugung 13, 14 zu einem Vlies 15 verdichtet, das gegebenenfalls zwischen beheizbaren Walzen 16 weiter verfestigt wird.1, the polymer granules 1 of a thermoplastic polyurethane are melted in an extruder 2 and passed under a constantly regulated pressure in the range of 5 bar via a rotating seal 3 into a central, rotating melt channel 4 in a housing 5 which is also used for storage. The melt channel 4 is connected to a rotating nozzle head 6, the speed of which is in the range from 1,000 to 11,000 rpm, preferably 6,000 to 9,000 rpm. The polymer melt emerges radially from the nozzle head 6 through small bores on the circumference at an angle of 90 ° to the axis of rotation. Due to the melt admission pressure of 5 to 20 bar at the holes, continuous mass flows of 0.01 to 2 g / min are formed per hole. These mass flows are detected by a deflecting gas flow 8 emerging from the annular channel 7 and predominantly flowing with an axial component, and are drawn and stretched into finely long fine fibers 10. The fibers 10 are then compressed through a shaft 11 onto a storage belt 12 with a gas extraction 13, 14 to form a fleece 15, which is optionally further consolidated between heatable rollers 16.

Der Antrieb des rotierenden Düsenkopfes 6 erfolgt durch einen Motor 17 mit einem Keilriemengetriebe 18. Die Beheizung des Düsenkopfes 6 erfolgt zweckmäßig durch eine elektrische Induktionsheizung oder durch Strahlungsheizung mittels einer elektrischen Heizwicklung. Die Gaszuführung für die Umlenkgasströme 8 erfolgt durch den Anschluß 19.The rotating nozzle head 6 is driven by a motor 17 with a V-belt transmission 18. The nozzle head 6 is expediently heated by an electric induction heater or by radiant heating by means of an electric heating winding. The gas supply for the deflecting gas streams 8 takes place through the connection 19.

Das für den Ausziehvorgang maßgebliche aerodynamische Strömungsfeld wird anhand von Fig. 2 erläutert. Gemäß Fig. 2 wird ein Zusatzgasstrom 21 über die Zugführung 22 in den rückwärtigen Bereich des Düsenkopfes 6 eingebracht. Dieser Gasstrom tritt durch 4 rotationssymmetrisch angeordnete axiale Bohrungen 23 an der Stirnfläche des Düsenkopfes 6 aus und wird durch Zentrifugalkräfte in ein radiales Strömungsfeld 24 aufgefächert. Dieses Strömungsfeld hat eine im wesentlichen radiale Komponente.The aerodynamic flow field relevant for the extraction process is explained with reference to FIG. 2. According to FIG. 2, an additional gas stream 21 is introduced into the rear area of the nozzle head 6 via the train guide 22. This gas flow exits through 4 rotationally symmetrical axial bores 23 on the end face of the nozzle head 6 and is fanned out into a radial flow field 24 by centrifugal forces. This flow field has an essentially radial component.

Die zu verspinnende Polyurethanschmelze 25 wird auf die zur Einstellung der gewünschten Viskosität erforderliche Temperatur oberhalb des physikalischen Schmelzpunktes aufgeheizt und mit einem Druck von 5 bar in den zentrisch rotierenden Schmelzekanal 4 und von dort über radiale Bohrungen 26 in eine im Düsenkopf 6 angeordnete, den Schmelzeaustrittsöffnungen 27 vorgeschaltete Ringkammer 28 geleitet.The polyurethane melt 25 to be spun is heated to the temperature required to set the desired viscosity above the physical melting point and with a pressure of 5 bar into the centrally rotating melt channel 4 and from there via radial bores 26 into a melt outlet openings 27 arranged in the nozzle head 6 upstream annular chamber 28 passed.

Zur Einstellung der gewünschten Schmelzetemperatur am Austritt der Bohrungen 27 wird der Düsenkopf 6 mit elektrischen Strahlungsheizungen 29, 30 aufgeheizt.In order to set the desired melt temperature at the outlet of the bores 27, the nozzle head 6 is heated with electric radiant heaters 29, 30.

Der innere Zusatzgasstrom 21 soll bei seinem Austritt am Düsenkopf eine Temperatur besitzen, die gleich oder wenig größer ist als die Temperatur des Düsenkopfes 6. Aufgrund der Geometrie und der Rotation des Düsenkopfes 6 resultiert ein symmetrisch aufgefächertes Strömungsfeld, das für einen gleichmäßigen Verzug (hinsichtlich der Winkelverteilung) der aus den Bohrungen 27 austretenden Primärschmelzeströme 9 sorgt. Außerdem wird die Abkühlung der Primärschmelzeströme verzögert. Im Anschluß daran werden die Schmelzeströme von den aus dem Blasring 7 austretenden äußeren Gasströmen 8 erfaßt, axial umgelenkt und zu Feinstfasern 10 ausgezogen (s. auch Fig. 1).The inner additional gas stream 21 should have a temperature at its outlet at the nozzle head which is equal to or slightly higher than the temperature of the nozzle head 6. Due to the geometry and the rotation of the nozzle head 6, a symmetrically fanned flow field results, which ensures a uniform distortion (with regard to the Angular distribution) of those emerging from the bores 27 Primary melt streams 9 provides. In addition, the cooling of the primary melt streams is delayed. Subsequently, the melt streams are detected by the outer gas streams 8 emerging from the blow ring 7, deflected axially and drawn out into fine fibers 10 (see also FIG. 1).

Desweiteren sind in einem axialen Abstand a = 40 mm von den Schmelzeaustrittsbohrungen 27 Blasdüsen 31a, 31b angeordnet, die von Verteilern 33a, 33 b außerhalb des Strömungsfeldes gespeist werden. Dadurch werden Gasströme 34a, 34b erzeugt, die als Begrenzungsgasströme unter einem Winkel α von 30° gegen die Achse auf den axial umgelenkten Faserstrom gerichtet werden. Das Gas wird den Verteilern 33a, 33b unter Druck über die Zuleitungen 32a, 32b zugeführt. Der radiale Abstand der Verteiler von der Drehachse beträgt das zweifache des Düsenkopfradius. Durch die Begrenzungsgasströme 34a, 34b wird das Faserluftgemisch noch vor dem Eintritt in den Schacht 11 (s. Fig. 1) über den Querschnitt vergleichmäßigt (Erzeugung eines Faservlieses mit einer gleichmäßigen Flächendichte und gleichmäßigen mechanischen Eigenschaften).Furthermore, blow nozzles 31a, 31b are arranged at an axial distance a = 40 mm from the melt outlet bores, which are fed by distributors 33a, 33b outside the flow field. As a result, gas flows 34a, 34b are generated, which are directed as limiting gas flows at an angle α of 30 ° against the axis onto the axially deflected fiber flow. The gas is supplied to the distributors 33a, 33b under pressure via the feed lines 32a, 32b. The radial distance of the distributors from the axis of rotation is twice the radius of the nozzle head. By means of the limiting gas flows 34a, 34b, the fiber-air mixture is homogenized over the cross-section before it enters the shaft 11 (see FIG. 1) (production of a non-woven fabric with a uniform surface density and uniform mechanical properties).

Ferner hat es sich als vorteilhaft erwiesen, wenn man die Begrenzungsgasströme 34a, 34b pulsieren läßt. Die z.b. sinusförmige Pulsation kann im Gleichtakt oder Wechseltakt (Gegentakt) erfolgen. Die Pulsationsfrequenz kann im Bereich von 0,5 s⁻¹ bis 5 s⁻¹ liegen.It has also proven to be advantageous to allow the limiting gas flows 34a, 34b to pulsate. The eg sinusoidal pulsation can take place in the common mode or alternating mode (push-pull). The pulsation frequency can range from 0.5 s von¹ to 5 s⁻¹.

Eine weitere vorteilhafte Variante besteht darin, die Begrenzungsgasströme 34a, 34b zueinander parallel auszurichten und über einen Winkelbereich von ± 10°≦ β ≦ ± 70° zur Achse des Faserstromes mit einer Frequenz von 0,5 s⁻¹ bis 5 s⁻¹ zu schwenken. Hierdurch wird insbesondere bei mehreren parallel betriebenen Düsenköpfen 6 eine gleichmäßigere Faserablage erzielt (Figur 3).Another advantageous variant consists in aligning the limiting gas flows 34a, 34b parallel to one another and pivoting them over an angular range of ± 10 ° ≦ β ≦ ± 70 ° to the axis of the fiber stream at a frequency of 0.5 s⁻¹ to 5 s⁻¹ . This results in a more uniform fiber placement, in particular in the case of several nozzle heads 6 operated in parallel (FIG. 3).

Beispiel 1example 1

Mit einer Apparatur gemäß Fig. 1 und 2 wurde ein handelsübliches thermoplastisches Polyesterpolyurethan mit der Bezeichnung Desmopan® versponnen. Das Material hatte eine Dichte von 1,2 g/cm³, eine Glastemperatur von -42°C, eine Erweichungstemperatur von +91°C und einen Schmelzetemperaturbereich von 180°C bis 250°C. Die Viskosität der Schmelze betrug 60 Pa.s bei einer Temperatur von 230°C und einer Schergeschwindigkeit von 400 s⁻¹. Die Schmelzetemperatur betrug 225°C, die Temperatur des Düsenkopfes 240°C. Der Düsenkopf 6 rotierte mit einer Drehzahl von 9.000 min⁻¹. Dabei wurde ein Massendurchsatz von 0,2 g/min pro Bohrung 27 erreicht. Das Mengenverhältnis des inneren Gasstromes 21 und des äußeren Ausziehgasstromes 19 betrug 0,4, die Temperatur des äußeren Umlenkgasstromes 19 20°C, die des inneren Zusatzgasstromes 21 260°C. Die beiden gegenüberliegenden Begrenzungsgasströme 34a und 34b hatten einen axialen Abstand a von 40 mm (s. Fig. 2) und einen radialen Abstand 2r zur Drehachse, wobei r der Düsenkopfradius ist. Der Anstellwinkel α zur Normalen (s. Fig. 2) betrug 30°C. Das Mengendurchsatzverhältnis dieser beiden Gasströme 34a und 34b und der Summe der am Düsenkopf eingebrachten Gasströme 19 und 21 betrug 0,3, die Temperatur der Begrenzungsgasströme 20°C. Die auf diese Weise versponnenen Feinstfasern 10 hatten einen mittleren Faserdurchmesser von 3,5 µm bei einer Standardabweichung von 1,9 µm. Das Ergebnis wurde durch Auszählung von 250 Fasern in einem Rasterelektronenmikroskop gefunden. Das abgeschiedene Faservlies besaß eine hervorragende Gleichmäßigkeit über die Breite und in Abhängigkeit vom Flächengewicht folgende Festigkeitseigenschaften:

Figure imgb0001
1 and 2, a commercially available thermoplastic polyester polyurethane with the designation Desmopan® was spun. The material had a density of 1.2 g / cm³, a glass transition temperature of -42 ° C, a softening temperature of + 91 ° C and a melt temperature range of 180 ° C to 250 ° C. The viscosity of the melt was 60 Pa.s at a temperature of 230 ° C and a shear rate of 400 s⁻¹. The melt temperature was 225 ° C, the temperature of the die head was 240 ° C. The nozzle head 6 rotated at a speed of 9,000 rpm. A mass throughput of 0.2 g / min per bore 27 was achieved. The quantitative ratio of the inner gas stream 21 and the outer exhaust gas stream 19 was 0.4, the temperature of the outer deflecting gas stream 19 was 20 ° C., that of the inner auxiliary gas stream 21 was 260 ° C. The two opposing limiting gas flows 34a and 34b had an axial distance a of 40 mm (see FIG. 2) and a radial distance 2r from the axis of rotation, where r is the nozzle head radius. The angle of attack α to the normal (see Fig. 2) was 30 ° C. The mass flow ratio of these two gas streams 34a and 34b and the sum of the gas streams 19 and 21 introduced at the nozzle head was 0.3, and the temperature of the limiting gas streams was 20 ° C. The very fine fibers 10 spun in this way had an average fiber diameter of 3.5 μm with a standard deviation of 1.9 μm. The result was found by counting 250 fibers in a scanning electron microscope. The separated nonwoven had excellent uniformity across the width and, depending on the weight per unit area, the following strength properties:
Figure imgb0001

Beispiel 2Example 2

Mit der gleichen Apparatur und bei sonst gleichen Einstellungen wurde der Massendurchsatz auf 0,1 g/min pro Bohrung reduziert und die Begrenzungsgasströme 34a, 34b entsprechend einem Mengenverhältnis von 0,2, bezogen auf die Gesamtsumme der in den Düsenkopf 6 eingespeisten Gasströme 19, 21 eingestellt. Dabei ergab sich ein mittlerer Faserdurchmesser von 1,3 µm mit einer Standardabweichung von 0,7 µm (Messung analog zu Beispiel 1). Die bereits im Zusammenhang mit Beispiel 1 definierten Festigkeitseigenschaften sind in der nachfolgenden Tabelle II zusammengestellt.

Figure imgb0002
With the same apparatus and with otherwise the same settings, the mass throughput was reduced to 0.1 g / min per bore and the limiting gas flows 34a, 34b in accordance with a quantitative ratio of 0.2, based on the total sum of the gas flows 19, 21 fed into the nozzle head 6 set. This resulted in an average fiber diameter of 1.3 µm with a standard deviation of 0.7 µm (measurement analogous to Example 1). The strength properties already defined in connection with Example 1 are summarized in Table II below.
Figure imgb0002

Im Vergleich zu Beispiel 1 besaß der Vliesstoff gemäß Beispiel 2 eine höhere innere Gleichmäßigkeit und Flächendeckung.Compared to Example 1, the nonwoven fabric according to Example 2 had a higher internal uniformity and area coverage.

Claims (9)

  1. Process for the production of superfine polymer fibre nonwoven fabrics with a mean fibre diameter of 0.1 µm - 20 µm, preferably 0.5 µm - 10 µm, in which a molten thermoplastic polymer at a supply pressure of 1 bar - 200 bar from a rotating nozzle head (6) is spun out radially in a rotationally-symmetrical flow field from a plurality of discharge holes (27) under the action of an inner gas stream to form fibres and the not yet completely solidified fibres are deflected in the axial direction at a radial distance of 10 mm to 200 mm from the discharge holes (27) by an outer gas stream (8) and afterwards deposited as nonwoven fabric (15) on a circulating, air-permeable carrier (12), characterised in that the inner gas stream emerges with a lower velocity than the outer gas stream from a plurality of axial drilled holes (23) in the nozzle head as a hot gas stream with a temperature that is greater than or equal to the nozzle head temperature.
  2. Process according to claim 1, characterised in that the ratio of the inner to the outer gas flow rates is adjusted to a value between 0.2 and 2.0.
  3. Process according to claims 1 to 2, characterised in that the inner gas stream discharges from 2 to 20, preferably 2 to 10, drilled holes (23) running axially in the rotating nozzle head (6).
  4. Process according to claims 1 to 3, characterised in that outside the nozzle head (6) at an axial distance 0 mm ≦ a ≦ 500 mm from the melt discharge holes (27), at least two further delimiting gas streams (34a, 34b) are directed at an angle of 0° to 70°, preferably 10° to 60°, to the axis onto the axially deflected fibre stream.
  5. Process according to claim 4, characterised in that the ratio of the sum of the delimiting gas flow rates (34a, 34b) to the sum of the outer (19) and inner (21) gas flow rates is adjusted to a value between 0 and 1, preferably between 0 and 0.5.
  6. Process according to claims 4 to 5, characterised in that the delimiting gas streams (34a, 34b) are blown in at a radial distance that is 1 to 5 times, preferably 1 to 3 times, the nozzle head radius.
  7. Process according to claims 4 to 6, characterised in that the delimiting gas streams pulsate in phase or inversely phased.
  8. Process according to claims 4 to 7, characterised in that the delimiting gas streams (34a, 34b) are aligned mutually parallel and swung through an angular range of ± 10° to ± 70° to the axis of the fibre stream with a frequency of 0.5 s⁻¹ to 5 s⁻¹.
  9. Process according to claims 1 to 8, characterised in that a polyester urethane, polyether urethane or polyethercarbonate urethane is used as polymer.
EP91105117A 1990-04-12 1991-03-30 Method for producing micro fibre fleeces from thermoplastic polymers Expired - Lifetime EP0453819B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4011883 1990-04-12
DE4011883A DE4011883A1 (en) 1990-04-12 1990-04-12 METHOD FOR THE PRODUCTION OF FINE-FIBER FIBER MATS FROM THERMOPLASTIC POLYMERS

Publications (2)

Publication Number Publication Date
EP0453819A1 EP0453819A1 (en) 1991-10-30
EP0453819B1 true EP0453819B1 (en) 1994-10-19

Family

ID=6404304

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91105117A Expired - Lifetime EP0453819B1 (en) 1990-04-12 1991-03-30 Method for producing micro fibre fleeces from thermoplastic polymers

Country Status (4)

Country Link
US (1) US5114631A (en)
EP (1) EP0453819B1 (en)
JP (1) JPH04228667A (en)
DE (2) DE4011883A1 (en)

Families Citing this family (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5230905A (en) * 1991-06-14 1993-07-27 Fare' S.P.A. Polymer extruding device
FI95154C (en) * 1992-03-09 1995-12-27 Roctex Oy Ab A method of making a matless product comprising mineral fibers and a binder
US5380473A (en) * 1992-10-23 1995-01-10 Fuisz Technologies Ltd. Process for making shearform matrix
US5494736A (en) * 1993-01-29 1996-02-27 Fiberweb North America, Inc. High elongation thermally bonded carded nonwoven fabrics
US5523031A (en) * 1994-12-23 1996-06-04 Owens-Corning Fiberglas Technology, Inc. Method for fiberizing mineral material with organic material
US5972265A (en) * 1998-05-21 1999-10-26 Forest Products Development Laboratories, Inc. L.L.C. Method and apparatus for producing composites
WO2001032292A1 (en) 1999-10-29 2001-05-10 Hollingsworth & Vose Company Filter media
US6667254B1 (en) 2000-11-20 2003-12-23 3M Innovative Properties Company Fibrous nonwoven webs
US20040266300A1 (en) * 2003-06-30 2004-12-30 Isele Olaf Erik Alexander Articles containing nanofibers produced from a low energy process
US8395016B2 (en) 2003-06-30 2013-03-12 The Procter & Gamble Company Articles containing nanofibers produced from low melt flow rate polymers
EP1639159B2 (en) * 2003-06-30 2018-07-18 The Procter & Gamble Company Coated nanofiber webs
JP4393513B2 (en) * 2003-06-30 2010-01-06 ザ プロクター アンド ギャンブル カンパニー Fine particles in nanofiber web
US8487156B2 (en) 2003-06-30 2013-07-16 The Procter & Gamble Company Hygiene articles containing nanofibers
MXPA06011347A (en) * 2004-04-19 2006-12-15 Procter & Gamble Articles containing nanofibers for use as barriers.
ES2432041T3 (en) 2004-04-19 2013-11-29 The Procter & Gamble Company Fibers, non-woven materials and articles containing nanofibers produced from polymers of wide molecular weight distribution
DE102005048939A1 (en) * 2005-07-01 2007-01-11 Carl Freudenberg Kg Centrifugal melt spinning, especially for producing nanofibers, uses an air stream to guide and treat fibers emerging from rotating melt container
DE202005015267U1 (en) * 2005-09-27 2007-02-08 Inatec Gmbh Apparatus for applying threads of adhesive to a substrate for making adhesive thread nonwovens comprises a rotatable applicator head that is mounted on a shaft and has radially spaced adhesive outlet nozzles
DE102006016584B4 (en) 2005-09-27 2016-02-25 Illinois Tool Works Inc. Method and apparatus for applying adhesive threads and dots to a substrate
US8303874B2 (en) * 2006-03-28 2012-11-06 E I Du Pont De Nemours And Company Solution spun fiber process
KR20090082376A (en) * 2006-11-24 2009-07-30 파나소닉 주식회사 Process and apparatus for producing nanofiber and polymer web
CN101542025B (en) * 2006-11-24 2011-04-27 松下电器产业株式会社 Process and apparatus for producing nanofiber and polymer web
JP4877140B2 (en) * 2007-08-08 2012-02-15 パナソニック株式会社 Nanofiber manufacturing method and apparatus
JP4743194B2 (en) * 2006-12-07 2011-08-10 パナソニック株式会社 Nanofiber spinning method and apparatus
US20100148405A1 (en) * 2007-05-21 2010-06-17 Hiroto Sumida Nanofiber producing method and nanofiber producing apparatus
JP4866868B2 (en) * 2008-02-14 2012-02-01 パナソニック株式会社 Nanofiber manufacturing equipment, non-woven fabric manufacturing equipment
JP4535085B2 (en) * 2007-05-21 2010-09-01 パナソニック株式会社 Nanofiber manufacturing method and apparatus
CA2703958A1 (en) * 2007-10-23 2009-04-30 Ppg Industries Ohio, Inc. Fiber formation by electrical-mechanical spinning
CN101981238B (en) * 2008-04-02 2012-05-02 松下电器产业株式会社 Nanofiber manufacturing apparatus and nanofiber manufacturing method
JP5227198B2 (en) * 2009-01-07 2013-07-03 パナソニック株式会社 Nanofiber manufacturing apparatus and nanofiber manufacturing method
US8597552B2 (en) 2009-03-16 2013-12-03 Evan Koslow Apparatus, systems and methods for producing particles using rotating capillaries
JP2013510246A (en) * 2009-11-05 2013-03-21 ノンウォテック メディカル ゲーエムベーハー Nonwoven fabric for medical treatment and manufacturing process thereof
US8889572B2 (en) 2010-09-29 2014-11-18 Milliken & Company Gradient nanofiber non-woven
US8795561B2 (en) 2010-09-29 2014-08-05 Milliken & Company Process of forming a nanofiber non-woven containing particles
JP6190274B2 (en) * 2011-02-07 2017-08-30 クラーコア インコーポレーテッドCLARCOR Inc. Apparatus and method for depositing microfibers and nanofibers on a substrate
CN102140701B (en) * 2011-03-21 2013-05-08 李从举 Porous sprayer electrostatic spinning device for preparing nano fibrofelt and preparation method thereof
US8496088B2 (en) 2011-11-09 2013-07-30 Milliken & Company Acoustic composite
US9731466B2 (en) * 2012-08-06 2017-08-15 Clarcor Inc. Systems and methods of supplying materials to a rotating fiber producing device
US9186608B2 (en) 2012-09-26 2015-11-17 Milliken & Company Process for forming a high efficiency nanofiber filter
US20140259483A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Wipes with improved properties
US20140272223A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Packages for articles of commerce
US9205006B2 (en) 2013-03-15 2015-12-08 The Procter & Gamble Company Absorbent articles with nonwoven substrates having fibrils
US20140272359A1 (en) 2013-03-15 2014-09-18 The Procter & Gamble Company Nonwoven substrates
EP2778270A1 (en) 2013-03-15 2014-09-17 Fibertex Personal Care A/S Nonwoven substrates having fibrils
US9504610B2 (en) 2013-03-15 2016-11-29 The Procter & Gamble Company Methods for forming absorbent articles with nonwoven substrates
US20170254005A1 (en) 2013-07-05 2017-09-07 The North Face Apparel Corp. Forcespinning of fibers and filaments
EP3193801B1 (en) 2014-09-10 2022-07-13 The Procter & Gamble Company Nonwoven web
CN110215015A (en) 2014-11-10 2019-09-10 北面服饰公司 The footwear and other products formed by jet stream extrusion process
WO2023009151A1 (en) 2021-07-27 2023-02-02 Singfatt Chin Ultra-light nanotechnology breathable gowns and method of making same
US11958308B1 (en) 2023-05-31 2024-04-16 G13 Innovation In Production Ltd Thermal paper, and methods and systems for forming the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3806289A (en) * 1972-04-05 1974-04-23 Kimberly Clark Co Apparatus for producing strong and highly opaque random fibrous webs
NL187915C (en) * 1981-02-16 1992-02-17 Sten Halvor Harsem METHOD FOR SPINNING FIBERS AND APPARATUS FOR CARRYING OUT THIS METHOD
US4988560A (en) * 1987-12-21 1991-01-29 Minnesota Mining And Manufacturing Company Oriented melt-blown fibers, processes for making such fibers, and webs made from such fibers
DE3801080A1 (en) * 1988-01-16 1989-07-27 Bayer Ag METHOD FOR PRODUCING FINE POLYMER FIBERS
US4889546A (en) * 1988-05-25 1989-12-26 Denniston Donald W Method and apparatus for forming fibers from thermoplastic materials

Also Published As

Publication number Publication date
EP0453819A1 (en) 1991-10-30
US5114631A (en) 1992-05-19
DE59103258D1 (en) 1994-11-24
DE4011883A1 (en) 1991-10-17
JPH04228667A (en) 1992-08-18

Similar Documents

Publication Publication Date Title
EP0453819B1 (en) Method for producing micro fibre fleeces from thermoplastic polymers
DE69719796T2 (en) METHOD FOR PRODUCING A NONWOVEN FABRIC
EP0325116B1 (en) Process for the preparation of ultra-fine polymer fibres
DE69030338T3 (en) Process for the production of fibers, rovings and mats from liquid crystalline lyotropic polymers
DE2053918A1 (en) Spunbonded fabric made from threads or strands of synthetic high polymers as well as method and device for its production
EP0658221B1 (en) Process and device for producing cellulose fibres
EP1192301A1 (en) Method and device for the production of an essentially continuous fine thread
EP0339240A2 (en) Polyphenylene sulfide microfibres
EP1954859A1 (en) Process for producing sheath-core staple fibre with a three-dimensional crimp, and corresponding sheath-core staple fibre
DE2444813C2 (en) Method and apparatus for making a densified yarn product
WO2011138056A1 (en) Spinneret for spinning threads, spinning device for spinning threads and method for spinning threads
EP0957187A2 (en) Apparatus and process for the production of microfilament yarns with high titer regularity from thermoplastic polymers
EP0871805A1 (en) Process and device for the formation of monofilaments produced by melt-spinning
EP1043429B1 (en) Device for the production of a stranded fibre composite from glass fibres and fibre composite from glass fibres
DE2951445A1 (en) MIXING DEVICE FOR MIXING POLYMERIC SUBSTANCES
EP3771761B1 (en) Spunbond nonwoven fabric made from endless filaments and device for producing spunbond nonwoven fabric
EP0455897B1 (en) Apparatus for the preparation of very fine fibres
EP0541552A1 (en) Process and spinning device for making microfilaments.
WO2002077333A1 (en) Yarns, fibres and filaments that can be fibrillated, method and device for their production
DE3036683C2 (en) Process for melt spinning synthetic polymers
EP0205736B1 (en) Method for making spun-bonded fibre webs
DE3523321A1 (en) Process and apparatus for the production of spinning fibres
EP1467005A1 (en) Process and device for melt spinning and cooling a bundle of filaments
DE202005014604U1 (en) Unit producing spun-bonded fleece fabric, includes provisions for adjusting throughput of melt or solvent, relative temperatures at different spinning orifices and applied gas velocities
EP1560952B1 (en) Method and device for melt spinning and cooling a plurality of synthetic filaments

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed

Effective date: 19920120

17Q First examination report despatched

Effective date: 19930830

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 59103258

Country of ref document: DE

Date of ref document: 19941124

EAL Se: european patent in force in sweden

Ref document number: 91105117.5

ET Fr: translation filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19950214

Year of fee payment: 5

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19950117

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19950215

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950315

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950321

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19950322

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19950331

Year of fee payment: 5

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19960331

Ref country code: BE

Effective date: 19960331

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19960331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19961001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960330

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961129

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 19961001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19961203

EUG Se: european patent has lapsed

Ref document number: 91105117.5

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST