EP0323365A1 - Anode tournante pour tube à rayons X - Google Patents

Anode tournante pour tube à rayons X Download PDF

Info

Publication number
EP0323365A1
EP0323365A1 EP88403377A EP88403377A EP0323365A1 EP 0323365 A1 EP0323365 A1 EP 0323365A1 EP 88403377 A EP88403377 A EP 88403377A EP 88403377 A EP88403377 A EP 88403377A EP 0323365 A1 EP0323365 A1 EP 0323365A1
Authority
EP
European Patent Office
Prior art keywords
target
slots
anode
depth
ray tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88403377A
Other languages
German (de)
English (en)
Inventor
Michel Laurent
Pierre Nouahlaguet
Claude Mathieu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric CGR SA
Original Assignee
General Electric CGR SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric CGR SA filed Critical General Electric CGR SA
Publication of EP0323365A1 publication Critical patent/EP0323365A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/04Electrodes ; Mutual position thereof; Constructional adaptations therefor
    • H01J35/08Anodes; Anti cathodes
    • H01J35/10Rotary anodes; Arrangements for rotating anodes; Cooling rotary anodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/083Bonding or fixing with the support or substrate
    • H01J2235/084Target-substrate interlayers or structures, e.g. to control or prevent diffusion or improve adhesion

Definitions

  • the invention relates to a rotating anode for an X-ray tube, and in particular to means for preventing the uncontrolled creation of cracks in a target carried by the anode.
  • X-radiation is commonly obtained by electron bombardment of the anode. More precisely, the electron bombardment is concentrated on a small surface, called the focal point, of a target which the anode comprises, this focal point becoming the source of the X-ray radiation.
  • the target is generally made of a material not only of high atomic number to favor the production of X-rays, but also of a refractory material and good conductor of heat, such as for example tungsten, or molybdenum, or their alloys , etc ...
  • a common solution is to scroll the target under the focus or impact of the electron beam.
  • This scrolling of the target is obtained by a rotation of the anode about an axis of symmetry of the latter, the anode generally having the shape of a disc.
  • the scrolling of the target, under the focal point created at the impact of the electron beam, generates on the target and around the axis of symmetry, a focal ring several millimeters wide.
  • the rapid rotation of the anode (several thousand revolutions per minute) is necessary to distribute the heat flux over the focal ring.
  • the temperature of the focal point remains much higher than the temperature of the rest of the focal ring, which itself has a temperature much higher than that of the rest of the anode disc.
  • each point of this focal ring receives a "thermal impulse" at each revolution of the anode.
  • the fluctuations due to these pulses can be considered insignificant. beyond a surface layer whose thickness is of the order of 100 microns; so that it is mainly this surface layer which undergoes, at the rate of rotation, a succession of thermal shocks, and consequently, significant mechanical stresses.
  • the authors of the invention have thought that the focal crown is subjected to a significant compression, due to the expansion of the target material, and that probably the target material leaves the elastic range of the material, so that a tensile stress resulting from cooling can cause cracks in the surface of the material from which the target is made.
  • the invention relates to a rotating anode for an X-ray tube, which is arranged in a new way which avoids random and uncontrolled formation of cracks in the target.
  • a rotating anode for an X-ray tube comprising a target intended to be subjected to electronic bombardment in order to produce X-radiation, is characterized in that the surface of the target is hollowed out by a plurality of slots equidistant and arranged symmetrically with respect to an axis of symmetry of the anode.
  • the single figure shows a rotating anode 1 for an X-ray tube in itself conventional (not shown).
  • the anode 1 is formed according to a disc having an axis of symmetry 3 and an approximately frustoconical shape; that is to say that a face 4 is formed of a flat central part 5 surrounded by a sloping part 6 which joins the peripheral circular edges 7 of the anode disc 1.
  • the central part 5 has a hole 8, arranged along the axis of symmetry 3, and intended for the passage of a support axis (not shown) used to carry the rotating anode 1 in a conventional manner .
  • the rotating anode 1 is of the type comprising a base body 15 or substrate, in graphite for example, on which an intermediate layer is deposited attachment 16 in rhenium for example; a layer of target material 17, for example of tungsten, being deposited on the bonding layer 16.
  • the layer 17 of target material has been formed in one or more layers, deposited according to a conventional method such as, for example, electrolytic deposition, or chemical vapor deposition (CVD) or also by the method of deposition by plasma torch projection. , etc ...
  • a conventional method such as, for example, electrolytic deposition, or chemical vapor deposition (CVD) or also by the method of deposition by plasma torch projection. , etc ...
  • the layer of target material 17 or target has a thickness E1 of between 300 microns and 700 microns.
  • the thickness E1 of the target 17 can be different and the target 17 can be formed according to a massive structure, formed for example directly by the base body 15 itself made of target material ; or the target 17 can be attached to the base body 15.
  • the layer 17 of target material constitutes a target intended to be bombarded by an electron beam (not shown) in order to conventionally produce X-radiation.
  • the target 17 is intended to be subjected to electronic bombardment over a small surface where a focal point 18 is formed, from which the rotation of the rotating anode 1 around the axis of symmetry 3 generates a focal ring 19 (shown in dotted lines).
  • the layer 17 of target material is deposited on the whole of the sloping part 6, but this layer 17 can be deposited on a more reduced surface, so as to constitute the target according to a ring corresponding substantially to focal ring 19.
  • the surface 21 of the target 17 is hollowed out by a plurality of slots F1, F2, F3,. .., Fn equidistant and arranged symmetrically with respect to the axis of symmetry 3.
  • the length L of the slots F1 to Fn extends radially and corresponds to generatrices of the cone.
  • the usefulness of the slots F1 to Fn is manifested above all with regard to the bombarded surfaces, that is to say of the focal ring 19, and the length L of the slots F1 to Fn can be limited and correspond substantially to a width 1 of the focal ring 19.
  • the slits F1 to Fn have a depth P less than the thickness E1 of the target 17, so as to leave a sufficient quantity of target material between a bottom 23 of the slits F1 to Fn and the substra or base body 15.
  • the depth P of the slits F1 to Fn must be equal to or greater than the thickness of the surface layer, estimated at around 100 microns, which was cited in the preamble as being the layer beyond which the thermal fluctuations are insignificant.
  • the depth P a value between 1/3 and 2/3 of the thickness E1 of the target material layer 17; that is to say that for a thickness E1 of 300 microns, the depth P can be between 100 microns and 200 microns.
  • the slots F1 to Fn are radial, so that they make it possible to release the mechanical stresses without hampering the heat exchanges.
  • the spacing of the slots F1 to Fn is a compromise between the concern to slightly decrease the x-ray yield of the target 17 (the yield is reduced if the slots F1 to Fn are too tight), and the concern to give the slots F1 at Fn maximum efficiency.
  • width 12 of the slots F1 to Fn must be as narrow as possible, taking into account the technological considerations of implementation. These technological considerations can also lead to increasing the length L of the slots F1 to Fn beyond the strictly necessary length.
  • the plane of the slots can be inclined relative to the plane normal to the surface 21 of the target.
  • An example of the inclination of a slot is given at a third slot F3 by an axis 27 parallel to the depth P3 of this third slot and forming an angle of inclination ⁇ 1, with a second axis 28 symbolizing a normal plane to the surface 21.
  • the angle of inclination ⁇ 1 is to be determined according to the width 12 and the depth P of a slot F1 to Fn: it may be mentioned, only by way of nonlimiting example, that the tilt angle ⁇ 1 can have a value of 15 ° for a depth P of 150 microns and a width 12 of the slot F3 of about 50 microns.
  • angle of inclination ⁇ 1 must remain relatively small, so as not to hinder the heat exchanges which, in the nonlimiting example shown in the figure, are essentially carried out in directions parallel to the axis of symmetry 3 and in radial directions (since all the points of the focal ring 19 are at close temperature) .
  • the production of the slots F1 to Fn in the surface 21 of the target 17 constitutes a simple and easy to implement solution to the problem of aging of the anodes represented by cracking of the targets.
  • the length L of the slots F1 to Fn extends in radial directions.
  • the orientation of the length of these slots may be different, in particular in the case where the target is formed on the edge or around the rotating anode disc: in this case, the length slots is parallel to the axis of symmetry or axis of rotation of the anode; such an arrangement of the target being common in the case of rotating anodes for mammography.

Landscapes

  • X-Ray Techniques (AREA)

Abstract

L'invention concerne une anode tournante de tube à rayons X, particulièrement des moyens pour éviter la création anarchique de fissures dans une cible (17) portée par l'anode (1). A cet effet, selon une caractéristique de l'invention, une surface (21) de la cible (17) est creusée par une pluralité de fentes (F1..., Fn) disposées de manière symétrique par rapport à un axe de symétrie (3) de l'anode (1)

Description

  • L'invention concerne une anode tournante pour tube à rayons X, et en particulier des moyens pour éviter la création anarchique de fissures dans une cible portée par l'anode.
  • Avec les tubes à rayons X, le rayonnement X est couramment obtenu par un bombardement électronique de l'anode. Plus précisément, le bombardement électronique est concentré sur une petite surface, appelée foyer, d'une cible que comporte l'anode, ce foyer devenant la source du rayonnement X.
  • Une faible part de l'énergie électrique dépensée pour accélérer les électrons (environ 1%) est transfor­mée en rayons X, le reste de cette énergie est dissipé en chaleur. Cette chaleur, dont l'évacuation pour la plus grande partie se fait par rayonnement, peut con­duire à la détérioration de l'anode, et plus particuliè­rement à la détérioration de la cible, par fusion par exemple, à l'endroit où est formé le foyer.
  • Aussi, la cible est généralement constituée en un matériau non seulement à haut numéro atomique pour favoriser la production de rayons X, mais aussi en un matériau réfractaire et bon conducteur de la chaleur, comme par exemple le tungstène, ou le molybdène, ou leurs alliages, etc...
  • Cependant quel que soit le matériau dont est constitué la cible, les puissances instantanées mises en jeu (de l'ordre de 100 KW) créent des contraintes importantes dans les couches superficielles de ce matériau.
  • En vue de diminuer la température au foyer, une solution courante consiste à faire défiler la cible sous le foyer ou impact du faisceau d'électrons. Ce défile­ment de la cible est obtenu par une rotation de l'anode autour d'un axe de symétrie de cette dernière, l'anode ayant généralement la forme d'un disque. Le défilement de la cible, sous le foyer créé à l'impact du faisceau d'électrons, engendre sur la cible et autour de l'axe de symétrie, une couronne focale large de plusieurs milli­mètres.
  • La rotation rapide de l'anode (plusieurs milliers de tours par minute) est nécessaire pour répartir le flux thermique sur la couronne focale. Mais la tempéra­ture du foyer reste très supérieure à la température du reste de la couronne focale, qui elle-même a une tempé­rature très supérieure à celle du reste du disque d'anode.
  • On observe que chaque point de cette couronne focale reçoit une "impulstion thermique" à chaque tour de l'anode. Avec les matériaux généralement utilisés pour l'émission d'un rayonnement X sous l'effet d'un bombardement électronique, c'est à dire les matériaux cibles tels que le tungstène par exemple, les fluctua­tions dues à ces impulsions peuvent être considérées comme insignifiantes au delà d'une couche superficielle dont l'épaisseur est de l'ordre de 100 microns ; de sorte que c'est principalement cette couche superfi­cielle qui subit, au rythme de la rotation, une succes­sion de chocs thermiques, et par suite, de contraintes mécaniques importantes.
  • D'autre part, à une autre échelle de temps, celle d'une pose qui peut durer par exemple de 0,1 seconde à 1 seconde ou même plus, toute la couronne focale reçoit un flux thermique important, qui ne diffuse que graduelle­ment dans l'ensemble du disque d'anode.
  • Par suite, les auteurs de l'invention ont pensé que la couronne focale est soumise à une compression impor­tante, due à la dilatation du matériau cible, et que probablement le matériau cible sort du domaine d'élasti­cité du matériau, de sorte qu'une contrainte de traction qui résulte du refroidissement peut engendrer des fissures dans la surface du matériau dont est constitué la cible.
  • Ces fissures tendent à augmenter en nombre et en importance avec le temps de fonctionnement, et elles deviennent préjudiciables au bon fonctionnement du tube à rayons X : ainsi par exemple, dans le cas d'une anode constituée d'un corps de base (en graphite par exemple) revêtu d'une couche de matériau émissif de rayons X ou matériau cible (en tungstène par exemple), ces fissures peuvent se prolonger jusqu'au graphite et il peut en résulter des décollements de la couche de tungstène, entraînant la destruction rapide du tube ; on note également que ces fissures, si elles sont trop nombreu­ses, tendent à diminuer la quantité de rayonnements X émis par le foyer.
  • L'invention concerne une anode tournante pour tube à rayons X, agencée d'une manière nouvelle qui permet d'éviter la formation aléatoire et non contrôlée de fissures dans la cible.
  • Selon l'invention, une anode tournante pour tube à rayons X, comportant une cible destinée à être soumise à un bombardement électronique en vue de produire un rayonnement X, est caractérisée en ce que la surface de la cible est creusée par une pluralité de fentes équi­distantes et disposées de manière symétrique par rapport à un axe de symétrie de l'anode.
  • L'invention sera mieux comprise grâce à la descrip­tion qui suit, faite à titre d'exemple non limitatif, et à l'unique figure jointe qui montre schématiquement, par une vue en perspective, une anode tournante conforme à l'invention.
  • La figure unique montre une anode tournante 1 pour un tube à rayons X en lui-même classique (non représen­té). Dans l'exemple non limitatif de la description, l'anode 1 est formée selon un disque ayant un axe de symétrie 3 et une forme approximativement troncônique ; c'est à dire qu'une face 4 est formée d'une partie centrale 5 plane entourée d'une partie pentue 6 qui rejoint les bords circulaires périphériques 7 du disque d'anode 1.
  • Dans l'exemple non limitatif décrit, la partie centrale 5 comporte un trou 8, disposé selon l'axe de symétrie 3, et destiné au passage d'un axe support (non représenté) servant à porter l'anode tournante 1 de manière classique.
  • Dans l'exemple non limitatif de la description, comme il apparaît sur la figure grace à un arraché, l'anode tournante 1 est du type comportant un corps de base 15 ou substrat, en graphite par exemple, sur lequel est déposée une couche intermédiaire d'accrochage 16 en rhénium par exemple ; une couche de matériau cible 17, en tungstène par exemple, étant déposée sur la couche d'accrochage 16.
  • La couche 17 de matériau cible a été formée en une ou plusieurs couches, déposées selon une méthode classi­que telle que par exemple, dépôt électrolytique, ou dépôt chimique en phase vapeur (CVD) ou encore par la méthode de dépôt par projection au chalumeau à plasma, etc...
  • Dans l'exemple non limitatif décrit la couche de matériau cible 17 ou cible a une épaisseur E1 comprise entre 300 microns et 700 microns.
  • Bien entendu dans l'esprit de l'invention, l'épa­isseur E1 de la cible 17 peut être différente et la cible 17 peut être constituée selon une structure massive, formée par exemple directement par le corps de base 15 lui même constitué en matériau cible ; ou encore la cible 17 peut étre rapportée sur le corps de base 15.
  • La couche 17 de matériau cible consitue une cible destinée à être bombardée par un faisceau d'électrons (non représenté,) en vue de produire de manière classi­que un rayonnement X.
  • En fait, la cible 17 est destinée à être soumise au bombardement électronique sur une faible surface où est constitué un foyer 18, à partir duquel la rotation de l'anode tournante 1 autour de l'axe de symétrie 3, engendre une couronne focale 19 (représentée en traits pointillés). Dans l'exemple non limitatif décrit, la couche 17 de matériau cible est déposée sur l'ensemble de la partie pentue 6, mais cette couche 17 peut être déposée sur une surface plus réduite, de sorte à consti­tuer la cible selon une couronne correspondant sensible­ment à la couronne focale 19.
  • Selon une caractéristique de l'invention, et en vue d'éviter une fissuration anarchique de la cible 17 sous l'effet du bombardement électronique, la surface 21 de la cible 17 est creusée par une pluralité de fentes F1, F2, F3, ..., Fn équidistantes et disposées de manière symétrique par rapport à l'axe de symétrie 3.
  • Dans l'exemple non limitatif représenté à la figure où la cible 17 est formée sur une face 4 de l'anode 1, la longueur L des fentes F1 à Fn s'étend radialement et correspond à des génératrices du cône.
  • Mais, l'utilité des fentes F1 à Fn se manifeste surtout en regard des surfaces bombardées, c'est à dire de la couronne focale 19, et la longueur L des fentes F1 à Fn peut être limitée et correspondre sensiblement à une largeur 1 de la couronne focale 19.
  • Les fentes F1 à Fn ont une profondeur P inférieure à l'épaisseur E1 de la cible 17, de manière à laisser subsister une quantité suffisante de matériau cible entre un fond 23 des fentes F1 à Fn et le substra ou corps de base 15.
  • En fait, la profondeur P des fentes F1 à Fn doit être égale ou supérieure à l'épaisseur de la couche, superficielle, estimée à environ 100 microns, qui a été citée dans le préambule comme étant la couche au delà de laquelle les fluctuations thermiques sont insignifian­tes.
  • En pratique un compromis satisfaisant est atteint en conférant à la profondeur P une valeur comprise entre 1/3 et 2/3 de l'épaisseur E1 de la couche de matériau cible 17 ; c'est à dire que pour une épaisseur E1 de 300 microns, la profondeur P peut être comprise entre 100 microns et 200 microns.
  • Dans l'exemple non limitatif décrit, les fentes F1 à Fn sont radiales, de sorte qu'elles permettent de libérer les contraintes mécaniques sans entraver les échanges thermiques.
  • L'espacement des fentes F1 à Fn est un compromis entre le souci de diminuer peu le rendement du rayonne­ment X de la cible 17 (le rendement est diminué si les fentes F1 à Fn sont trop serrées), et le souci de donner aux fentes F1 à Fn une efficacité maximum.
  • Nous avons constaté qu'un écartement angulaire α compris entre environ 5° et 10° était correct, mais bien entendu on peut sortir de ces limites.
  • Il est à noter que la largeur 12 des fentes F1 à Fn doit être aussi étroite que possible, compte tenu des considérations technologiques de réalisation. Ces onsidérations technologiques peuvent conduire également à augmenter la longueur L des fentes F1 à Fn au delà de la longueur strictement nécessaire.
  • Pour réaliser les fentes F1 à Fn, plusieurs procé­dés en eux-mêmes connus peuvent être utilisés, tels que par exemple : par découpe mécanique, par fusion avec faisceau laser, ou encore par électro-érosion : il semble que ce dernier procédé soit actuellement particu­lièrement bien adapté à réaliser les fentes F1 à Fn très fines (largeur 12 de l'ordre de quelques 1/100 millimè­tre), et de géométrie quelconque.
  • On peut même envisager des fentes F1 a Fn dont la profondeur P s'étend de manière non rectiligne, pour éviter l'atteinte du fond 23 par des électrons (non représentés) d'incidence oblique.
  • En vue d'éviter le choc direct d'électrons dans le fond 23 des fentes F1 à Fn, le plan des fentes peut être incliné par rapport au plan normal à la surface 21 de la cible. Un exemple de l'inclinaison d'une fente est donné au niveau d'une troisième fente F3 par un axe 27 paral­lèle à la profondeur P3 de cette troisième fente et formant un angle d'inclinaison α 1, avec un second axe 28 symbolisant un plan normal à la surface 21. L'angle d'inclinaison α 1 est à déterminer selon la largeur 12 et la profondeur P d'une fente F1 à Fn : on peut citer, uniquement à titre d'exemple non limitatif, que l'angle d'inclinaison α 1 peut avoir une valeur de 15° pour une profondeur P de 150 microns et une largeur 12 de la fente F3 d'environ 50 microns.
  • IL est à noter que l'angle d'inclinaison α 1 doit rester relativement faible, pour ne pas entraver les échanges thermiques qui, dans l'exemple non limita­tif représenté à la figure, se font essentiellement selon des directions parallèles à l'axe de symétrie 3 et selon des directions radiales (puisque tous les points de la couronne focale 19 sont à température voisine).
  • Il est à noter que les contraintes mécaniques, au contraire, qu'elles soient de compression ou de trac­tion, se font principalement tangentiellement, ce qui explique que les fissures, quand elles se produisent, sont généralement radiales.
  • La réalisation des fentes F1 à Fn dans la surface 21 de la cible 17, constitue une solution simple et de mise en oeuvre facile au problème du vieillissement des anodes que représente la fissuration des cibles. Dans l'exemple non limitatif décrit et représenté à la figure, la longueur L des fentes F1 à Fn s'étend dans des directions radiales. Mais, dans l'esprit de l'inv­ention l'orientation de la longueur de ces fentes peut être différente, notamment dans le cas où la cible est formée sur la tranche ou pourtour du disque d'anode tournante : dans ce cas, la longueur des fentes est parallèle à l'axe de symétrie ou axe de rotation de l'anode ; une telle disposition de la cible étant courante dans le cas d'anodes tournantes pour mammographie.

Claims (7)

1. Anode tournante pour tube à rayons X comportant une cible (17) sous forme d'une couche en matériau émissif qui est portée par un substrat (15) et qui est formée autour d'un axe de symétrie (3) de l'anode (1), caractérisée en ce que la surface (21) de la cible (17) est creusée par une pluralité de fentes radiales (F1 à Fn) équidistantes et disposées de manière symétrique par rapport à l'axe de symétrie (3), la profondeur (P) desdites fentes (F1 à Fn) étant inférieure à l'épaisseur (E1) de la cible (17).
2. Anode selon la revendication 1, caractérisée en ce que la profondeur (P) des fentes (F1 à Fn) est sensiblement comprise entre 1/3 et 2/3 de l'épaisseur (E1) de la cible (17).
3. Anode selon la revendication 1 ou 2, caractérisée en ce que la profondeur (P) des fentes (F1 à Fn) est égale ou supérieure à cent microns.
4. Anode selon l'une quelconque des revendications précédentes 1 à 3, caractérisée en ce que la profondeur des fentes (F1 à FN) n'est pas uniforme.
5. Anode selon l'une quelconque des revendications précédentes 1 à 4, caractérisée en ce que le plan des fentes (F1 à Fn) est incliné par rapport à un plan (28) normal à la surface (27) de la cible (17).
6. Anode selon l'une quelconque des revendications précédentes, caractérisée en ce que les fentes (F1 à Fn) s'étendent radialement sur au moins la largeur de la couronne focale (19).
7. Anode selon l'une quelconque des revendications précédentes, caractérisé en ce que les fentes présentent entre elles un écartement angulaire α compris entre 5° et 10° .
EP88403377A 1987-12-30 1988-12-30 Anode tournante pour tube à rayons X Withdrawn EP0323365A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8718367A FR2625605A1 (fr) 1987-12-30 1987-12-30 Anode tournante pour tube a rayons x
FR8718367 1987-12-30

Publications (1)

Publication Number Publication Date
EP0323365A1 true EP0323365A1 (fr) 1989-07-05

Family

ID=9358438

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88403377A Withdrawn EP0323365A1 (fr) 1987-12-30 1988-12-30 Anode tournante pour tube à rayons X

Country Status (4)

Country Link
US (1) US4991194A (fr)
EP (1) EP0323365A1 (fr)
JP (1) JPH01209641A (fr)
FR (1) FR2625605A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063641A1 (fr) * 2000-02-25 2001-08-30 Gosudarstvenny Nauchno-Issledovatelsky Institut Nauchno-Proizvodstvennogo Obiedineniya 'luch' (Gosnii Npo 'luch') Anode pour tube a rayons x

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5907592A (en) * 1995-10-31 1999-05-25 Levinson; Reuven Axially incremented projection data for spiral CT
US7079625B2 (en) * 2003-01-20 2006-07-18 Siemens Aktiengesellschaft X-ray anode having an electron incident surface scored by microslits
US10483077B2 (en) 2003-04-25 2019-11-19 Rapiscan Systems, Inc. X-ray sources having reduced electron scattering
GB0812864D0 (en) * 2008-07-15 2008-08-20 Cxr Ltd Coolign anode
GB0525593D0 (en) 2005-12-16 2006-01-25 Cxr Ltd X-ray tomography inspection systems
US8243876B2 (en) 2003-04-25 2012-08-14 Rapiscan Systems, Inc. X-ray scanners
US9208988B2 (en) 2005-10-25 2015-12-08 Rapiscan Systems, Inc. Graphite backscattered electron shield for use in an X-ray tube
US7056016B2 (en) * 2003-12-23 2006-06-06 General Electric Company X-ray source support assembly
US7545089B1 (en) 2005-03-21 2009-06-09 Calabazas Creek Research, Inc. Sintered wire cathode
US9046465B2 (en) 2011-02-24 2015-06-02 Rapiscan Systems, Inc. Optimization of the source firing pattern for X-ray scanning systems
JP5043098B2 (ja) * 2006-05-05 2012-10-10 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ X線管用の陽極板及び製造の方法
US7356122B2 (en) * 2006-05-18 2008-04-08 General Electric Company X-ray anode focal track region
GB0901338D0 (en) 2009-01-28 2009-03-11 Cxr Ltd X-Ray tube electron sources
AT12462U3 (de) 2012-01-09 2013-05-15 Plansee Se Röntgendrehanode mit zumindest anteilig radial ausgerichteter schleifstruktur
WO2013163256A1 (fr) * 2012-04-26 2013-10-31 American Science And Engineering, Inc. Tube à rayons x à ouverture d'anode rotative
GB2517671A (en) 2013-03-15 2015-03-04 Nikon Metrology Nv X-ray source, high-voltage generator, electron beam gun, rotary target assembly, rotary target and rotary vacuum seal
US10165698B2 (en) * 2015-11-12 2018-12-25 Kimtron, Inc. Anode terminal for reducing field enhancement
EP3742469A1 (fr) * 2018-09-26 2020-11-25 Siemens Healthcare GmbH Anode à rayons x, émetteur de rayons x et procédé de fabrication d'une anode à rayons x

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2130259A1 (fr) * 1971-03-16 1972-11-03 Siemens Ag
FR2160533A1 (fr) * 1971-11-19 1973-06-29 Philips Nv
US4103198A (en) * 1977-07-05 1978-07-25 Raytheon Company Rotating anode x-ray tube
FR2500958A1 (fr) * 1981-03-02 1982-09-03 Siemens Ag Anode tournante pour tubes radiogenes

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3473155A (en) * 1964-05-04 1969-10-14 Gen Electric Apparatus providing access to storage device on priority-allocated basis
DE2120344A1 (de) * 1970-04-27 1971-12-09 Dapuzzo B Vorrichtung zur Anfertigung von Radiogrammen oder Röntgen-Schichtaufnahmen, insbesondere vom Schädel
US4358856A (en) * 1980-10-31 1982-11-09 General Electric Company Multiaxial x-ray apparatus
NL8101697A (nl) * 1981-04-07 1982-11-01 Philips Nv Werkwijze voor het vervaardigen van een anode en zo verkregen anode.
NL8102286A (nl) * 1981-05-11 1981-07-01 Philips Nv Medisch apparaat.
JPS5857247A (ja) * 1981-09-30 1983-04-05 Toshiba Corp X線管用回転陽極およびその製造方法
FR2565093B1 (fr) * 1984-05-30 1986-08-22 Thomson Cgr Dispositif radiologique a acces total au patient
FR2588745B1 (fr) * 1985-10-18 1990-03-30 Thomson Cgr Appareil de radiologie a faisceau de rayons x de direction variable

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2130259A1 (fr) * 1971-03-16 1972-11-03 Siemens Ag
FR2160533A1 (fr) * 1971-11-19 1973-06-29 Philips Nv
US4103198A (en) * 1977-07-05 1978-07-25 Raytheon Company Rotating anode x-ray tube
FR2500958A1 (fr) * 1981-03-02 1982-09-03 Siemens Ag Anode tournante pour tubes radiogenes

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001063641A1 (fr) * 2000-02-25 2001-08-30 Gosudarstvenny Nauchno-Issledovatelsky Institut Nauchno-Proizvodstvennogo Obiedineniya 'luch' (Gosnii Npo 'luch') Anode pour tube a rayons x

Also Published As

Publication number Publication date
US4991194A (en) 1991-02-05
JPH01209641A (ja) 1989-08-23
FR2625605A1 (fr) 1989-07-07

Similar Documents

Publication Publication Date Title
EP0323365A1 (fr) Anode tournante pour tube à rayons X
EP0169117B1 (fr) Tubes à rayons X à anode tournante, et procédé de fixation d'une anode tournante sur un axe support
JPH04223032A (ja) X線管ターゲット
US4392238A (en) Rotary anode for an X-ray tube and method of manufacturing such an anode
FR2548447A1 (fr) Tube a rayons x a foyer de forte intensite
EP0234967B1 (fr) Anode tournante avec graphite pour tube radiogène
FR2625035A1 (fr) Anode tournante en materiau composite pour tube a rayons x
FR2566961A1 (fr) Anode perfectionnee pour un tube a rayons x
FR2655191A1 (fr) Anode pour tube a rayons x.
EP0317402B1 (fr) Tube à rayons X ayant une cible en molybdène
FR2617332A1 (fr) Tube radiogene a faible rayonnement extra-focal
EP0415847B1 (fr) Anticathode tournante de tube à rayons X
US5349626A (en) X-ray tube anode target
EP0430767A1 (fr) Anode pour tube à rayon X à résistance mécanique élevée
EP0323366A1 (fr) Procédé de fabrication d'une anode tournante pour tube à rayons X
EP2591489B1 (fr) Anode pour l'émission de rayons x et procédé de fabrication d'une telle anode
US5155755A (en) Anode for x-ray tubes with composite body
FR2625365A1 (fr) Tube a rayons x a anode tournante
FR2593325A1 (fr) Anode tournante a graphite pour tube radiogene
WO2022023486A1 (fr) Elément de gainage de combustible nucléaire et procédé de fabrication d'un tel élément de gainage
FR2625033A1 (fr) Procede de fabrication d'une anode de tube a rayons x et anode obtenue par ce procede
BE824630A (fr) Disque anodique pour tube de rontgen a anode rotative
FR2853450A1 (fr) Grille de commande d'un tube electronique
EP2291854A1 (fr) Support pour une cible tournante
FR2536584A1 (fr) Disque en graphite pour anode tournante de tubes a rayons x

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB NL

17P Request for examination filed

Effective date: 19890613

17Q First examination report despatched

Effective date: 19910207

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19920505