EP0313508A2 - Schichtstoff und Verfahren zu seiner Herstellung - Google Patents

Schichtstoff und Verfahren zu seiner Herstellung Download PDF

Info

Publication number
EP0313508A2
EP0313508A2 EP88710040A EP88710040A EP0313508A2 EP 0313508 A2 EP0313508 A2 EP 0313508A2 EP 88710040 A EP88710040 A EP 88710040A EP 88710040 A EP88710040 A EP 88710040A EP 0313508 A2 EP0313508 A2 EP 0313508A2
Authority
EP
European Patent Office
Prior art keywords
laminate
fibers
laminate according
support
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP88710040A
Other languages
English (en)
French (fr)
Other versions
EP0313508A3 (de
Inventor
Helmuth Schmoock
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0313508A2 publication Critical patent/EP0313508A2/de
Publication of EP0313508A3 publication Critical patent/EP0313508A3/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/4334Polyamides
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4266Natural fibres not provided for in group D04H1/425
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4282Addition polymers
    • D04H1/4291Olefin series
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • D04H1/4326Condensation or reaction polymers
    • D04H1/435Polyesters
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/44Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling
    • D04H1/46Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres
    • D04H1/498Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties the fleeces or layers being consolidated by mechanical means, e.g. by rolling by needling or like operations to cause entanglement of fibres entanglement of layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/593Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives to layered webs
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/58Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
    • D04H1/64Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives the bonding agent being applied in wet state, e.g. chemical agents in dispersions or solutions
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/74Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being orientated, e.g. in parallel (anisotropic fleeces)

Definitions

  • the invention relates to a laminate with two contact surfaces opposite one another with a predetermined spacing of a laminate thickness, which consists of at least two layers of fibers lying on top of one another, between which air spaces are enclosed, which are connected to one another.
  • the invention relates to a method for producing a laminate with two contact surfaces lying opposite one another with a spacing predetermined by the laminate thickness, between which at least two layers of fibers lying one on top of the other are provided, between which air spaces are enclosed which are connected to one another.
  • Such laminates are used, for example, as fleece in a variety of applications as insulating materials. They are used both as a material for thermal insulation and for sound insulation. The structure of these materials favors this use. It consists of a large number of interconnected fibers, between which relatively large air spaces are enclosed. The fibers can be connected to one another by binders. In the case of thermoplastic melting synthetic fibers, a connection between the individual fibers can also be brought about by heating the fibers up to their plasticity limit and connecting them plastically. Depending on the use of the material to be manufactured, continuous fibers can be used both for the thermoplastic connection of the individual fibers and for their connection with the aid of adhesives, which fibers are connected to one another, or finite pieces which are introduced into a corresponding bed.
  • the object of the present invention is therefore to improve the laminate of the type mentioned above with regard to its thermal insulation properties.
  • This object is achieved according to the invention in that at least some fibers are covered on at least part of their surface by a coating which is formed as a reflection layer which at least partially reflects radiation.
  • the coating makes it possible to give the laminate configurable properties in a wide range. For example, it is possible to design the coating as a woven, knitted or membrane. This gives the surface of the laminate a high mechanical strength, which enables easy processing of the laminate.
  • the use of moisture-resistant and water vapor-permeable coatings also makes it possible to use it to furnish items of clothing in which an essential aspect is to be seen in the fact that moisture released by a wearer of the item of clothing can be released to the environment, from the environment to the wearer the moisture in the clothing is not passed on to the surface of the skin.
  • the coating can also be used as a support for secondary coatings, which give the laminate additional properties.
  • the fibers form a fleece.
  • a laminate has excellent thermal insulation properties. Due to its structure, it is suitable for reliably preventing heat conduction. In addition, the layer applied to the individual fibers reflects the heat radiation, so that it largely prevents the heat radiation from the warm body.
  • Such a laminate is extremely suitable as a high-quality thermal insulation material. In a comparably thin wall strengths, it achieves very good thermal insulation. Nevertheless, this laminate does not hinder the exchange of moisture between the body that emits heat and its cool surroundings. In this way, the laminate is particularly suitable as a heat-insulating insert for clothing. Tests have shown that such heat-insulating inserts have an improvement in heat insulation of more than 20% compared to non-reflective inserts. In view of the fact that relatively thin reflective layers are sufficient to achieve very favorable reflection values, the material also remains flexible and resistant to mechanical stress without the reflective layer having any negative effects.
  • a reflective layer In order to be able to produce such a laminate, a reflective layer must be deposited on the fibers of the laminate facing the heat-radiating body. This reflection layer should be applied as evenly as possible in order to achieve good reflection properties.
  • a further object of the present invention is therefore to operate the method of the type mentioned in the introduction in such a way that the individual fibers are given a surface which is highly heat-reflecting.
  • the laminate is vapor-deposited on at least one support surface with a metal, and the metal is deposited on the fibers facing the support surface.
  • the vapor deposition of the metal ensures that the metal layer applied to the individual fibers becomes high-gloss.
  • This metal layer therefore reflects the heat radiation of the heat-giving body in an excellent manner.
  • this metal layer is applied very evenly, so that non-uniformities impairing heat reflection are avoided.
  • the evaporation of the metal layer has the advantage that the reflective layer and thus is flexible against mechanical deformation. In this way it is prevented that the reflective layer is impaired in terms of its heat-reflecting properties by mechanical deformations, even in the case of strong mechanical deformations.
  • the elastic metal layer can adapt to the mechanical deformations of the entire laminate without breaking. The laminate remains elastic and is therefore not impaired in its ability to be used in cases in which a strong elastic deformability of the thermal insulation material is required, such as in clothing.
  • a laminate (1) essentially consists of two bearing surfaces (2, 3) that run approximately plane-parallel, between which there is a predetermined distance (4).
  • This distance (4) corresponds to the thickness of the laminate (1).
  • This thickness is determined by the fact that several, but at least two, layers (5, 6) of fibers (7) lie on one another in the laminate. Cavities (8) are formed between the fibers (7) and are filled with air.
  • the individual fibers (7) can be connected to one another by an adhesive (9). It is also possible to connect the fibers (7) to one another in another way.
  • the fibers (7) can be designed as a thermoplastic. Such thermoplastic fibers are heated to their softening point, so that they bond to each other when they cool down.
  • the fibers (7) can be designed as finite pieces (10). However, it is also conceivable to design the fibers (7) as infinite threads (11) which extend through the laminate (1) both in the vertical direction (FIG. 3) and in the horizontal direction (FIG. 4). These infinite threads (11) are also connected to one another either by an adhesive (12) or by thermoplastic welding connected. The adhesive (12) is sprayed onto the initially laid fibers (7) in a manner similar to the wadding (9) or distributed in a different way.
  • the individual fibers (7) are provided with a reflection layer (14) on at least part of their surface (13).
  • This reflection layer (14) can consist of a thin metal film which is applied to at least part of the surface (13). This part of the surface (13) faces either the support surface (2) or the support surface (3). It is also conceivable to direct a metal vapor (15) suitable for producing the reflection layer (14) onto both bearing surfaces (2, 3) so that the individual fibers (7), depending on their position within the laminate (1), over their entire length Surface (13), but at least on the parts of the surface (13) facing the bearing surfaces (2, 3) are connected to the reflection layer (14).
  • the individual layers (5, 6) can be arranged in the laminate (1) in different ways.
  • the layer (5) can be arranged in the longitudinal direction of the laminate (1), while the layer (6) runs transversely to it.
  • the individual fibers (7) are carded and laid. They can be connected to one another by suitable needle techniques.
  • the reflection layer (14) is applied directly to the carded fibers without the individual fibers (7) being connected directly to one another.
  • the resulting laminates (1) are particularly suitable as underlays for mattresses, but also for the production of sleeping bags.
  • such nonwoven fabrics can be used as inlays. In particular, use for seats of car seats is also possible.
  • the laminates (1) used have a thickness that is predetermined by their respective intended use. It can be assumed that, for example, the distance (4) with a laminate used for insoles will generally not exceed 0.5 cm. In contrast, the distance (4) for laminates (1), which are used to manufacture mattresses or sleeping bags, can reach a thickness of several centimeters depending on the desired thermal insulation.
  • the fibers (7) can be made from natural products, for example wool. However, it is also possible to use synthetic fibers. Decisive for the selection of the laminate (1) and the fibers (7) used in it is the fact that the laminate (1) must be permeable to water vapor. The moisture can diffuse through the laminate, so that moisture exchange is ensured.
  • the individual fibers are connected to each other by a binder.
  • a binder In particular, acrylate bonds or other high polymers come into consideration.
  • These adhesives are sprayed onto a scrim made of the fibers (7) so that they are evenly distributed over the fibers (7) forming the scrim.
  • the scrim is warmed up.
  • the surfaces of the individual plastic fibers become soft and bond with one another. After they have cooled down again, they adhere firmly to one another.
  • the laminate (1) After the laminate (1) has been produced in this way, it is vapor-deposited on at least one side with metal.
  • the metal vapor is deposited on the fibers (7).
  • the steamed side of the fibers becomes shiny and creates a heat-reflecting effect.
  • the laminate (1) formed in this way can either face one of its two contact surfaces (2) or the other side of the body to be insulated against heat flow.
  • the individual fibers (7) can consist of the same or different materials, depending on the type of properties desired. For example, it is conceivable to combine fibers of different cross sections with one another.
  • fibers (7) of different basic materials or different cross sections and strengths can also be combined with one another.
  • All metals that have a glossy surface and retain it over the long term are suitable for vapor deposition.
  • the first thing to think of is aluminum, which is particularly suitable for vapor deposition technology. It retains its glossy properties even after long use, without the reflective layer losing its ability to reflect, for example due to oxidation. It is also possible to use other metals, such as chrome.
  • a pretreatment of the laminate (1) is carried out before the coating of the laminate (1).
  • This can consist in that the liability of the metal the fibers (7) is increased.
  • a corona pressure pretreatment comes into consideration as a pretreatment method, in which the laminate (1) to be vapor-deposited is passed through a faint blue shimmering electric field.
  • the coating can be designed as a support (49) covering the laminate (1).
  • the support (49) is designed as a membrane (50) which is permeable to water vapor at least in a direction running transversely to the support surface (2, 3).
  • the support (49) it is also possible to design the support (49) as a fiber composite (51) which consists of fibers which are combined to form a woven or knitted fabric. It is also possible to form the support (49) both from a membrane (50) and from a fiber composite (51).
  • the fiber composite (51) is arranged to increase the strength of the laminate (1) in the area of the support surface (2, 3) and is connected to the membrane (50) in the area of its surface facing away from the laminate (1).
  • the arrangement of a support (49) in the area of the support surface (2, 3) enables the laminate (1) to be secured against the ingress of water while at the same time ensuring that water vapor passes.
  • the handling of the laminate (1) is significantly improved by the support (49).
  • a support (49) designed as a layer (5, 6) is vapor-coated with the reflective layer (14) after it has been connected to the laminate (1). It is also possible to provide the support (49) with the reflective layer (14) before it is connected to the laminate (1) and to connect the support (49) together with the reflective layer (14) to the laminate (1). Due to the vapor deposition of the support (49), a high-quality reflective layer (14) is formed using little material.
  • the laminate (1) is passed over an evaporator source (16), which is connected to an elec trical power source (17).
  • the electrical current flowing through the evaporator source (16) heats the evaporator source so high that under the influence of a negative pressure (19) prevailing in a housing (18), a metal bath (20) can form in the evaporator source (16), to which the metal vapor (15) in the direction of the bearing surface (2) of the laminate (1).
  • the laminate (1) is passed through openings (21, 22) through the housing at a distance of approximately 5 to 150 mm, preferably 100 mm, above the evaporator source. It is conceivable that the unevaporated laminate (1) and the evaporated laminate (2) are unwound within the housing (18). However, it is also conceivable for the unwinding (23) and the winding (24) to take place outside the housing (18).
  • a spraying station (25), in which a binder (26) is sprayed onto the laminate (1) can also be arranged in front of the evaporator source (16) within the device for producing the vapor-coated laminate (1).
  • the binder (26) is introduced into the spraying station (25) under increased pressure. This increased pressure can be applied to the binder (26), for example with the aid of a piston (28) working in a cylinder (27).
  • a drying station (46) can be provided, in which the binder (26) applied is dried by infrared rays (47, 48).
  • the spray station (25) lies in the feed direction (29) of the laminate (1) in front of the evaporator source (16).
  • a pretreatment station (30) can be placed between the spray station (25) and the evaporator source (16). be provided.
  • the laminate (1) is pretreated before it is introduced into the housing (18) in such a way that the individual fiber (7) is particularly suitable for binding the metal layer produced by the metal vapor (15) on it.
  • the laminate is passed through an electrical field (31) which is generated, for example, with the aid of two capacitor plates (32, 33) located opposite one another. These capacitor plates (32, 33) are connected to an electrical voltage source (34).
  • the electric field generated by the capacitor plates (32, 33) prepares the fibers (7) on their surface in such a way that they are particularly suitable for binding the metal on the surface.
  • a drying station (46) can also be provided between the pretreatment station (30) and the spraying station (25), in which the sprayed laminate (1) is dried by infrared rays (47, 48) or in another way.
  • a pretreatment station (30) before it is sprayed.
  • Such a pretreatment station (30) can also be provided before rolling (38, 39).
  • the laminate (1) can also be subjected to the action of metal vapor (15) on both contact surfaces (2, 3). It is possible to first expose the laminate (1) on one surface (3) to the action of metal vapor (35). After the laminate (1) has been deflected on a deflection roller (36), its contact surface (2) is exposed to the metal vapor (15). The evaporation is expediently carried out in both evaporator sources (16, 37) with the same metal. However, depending on the intended use of the laminate (1), it is also possible to vapor-coat it with aluminum on one side and with another metal on the other side.
  • the pretreatment can also be carried out as pre-finishing of the laminate (1) with substances that improve the adhesion of the vapor-deposited metal layer.
  • acrylic acid derivatives or copolymers with butadiene, styrene, acetate, polyurethane or polyester components can be used.
  • the already vapor-coated laminate (1) can be subjected to retrofitting with the aim of further improving the abrasion resistance of the laminate (1).
  • the vapor-coated laminate (1) can also be treated with a fluorocarbon.
  • Fluorocarbons are generally suitable for protecting a substance against the effects of moisture. They prevent moisture from entering a fleece, for example. They also provide effective protection against abrasion and corrosion of the vapor-deposited metal layer. The breathability of the laminate (1) is retained in full even after treatment with the fluorocarbon.
  • the fluorocarbon is expediently applied to the vapor-coated laminate (1) in the form of a special fluorocarbon resin dispersion.
  • the fluorocarbon resin dispersion can also be enriched with an extender that is capable of promoting the attachment of the fluorocarbon resin dispersion.
  • a suitably enriched fluorocarbon resin dispersion makes the vapor-coated laminate (1) washable and cleanable.
  • the resistance of the laminate (1) to influences caused by sweat and condensation is considerably increased. You get the breathability of the laminate (1) without affecting the reflection of the evaporated metal layer.
  • Aftertreatment can also be carried out with the help of silicones and polyurethanes. Such an aftertreatment serves in particular to make the laminate (1) hydro- and oleophobic.
  • the substances applied during the aftertreatment are either sprayed, dipped, gridded or splashed onto the laminate. Foaming is also possible to provide.
  • care must be taken that the material applied during retrofitting adheres to the metal layer in an abrasion-resistant manner.
  • the material is expediently crosslinked.
  • Soft acrylates which have the advantage of being very elastic, are also suitable.
  • the laminate (1) passed over the evaporator source (16) is passed through an immersion bath (41).
  • This immersion bath (41) contains a fluorocarbon (42) required for retrofitting the laminate (1).
  • the laminate (1) is deflected at the entrance to the immersion bath (41) by a deflection roller (43) in the direction of the fluorocarbon (42) standing in the immersion bath (41).
  • a deflection roller (43) Within the immersion bath (41) there is a further deflection of the laminate (1) on a deflection roller (44) arranged within the immersion bath (41).
  • the laminate emerging from the immersion bath (41) is deflected directly behind the immersion bath (41) by a third deflection roller (45) in the direction of a drying station (46).
  • Infrared emitters (47, 48) can be arranged in this drying station, which emit the infrared rays in the direction of the support surfaces (2, 3) and thereby dry the laminate (1).
  • the temperatures crosslink the fluorocarbon (42) absorbed by the laminate (1) and form an elastic layer with the metal coating applied to the fibers (7).
  • the laminate leaving the drying station (46) is rolled up on a winder (24).
  • a fleece consists of finite fibers of a polyester compound.
  • the fibers are 150 gr.
  • the laminate is subjected to a pressure treatment in which it is pressed between two rollers. The two rollers press the excess glue off.
  • the laminate is first loaded with aluminum on its one and after a deflection on the other contact surface steams.
  • the laminate is passed over an evaporator source at a distance of approximately 100 mm.
  • the steamed laminate is subjected to retrofitting. For this purpose, it is passed through an immersion bath containing a fluorocarbon dispersion. After the laminate has passed through the immersion bath, it is dried in a drying station. In this drying station, infrared emitters are provided, the radiation sources of which are 100 mm away from the contact surfaces of the laminate. Air circulation is also provided. After the laminate has passed through the drying station, it can be rolled up on a winder.
  • a non-woven fabric of 20 mm thickness consists of infinite fibers of a thermoplastic. Polypropylene is used as the thermoplastic.
  • the infinite fibers are placed in a scrim that is passed through a heat source. This heat source generates a temperature of 150 degrees Celsius on the fibers of the scrim. At this temperature, the surface of the individual fibers soften and combine to form a fleece. After the individual fibers have cooled, the fleece has a strength which is sufficient for the laminate to be conveyed on a web.
  • the laminate is steamed on one side with aluminum. For this purpose, it is led over an evaporator source at a distance of 100 mm.
  • the laminate is then subjected to retrofitting. For this purpose it is passed under spray nozzles.
  • a silicone compound is sprayed onto the laminate from this spray nozzle.
  • the laminate is then passed through a drying tunnel with a temperature of 120 degrees Celsius. At this temperature, the silicone compound is cross-linked, so that it is an elastic connection with the Me tall layer received.
  • long carded fibers are placed in several layers.
  • fibers running in the longitudinal direction of the feed direction alternate with those that run transversely thereto.
  • the individual layers are connected by a needle technique.
  • the fleece produced in this way is guided with a support surface at a distance of 100 mm over an evaporator source, which emits aluminum vapor in the direction of the support surface.
  • the evaporation of the aluminum takes place at a vacuum of o, ooo1o bar.
  • the aluminum vapor is deposited on the fibers in a thickness of 3/100 u.
  • the metallized side of the individual fibers faces the warm body to be insulated.
  • Metallized fleece of this type is used on the one hand as an insole for shoes.
  • a thick fleece can be used as a base for mattresses and material for sleeping bags.
  • inlays for coats can be made from it.
  • the thermal insulation value of such a fleece improves by about 18% compared to a non-steamed fleece.
  • the moisture resistance of the vaporized fleece is approximately equal to that of the non-vaporized fleece.
  • fleeces are suitable for steaming. It should also be remembered to subject Spannbondedvlies to a metallization. These are fleece, in which the individual fibers are bound together in the spinning process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Laminated Bodies (AREA)

Abstract

Schichtstoff mit zwei sich einander mit einem von einer Schichtstoffdicke vorgegebenen Abstand gegenüberliegende Auflageflächen, der aus mindestens zwei Lagen aufeinanderliegender Fasern besteht, zwischen denen Lufträume eingeschlossen sind, die untereinander in Verbindungen stehen, wobei mindestens einige Fasern auf mindestens einem Teil ihrer Oberflächen von einer Beschichtung bedeckt sind, die als eine Strahlung mindestens teilweise reflektierende Reflectionsschicht ausgebildet ist. Die Fasern können ein Vlies, ein Gewebe oder ein Gewirke bilden.

Description

  • Die Erfindung betrifft einen Schichtstoff mit zwei sich einander mit einem von einer Schichtstoffdicke vorgegebenen Abstand gegenüberliegenden Auflageflächen, der aus mindes­tens zwei Lagen aufeinander liegender Fasern besteht, zwi­schen denen Lufträume eingeschlossen sind, die untereinander in Verbindeung stehen.
  • Darüber hinaus betrifft die Erfindung ein Verfahren zur Herstellung eines Schichtstoffes mit zwei sich einander mit einem von der Schichtstoffdicke vorgegebenen Abstand gegen­überliegenden Auflageflächen, zwischen denen mindestens zwei Lagen aufeinander liegender Fasern vorgesehen sind, zwischen denen Lufträume eingeschlossen sind, die untereinander in Verbindung stehen.
  • Derartige Schichtstoffe werden beispielsweise als Vließe in einer Vielzahl von Anwendungsfällen als Dämmstoffe verwen­det. Sie werden eingesetzt sowohl als Material für die Wärmeisolation als auch zur Schallisolation. Der Aufbau dieser Materialien begünstigt diese Verwendung. Er besteht aus einer Vielzahl miteinander verbundener Fasern, zwischen denen relativ große Lufträume eingeschlossen sind. Die Fa­sern können durch Bindemittel miteinander verbunden sein. Bei thermoplastisch schmelzenden Kunststoffasern kann eine Verbindung zwischen den einzelnen Fasern auch dadurch her­beigeführt werden, daß die Fasern bis zu ihrer Plastizi­tätsgrenze erwärmt und plastisch miteinander verbunden werden. Sowohl für die thermoplastische Verbindung der ein­zelnen Fasern als auch bei ihrer Verbundung mit Hilfe von Klebstoffen können je nach Einsatz des herzustellenden Stoffes Endlosfasern eingesetzt werden, die miteinander verbunden werden, oder endliche Stücke, die in eine ent­sprechende Schüttung eingebracht werden.
  • Obgleich der Wärmedämmwert derartiger Dämmstoffe sehr gut ist, besitzen sie so gut wie keine wärmereflektierende Ei­ genschaft. Auf diese Weise sind sie nicht gut geeignet, eine Wärmeabstrahlung zu verhindern.
  • Aufgabe der vorliegenden Erfindung ist es daher, den Schichtstoff der einleitend genannten Art hinsichtlich sei­ner Wärmedämmeigenschaften zu verbessern.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß min­destens einige Fasern auf mindestens einem Teil ihrer Ober­fläche von einer Beschichtung bedeckt sind die als eine Strahlung mindestens teilweise reflektierende Reflektionsschicht aufgebildet ist.
    Die Beschichtung ermöglicht es, dem Schichtstoff in einem weiten Bereich konfigurierbare Eigenschaften zu verleihen. Beispielsweise ist es möglich, die Beschichtung als Gewebe, Gewirk oder als Membran auszubilden. Die Oberfläche des Schichtstoffes erhält dadurch eine hohe mechanische Festig­keit, die eine problemlose Verarbeitung des Schichtstoffes ermöglicht. Durch die Verwendung von feuchtigkeitsbeständi­gen und wasserdampfdurchlässigen Beschichtungen ist auch eine Verwendung zur Ausstattung von Bekleidungsstücken mög­lich, bei denen ein wesentlicher Gesichtspunkt darin zu sehen, ist, daß von einem Träger des Bekleidungsstückes abge­gebene Feuchtigkeit an die Umgebung abgegeben werden kann, von der Umgebung auf den Träger der Kleidungsstücke ein­wirkende Feuchtigkeit aber nicht auf die Hautoberfläche weitergeleitet wird. Die Beschichtung kann darüber hinaus als Träger für sekundäre Beschichtungen verwendet werden, die dem Schichtstoff zusätzliche Eigenschaften verleihen.
  • Gemäß einer bevorzugten Ausführungsform der Erfindung bilden die Fasern ein Vließ aus. Ein derartiger Schichtstoff besitzt hervorrragende Wärmedämmei­genschaften. Aufgrund seines Aufbaues ist er geeignet, zuverlässig eine Wärmeleitung zu verhindern. Darüber hinaus reflektiert die auf die einzelnen Fasern aufgebrachte Schicht die Wärmestrahlung, so daß er auch die Wärme­strahlung des warmen Körpers weitgehend verhindert. Ein derartiger Schichtstoff ist als hochwertiges Wärmedämmate­rial hervorragend geeignet. In vergleichbar dünnen Wand­ stärken erzielt es eine sehr gute Wärmeisolation. Trotzdem behindert dieser Schichtstoff nicht den Austausch von Feuchtigkeit zwischen dem Wärme abgebenden Körper und seiner kühlen Umgebung. Auf diese Weise eignet sich der Schichtstoff besonders gut als wärmeisolierende Einlage von Kleidungsstücken. Versuche haben ergeben, daß derartige wärmeisolierende Einlagen gegenüber nichtreflektierenden Einlagen eine Verbesserung der Wärmeisolation um mehr als 20 % aufweisen. Im Hinblick auf die Tatsache, daß relativ dünne Reflektionsschichten ausreichen, um sehr günstige Reflek­tionswerte zu erzielen, bleibt das Material auch flexible und gegen mechanische Beanspruchung widerstandsfähig, ohne daß die Reflektionsschicht insoweit negative Auswirkungen zeitigt.
  • Um einen derartigen Schichtstoff herstellen zu können, muß auf den dem wärmeabstrahlenden Körper zugewandten Fasern des Schichtstoffes eine Reflektionsschicht abgelagert werden. Diese Reflektionsschicht sollte möglichst gleichmäßig aufge­bracht werden, um gute Reflektionseigenschaften zu erzielen.
  • Weitere Aufgabe der vorliegenden Erfindung ist es daher, das Verfahren der einleitend genannten Art so zu betreiben, daß die einzelnen Fasern eine gut wärmereflektierende Oberfläche erhalten.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß der Schichtstoff auf mindestens einer Auflagefläche mit einem Metall bedampft wird, und das Metall auf den der Auflage­fläche zugewandten Fasern niedergeschlagen wird.
  • Durch das Aufdampfen des Metalls wird dafür Sorge getragen, daß die auf die einzelnen Fasern aufgebrachte Metallschicht hochglänzend wird. Diese Metallschicht reflektiert daher in hervorragender Weise die Wärmestrahlung des wärmegebenden Körpers. Darüber hinaus wird diese Metallschicht aber sehr gleichmäßig aufgetragen, so daß die Wärmereflektion beein­trächtigende Ungleichmäßigkeiten vermieden werden. Schließ­lich hat die Aufdampfung der Metallschicht den Vorteil, daß die Reflektionsschicht und damit gegen mechanische Verfor­mungen nachgiebig ist. Auf diese Weise wird verhindert, daß auch bei starken mechanischen Verformungen die Reflek­tionsschicht hinsichtlich ihrer wärmereflektierenden Eigen­schaften durch mechanische Verformungen beeinträchtigt wird. Insbesondere kann die elastische Metallschicht sich den mechanischen Verformungen des gesamten Schichtstoffes anpas­sen, ohne daß sie bricht. Der Schichtstoff bleibt elastisch und ist daher in seiner Fähigkeit nicht beeinträchtigt, in solchen Fällen eingesetzt zu werden, in denen eine starke elastische Verformbarkeit des Wärmedämmstoffes benötigt wird, wie beispielsweise in Kleidungsstücken.
  • Weitere Einzelheiten der Erfindung ergeben sich aus der nachfolgenden ausführlichen Beschreibung und den beigefügten Zeichnungen, in denen bevorzugte Ausführungsformen der Er­findung beispielsweise veranschaulicht sind.
  • In den Zeichnungen zeigen:
    • Fig. 1 einen Schnitt durch einen Schichtstoff entsprechend der Schnittlinie I-I in Fig. 2,
    • Fig. 2 eine Draufsicht auf einen Schichtstoff ent­sprechend der Blickrichtung II in Fig. 1,
    • Fig. 3 einen Längsschnitt durch einen Schichtstoff mit unendlichen Fasern entsprechend der Schnittlinie III-III in Fig. 4,
    • Fig. 4 eine Draufsicht auf einen Schichtstoff mit unendlichen Fasern entsprechend der Blick­richtung IV in Fig. 3,
    • Fig. 5 eine Ausschnittsvergrößerung von einzelnen Fasern eines Schichtstoffes gemäß Fig. 1,
    • Fig. 6 eine Ausschnittsvergrößerung von einzelnen Fasern eines Schichtstoffes gemäß Fig. 3,
    • Fig. 7 eine schematische Darstellung eines Verfahrens zur Herstellung eines Schichtstoffes,
    • Fig. 8 eine schematische Darstellung eines anderen Verfahrens zur Herstellung eines Schicht­stoffes,
    • Fig. 9 einen Schichtstoff, der im Bereich einer Auflagefläche eine als Membran ausgebildete Auflage aufweist und
    • Fig. 10 einen Schichtstoff, der im Bereich einer Auflagefläche sowohl eine Membran als auch einen Faserverbund aufweist.
  • Ein Schichtstoff (1) besteht im wesentlichen aus zwei einander etwa planparallel verlaufenden Auflageflächen (2, 3), zwischen denen ein vorgebener Abstand (4) liegt. Diesem Abstand (4) entspricht die Dicke des Schichtstoffes (1). Diese Dicke wird dadurch vorgegeben, daß im Schichtstoff mehrere, mindestens jedoch zwei Lagen (5, 6) von Fasern (7) aufeinander liegen. Zwischen den Fasern (7) sind Hohlräume (8) ausgebildet, die mit Luft gefüllt sind. Die einzelnen Fasern (7) können durch einen Klebstoff (9) miteinander verbunden sein. Es ist auch möglich, die Fasern (7) auf andere Weise miteinander zu verbinden. Beispielsweise können die Fasern (7) als ein Thermoplast ausgebildet sein. Derar­tige thermoplastische Fasern werden bis zu ihrem Er­weichungspunkt erwärmt, so daß sie beim anschließenden Er­kalten sich miteinander verbinden.
  • Die Fasern (7) können als endliche Stücke (10) ausgebildet sein. Es ist jedoch auch denkbar, die Fasern (7) als un­endliche Fäden (11) auszubilden, die sich sowohl in vertika­ler Richtung (Fig. 3) als auch in horizontaler Richtung (Fig. 4) durch den Schichtstoff (1) erstrecken. Auch diese unendlichen Fäden (11) werden entweder durch einen Klebstoff (12) oder durch thermoplastisches Verschweißen miteinander verbunden. Der Klebstoff (12) wird ähnlich wie der Kelbstoff (9) auf die zunächst aufeinander gelegten Fasern (7) ge­spritzt oder in anderer Weise verteilt.
  • Die einzelnen Fasern (7) sind auf mindestens einem Teil ihrer Oberfläche (13) mit einer Reflektionsschicht (14) versehen. Diese Reflektionsschicht (14) kann aus einem dün­nen Metallfilm bestehen, der auf mindestens einen Teil der Oberfläche (13) aufgebracht wird. Dieser Teil der Oberfläche (13) ist entweder der Auflagefläche (2) oder der Auflage­fläche (3) zugewandt. Es ist auch denkbar, einen zur Er­zeugung der Reflektionsschicht (14) geeigneten Metalldampf (15) auf beide Auflageflächen (2, 3) zu richten, so daß die einzelnen Fasern (7) je nach ihrer Lage innerhalb des Schichtstoffes (1) auf ihrer gesamten Oberfläche (13), min­destens jedoch auf den den Auflageflächen (2, 3) zugewandten Teilen der Oberfläche (13) mit der Reflektionsschicht (14) verbunden werden.
  • Die einzelnen Lagen (5, 6) können im Schichtstoff (1) auf verschiedene Weise angeordnet sein. Beispielsweise kann die Lage (5) in Längsrichtung des Schichtstoffes (1) angeordnet sein, während die Lage (6) quer dazu verläuft. Im Falle der Ausbildung des Schichtstoffes (1) in Form eines Wollvließes sind die einzelnen Fasern (7) gekrempelt und gelegt. Sie können durch geeignete Nadeltechniken miteinander verbunden sein. Auf die gekrempelten Fasern wird unmittelbar die Re­flektionsschicht (14) aufgebracht, ohne daß die einzelnen Fasern (7) unmittelbar miteinander verbunden werden. Die dadurch entstehenden Schichtstoffe (1) sind besonders gut als Unterlagen für Matratzen, aber auch zur Herstellung von Schlafsäcken geeignet. Darüber hinaus können derartige Wollvließstoffe als Inlays Verwendung finden. Insbesondere ist auch eine Verwendung für Sitzflächen von Autositzen möglich.
  • Die verwendeten Schichtstoffe (1) haben eine Dicke, die von ihrem jeweiligen Verwendungszweck vorgegeben ist. Dabei kann davon ausgegangen werden, daß beispielsweise der Abstand (4) bei einem für Einlegesohlen verwendeten Schichtstoff im Regelfall 0,5 cm nicht überschreiten wird. Demgegenüber kann der Abstand (4) bei Schichtstoffen (1), die zur Herstellung von Matratzen oder Schlafsäcken Verwendung finden, je nach gewünschter Wärmeisolierung eine Dicke von mehreren Zentime­tern erreichen.
  • Die Fasern (7) können aus Naturprodukten, beispielsweise Wolle hergestellt sein. Es ist jedoch auch möglich, Synthe­tikfasern zu verwenden. Entscheidend für die Auswahl des Schichtstoffes (1) und der in ihm verwendeten Fasern (7) ist die Tatsache, daß der Schichtstoff (1) für Wasserdampf durchlässig sein muß. Die Feuchtigkeit kann durch den Schichtstoff hindurch diffundieren, so daß für einen Feuchtigkeitsaustausch Sorge getragen ist.
  • Zu diesem Zwecke muß auch ein entsprechendes Verhältnis der pro Quadratmeter des Schichtstoffes (1) verwendeten Fasern zu den von ihm eingeschlossenen Hohlräumen gewährleistet sein.
  • Die einzelnen Fasern werden durch einen Binder mit einander verbunden. In Betracht kommen insbesondere Acrylat-Bin­dungen, oder andere Hochpolymere. Diese Kleber werden auf ein aus den Fasern (7) hergestelltes Gelege aufgespritzt, so daß sie sich über die das Gelege bildenden Fasern (7) gleichmäßig verteilen.
  • Soweit die Fasern aus Thermoplasten bestehen, wird das Ge­lege aufgewärmt. Dabei werden die Oberflächen der einzelnen Kunststoffasern weich und verbinden sich miteinander. Nachdem sie wieder abgekühlt sind, haften sie fest aufeinan­der.
  • Nachdem auf diese Weise der Schichtstoff (1) hergestellt worden ist, wird er mindestens einseitig mit Metall be­dampft. Dabei schlägt sich der Metalldampf auf den Fasern (7) nieder. Die bedampfte Seite der Fasern wird glänzend und erzeugt auf diese Weise einen wärmereflektierenden Effekt.
  • Es ist auch möglich, beide Auflageflächen (2, 3) des Schichtstoffes (1) einem Metalldampf auszusetzen, so daß die einzelnen Fasern (7) auf ihrer gesamten Oberfläche mit einer glänzenden Schicht überzogen werden. In diesem Falle kann der auf diese Weise entstehende Schichtstoff (1) entweder mit einer seiner beiden Auflageflächen (2) oder mit der anderen Seite dem gegen Wärmeabfluß zu isolierenden Körper zugewandt werden.
  • Dabei ist es zweckmäßig für die Bedampfung diejenige Seite der Fasern (7) auszuwählen, die eine möglichst glatte Ober­fläche aufweist. Je glatter die Oberfläche der zu bedampfen­den Fasern (7) ist, umso glatter ist auch die auf die Fasern (7) aufgebrachte wärmereflektierende Schicht (14). Die Fä­higkeit, Wärme zu reflektieren, verbessert sich, je glatter die mit der Reflektionsschicht (14) versehene Seite der Fasern (7) ist.
  • Die einzelnen Fasern (7) können je nach der Art der ge­wünschten Eigenschaften aus gleichen oder verschiedenen Materialien bestehen. Beispielsweise ist es denkbar, Fasern unterschiedlicher Querschnitte miteinander zu kombinieren.
  • Darüber hinaus können jedoch auch Fasern (7) verschiedener Grundstoffe bzw. unterschiedlicher Querschnitte und Stärken miteinander kombiniert werden.
  • Zur Bedampfung eignen sich alle Metalle, die eine glänzende Oberfläche besitzen und auf Dauer behalten. In erster Linie ist insoweit an Aluminium zu denken, das in besonderer Weise für die Bedampfungstechnik geeignet ist. Es behält auch nach langem Gebrauch seine glänzende Eigenschaft, ohne daß die reflektierende Schicht beispielsweise durch Oxidation die Fähigkeit zur Reflektion verliert. Es ist also auch möglich, andere Metalle, beispielsweise Chrom, zu verwenden.
  • Zweckmäßigerweise wird vor der Bedampfung des Schichtstoffes (1) eine Vorbehandlung des Schichtstoffes (1) durchgeführt. Diese kann darin bestehen, daß die Haftung des Metalls auf den Fasern (7) erhöht wird. Als Vorbehandlungsmethode kommt in Betracht eine Korona- Druckvorbehandlung, bei der der zu bedampfende Schichtstoff (1) durch ein schwach blau schimmerndes Elektrisches Feld hindurchgeführt wird.
  • Im Bereich mindestens einer der Auflageflächen (2, 3) kann die Beschichtung als eine den Schichtstoff (1) abdeckende Auflage (49) ausgebildet sein. Die Auflage (49) ist als Membran (50) ausgebildet, die mindestens in einer quer zur Auflagefläche (2, 3) verlaufenden Richtung wasser­dampfdurchlässig ist. Es ist aber auch möglich, die Auflage (49) als Faserverbund (51) auszubilden, der aus Fasern be­steht, die zu einem Gewebe oder zu einem Gewirk zusammenge­fügt sind. Es ist des weiteren möglich, die Auflage (49) sowohl aus einer Membran (50) als auch aus einem Faser­verbund (51) auszubilden. Der Faserverbund (51) ist dabei die Festigkeit des Schichtstoffes (1) erhöhend im Bereich der Auflagefläche (2, 3) angeordnet und im Bereich seiner dem Schichtstoff (1) abgewandt angeordneten Oberfläche mit der Membran (50) verbunden. Die Anordnung einer Auflage (49) im Bereich der Auflagefläche (2, 3) ermöglicht eine Sicherung des Schichtstoffes (1) gegen eindringendes Wasser bei gleichzeitiger Gewährleistung des Passierens von Wasser­dampf. Darüber hinaus wird die Handhabbarkeit des Schichtstoffes (1) durch die Auflage (49) deutlich verbes­sert.
  • Eine als Lage (5, 6) ausgebildete Auflage (49) wird nach ihrer Verbindung mit dem Schichtstoff (1) mit der Reflek­tionsschicht (14) bedampft. Es ist auch möglich, die Auflage (49) vor ihrer Verbindung mit dem Schichtstoff (1) mit der Reflektionsschicht (14) zu versehen und die Auflage (49) gemeinsam mit der Reflektionsschicht (14) mit dem Schichtstoff (1) zu verbinden. Durch die Bedampfung der Auflage (49) wird mit geringem Materialeinsatz eine hochwer­tige Reflektionsschicht (14) ausgebildet.
  • Zum Zwecke der Bedampfung wird der Schichtstoff (1) über eine Verdampferquelle (16) hinweggeführt, die an einer elek­ trischen Stromquelle (17) liegt. Der durch die Verdampfer­quelle (16) fließende elektrische Strom erhitzt die Ver­dampferquelle so hoch, daß unter dem Einfluß eines in einem Gehäuse (18) herrschenden Unterdruckes (19) sich in der Verdampferquelle (16) ein Metallbad (20) ausbilden kann, dem der Metalldampf (15) in Richtung auf die Auflagefläche (2) des Schichtstoffes (1) entströmt. Der Schichtstoff (1) wird durch Öffnungen (21, 22) durch das Gehäuse in einem Abstand von etwa 5 bis 150 mm, vorzugsweise 100 mm, oberhalb der Verampferquelle hinweggeführt. Dabei ist es denkabr, daß in­nerhalb des Gehäuses (18) eine Abspulung des unbedampften Schichtstoffes (1) und eine Aufspulung des bedampften Schichtstoffes (2) erfolgt. Es ist jedoch auch denkbar, daß die Abspulung (23) und die Aufspulung (24) außerhalb des Gehäuses (18) erfolgt.
  • Darüber hinaus kann innerhalb der Vorrichtung zur Her­stellung des bedampften Schichtstoffes (1) auch vor der Verdampferquelle (16) eine Besprühungsstation (25) ange­ordnet sein, in der ein Binder (26) auf den Schichtstoff (1) aufgesprüht wird. In die Besprühungsstation (25) wird der Binder (26) unter erhöhtem Druck eingeleitet. Dieser erhöhte Druck kann beispielsweise mit Hilfe eines in einem Zylinder (27) arbeitenden Kolbens (28) auf den Binder (26) aufgebracht werden. Es ist jedoch auch möglich, den Binder (26) mit Hilfe einer ihn aus einem Behälter (52) aufnehmen­den Walze (39) aufzutragen. Diese arbeitet mit einer Walze (38) zusammen, zwischen denen ein Spalt (40) vorgesehen ist. Dieser Spalt (40) ist so eng bemessen, daß auf den durch ihn hindurchgeleiteten Schichtstoff (1) ein mechanischer Druck ausgeübt wird. Im Anschluß an die Walzen (38, 39) kann eine Trocknungsstation (46) vorgesehen sein, in der der aufgetra­gene Binder (26) von Infrarotstrahlen (47, 48) getrocknet wird.
  • Die Besprühungsstation (25) leigt in Vorschubrichtung (29) des Schichtstoffes (1) vor der Verdampferquelle (16). Darü­ber hinaus kann zwischen der Besprühungsstation (25) und der Verdampferquelle (16) noch eine Vorbehandlungsstation (30) vorgesehen sein. In dieser Vorbehandlungsstation (30) wird der Schichtstoff (1) vor seiner Einleitung in das Gehäuse (18) so vorbehandelt, daß die einzelne Faser (7) besonders gut geeignet ist, die durch den Metalldampf (15) auf ihr erzeugte Metallschicht zu binden. In dieser Vorbe­handlungsstation wird der Schichtstoff durch ein elektri­sches Feld (31) hindurchgeleitet, das beispielsweise mit Hilfe von zwei sich gegenüberliegenden Kondensatorplatten (32, 33) erzeugt wird. Diese Kondensatorplatten (32, 33) liegen an einer elektrischen Spannungsquelle (34). Das von den Kondensatorplatten (32, 33) erzeugte elektrische Feld bereitet die Fasern (7) auf ihrer Oberfläche so vor, daß sie besonders gut geeignet sind, das Metall auf der Oberfläche zu binden. Zwischen der Vorbehandlungsstation (30) und der Besprühungsstation (25) kann noch eine Trockenstation (46) vorgesehen sein, in der der besprühte Schichtstoff (1) von Infrarotstrahlen (47, 48) oder auf andere Weise getrocknet wird. Schließlich ist es denkbar, den Schichtstoff (1) auch vor seiner Besprühung einer Vorbehandlung in eines Vorbehandlungsstation (30) zu unterziehen. Eine derartige Vorbehandlungsstation (30) kann auch vor dem Walzen (38, 39) vorgesehen sein.
  • Darüber hinaus kann der Schichtstoff (1) auch auf beiden Auflageflächen (2, 3) der Einwirkung von Metalldampf (15) unterzogen werden. Dabei ist es möglich, den Schichtstoff (1) zunächst auf der einen Oberfläche (3) der Einwirkung von Metalldampf (35) auszusetzen. Nachdem der Schichtstoff (1) auf einer Umlenkwalze (36) umgelenkt worden ist, wird er mit seiner Auflagefläche (2) dem Metalldampf (15) ausgesetzt. Zweckmäßigerweise erfolgt die Bedampfung in beiden Ver­dampferquellen (16, 37) mit dem gleichen Metall. Es ist jedoch auch möglich, je nach Einsatzzweck des Schichtstof­fes (1) ihn einseitig mit Aluminium und auf der anderen Seite mit einem anderen Metall zu bedampfen.
  • Die Vorbehandlung kann auch als eine Vorausrüstung des Schichtstoffes (1) mit die Haftung der aufgedampften Me­tallschicht verbessernden Substanzen ausgeführt werden.
  • Beispielsweise können hierbei Acrylsäurederivate oder Mischpolymerisate mit Butadien-, Styrol-, Azetat-, Polyurenthan- oder Polyesteranteilen verwendet werden.
  • Darüber hinaus kann der bereits bedampfte Schichtstoff (1) noch einer Nachausrüstung unterzogen werden mit dem Ziel, die Abriebfestigkeit des Schichtstoffes (1) noch zu verbes­sern. Beispielsweise kann der bedampfte Schichtstoff (1) noch mit einem Fluorcarbon behandelt werden. Fluorcarbone sind allgemein geeignet, einen Stoff gegen Feuchtigkeitsein­flüsse zu schützen. Sie verhindern, daß Feuchtigkeit bei­spielsweise in ein Vließ eindringt. Außerdem stellen sie einen wirksamen Schutz gegen Abrieb und Korrosion der aufge­dampften Metallschicht dar. Die Atmungsaktivität des Schichtstoffes (1) bleibt auch nach der Behandlung mit dem Fluorcarbon in vollem Umfang erhalten.
  • Das Fluorcarbon wird zweckmäßigerweise in Form einer spe­ziellen Fluorcarbon-Harzdispersion auf den bedampften Schichtstoff (1) aufgetragen. Dabei kann die Fluorcarbon-­Harzdispersion auch noch mit einem Extender angereichert sein, der in der Lage ist, die Anlagerung der Fluorcarbon-­Harzdispersion zu fördern. Durch eine entsprechend ange­reicherte Fluorcarbon-Harzdispersion wird der bedampfte Schichtstoff (1) wasch- und reinigungsbeständig. Außerdem wird die Beständigkeit des Schichtstoffes (1) gegen Einflüsse erheblich erhöht, die vom Schweiß und von der Kondenswasserbildung ausgehen. Sie erhalten die Atmungsakti­vität des Schichtstoffes (1), ohne die Reflektion der aufge­dampften Metallschicht zu beeinträchtigen.
  • Darüber hinaus kann eine Nachbehandlung auch mit Hilfe von Silikonen und Polyurethanen vorgenommen werden. Eine derar­tige Nachbehandlung dient insbesondere dazu, daß der Schichtstoff (1) hydro- und oleophob wird.
  • Die bei der Nachbehandlung aufgebrachten Stoffe werden auf den Schichtstoff entweder gesprüht, getaucht, gerastert oder gepflatscht. Es ist auch möglich, eine Aufschäumung vorzusehen. Bei der Auswahl der Auftragungstechnik muß da­rauf geachtet werden, daß das bei der Nachausrüstung aufge­tragene Material abriebfest auf der Metallschicht haftet. Zu diesem Zwecke wird das Material zweckmäßigerweise ver­netzt. In Betracht kommen auch weiche Acrylate, die den Vorteil besitzen, sehr elastisch zu sein.
  • Der über die Verdampferquelle (16) hinweggeleitete Schichtstoff (1) wird durch ein Tauchbad (41) hindurchgelei­tet. In diesem Tauchbad (41) befindet sich ein für die Nachausrüstung des Schichtstoffes (1) benötigtes Fluorcarbon (42). Der Schichtstoff (1) wird am Eingang in das Tauchbad (41) durch eine Umlenkrolle (43) in Richtung auf das im Tauchbad (41) stehende Fluorcarbon (42) umgelenkt. Innerhalb des Tauchbades (41) erfolgt eine weitere Umlenkung des Schichtstoffes (1) an einer innerhalb des Tauchbades (41) angeordneten Umlenkrolle (44). Der aus dem Tauchbad (41) austretende Schichtstoff wird unmittelbar hinter dem Tau­chbad (41) durch eine dritte Umlenkrolle (45) in Richtung auf eine Trockenstation (46) umgelenkt. In dieser Trocken­station können Infrarotstrahler (47, 48) angeordnet sein, die die Infrarotstrahlen in Richtung auf die Auflageflächen (2, 3) abstrahlen und dabei den Schichtstoff (1) trocknen. Die Temperaturen vernetzen das von dem Schichtstoff (1) aufgenommene Fluorcarbon (42) und bildet eine elastische Schicht mit dem auf die Fasern (7) aufgetragenen Metall­überzug. Der die Trockenstation (46) verlassende Schichtstoff wird auf einer Aufspulung (24) aufgerollt.
  • Beispiel 1:
  • Ein Vließ besteht aus endlichen Fasern einer Polyester-­Verbindung. Die Fasern liegen mit einem Quadratmetergewicht von 150 gr. im Schichtstoff. Der Schichtstoff wird einer Druckbehandlung unterworfen, bei der er zwischen zwei Walzen gepreßt wird. Die beiden Walzen drücken den überflüssigen Klebstoff ab. Unmittelbar nach dem Verlassen der Walzen wird der Schichtstoff zunächst auf seiner einen und nach einer Umlenkung auf der anderen Auflagefläche mit Aluminium be­ dampft. Dabei wird der Schichtstoff jeweils in einem Abstand von etwa 100 mm über eine Verdampferquelle geführt. Unmittel­bar nach dem Bedampfen wird der bedampfte Schichtstoff einer Nachausrüstung unterworfen. Zu diesem Zwecke wird er durch ein Tauchbad hindurchgeleitet, in dem sich eine Fluorcarbon-­Dispersion befindet. Nach dem Durchlauf des Schichtstoffes durch das Tauchbad wird er in einer Trockenstation ge­trocknet. In dieser Trockenstation sind Infrarotstrahler vorgesehen, deren Strahlungsquellen einen Abstand 100 mm oberhalb der Auflageflächen des Schichtstoffes haben. Zu­sätzlich sind Luftumwälzungen vorgesehen. Nach dem Durchlauf des Schichtstoffes durch die Trockenstation kann er auf einer Aufspulung aufgerollt werden.
  • Beispiel 2:
  • Ein Vließstoff von 20 mm Stärke besteht aus unendlichen Fasern eines thermoplastischen Kunststoffes. Als thermo­plastischer Kunststoff wird verwendet Polypropylen. Die unendlichen Fasern werden in ein Gelege gebracht, das durch eine Heizquelle hindurchgeführt wird. Diese Heizquelle er­zeugt auf den Fasern des Geleges eine Temperatur von 15o Grad Celsius. Bei dieser Temperatur erweichen die Oberfläche der einzelnen Faser und verbinden sich miteinander zu einem Vließ. Nach dem Abkühlen der einzelnen Fasern besitzt das Vließ eine Festigkeit, die ausreicht, damit der Schichtstoff auf einer Bahn gefördert werden kann.
  • Der Schichtstoff wird einseitig mit Aluminium bedampft. Dazu wird er in einem Abstand von 1oo mm über eine Verdampferquel­le hinweggeführt. Im Anschluß daran wird der Schichtstoff einer Nachausrüstung unterzogen. Zu diesem Zwecke wird er unter Sprühdüsen hindurchgeführt. Aus diesem Sprühdüsen wird eine Silikonverbindung auf den Schichtstoff gespritzt. An­schließend wird der Schichtstoff durch einen Trockentunnel geführt, in dem eine Temperatur von 120 Grad Celsius herrscht. Bei dieser Temperatur wird die Silikonverbindung vernetzt, so daß sie eine elastische Verbindung mit der Me­ tallschicht eingeht.
  • Beispiel 3
  • Endlich lang gekrempelte Fasern werden in mehrere Lagen gelegt. Dabei wechseln sich in Längsrichtung der Vor­schubrichtung verlaufende Fasern mit solchen ab, die quer dazu verlaufen. Die einzelnen Lagen werden durch eine Nadel­technik miteinander verbunden. Das auf diese Weise entste­hende Vließ wird mit einer Auflagefläche in einem Abstand von 100 mm über eine Verdampferquelle geführt, der Aluminium­dampf in Richtung auf die Auflagefläche entströmt. Die Ver­dampfung des Aluminiums findet statt bei einem Unterdruck von o,ooo1o bar. Der Aluminiumdampf schlägt sich in einer Dicke von 3/1o u auf den Fasern nieder. Die metallisierte Seite der einzelnen Fasern ist dem zu isolierenden warmen Körper zugewandt.
  • Derartig metallisierte Vließe werden einerseits als Einlege­sohlen für Schuhe verwendet. Ein dicker Vließ kann als Unterlage für Matratzen und Material für Schlafsäcke Ver­wendung finden. Darüber hinaus können Inlays für Mäntel daraus hergestellt werden.
  • Der Wärmeisolationswert eines derartigen Vließes verbessert sich gegenüber einem nichtbedampften Vließ um ca. 18 %. Der Feuchtedurchgangswiderstand des bedampften Vließes ist etwa gleich dem des unbedampften Vließes.
  • Für die Bedampfung sind eine Vielzahl von Vließen geeignet. Dabei ist auch daran zu denken, Spannbondedvließ einer Me­tallisierung zu unterziehen. Bei diesen handelt es sich um Vließe, bei denen die einzelnen Fasern im Spinnprozeß mit­einander gebunden werden.

Claims (28)

1. Schichtstoff mit zwei sich einander mit einem von einer Schicht­stoffdicke vorgegebenen Abstand gegenüberliegenden Auflageflächen, der aus mindestens zwei Lagen aufeinanderliegender Fasern besteht, zwischen denen Lufträume eingeschlossen sind, die untereinander in Verbindung stehen, dadurch gekennzeichnet, daß mindestens einige Fasern (7) auf mindestens einem Teil ihrer Oberflächen (13) von einer Beschich­tung (52) bedeckt sind, die als eine Strahlung mindestens teilweise reflektierende Reflectionsschicht (14) ausgebildet ist.
2. Schichtstoff nach Anspruch 1, dadurch gekennzeichnet, daß die Fasern (7) ein Vließ bildet.
3. Schichtstoff nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Fasern (7) ein Gewebe bilden.
4. Schichstoff nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Fasern (7) ein Gewirk bilden.
5. Schichtstoff nach Anspruch 1 und 2, dadurch gekennzeichnet, daß die Fasern (7) ein Fiberfill bilden.
6. Schichtstoff nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß die Fasern (7) aus einem Polyester hergestellt sind.
7. Schichtstoff nach Anspruch 6, dadurch gekennzeichnet, daß die Fasern (7) aus einen Polyamid hergestellt sind.
8. Schichtstoff nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß die gelegten Fasern (7) aus gekrempelter Wolle bestehen.
9. Schichtstoff nach Anspruch 1 bis 8, dadurch gekennzeichnet, daß die Reflektionsschicht (14) eine glänzende Metallschicht ist.
10. Schichtstoff nach Anspruch 9, dadurch gekennzeichnet, daß die Me­tallschicht aus Aluminium besteht.
11. Schichtstoff nach Anspruch 9 und 10, dadurch gekennzeichnet, daß die Metallschicht auf die Oberfläche (13) aufgedampft ist.
12. Schichtstoff nach Anspruch 1 bis 11, dadurch gekennzeichnet, daß die Fasern (7) eine vorbehandelte Oberfläche (13) aufweisen.
13. Schichtstoff nach Anspruch 1 bis 12, dadurch gekennzeichnet, daß er eine Nachausrüstung aufweist.
14. Schichtstoff nach Anspruch 1 bis 13, dadurch gekennzeichnet, daß im Bereich mindestens einer Auflagefläche (2,3) eine mindestens eine Lage (5,6) der Fasern (7) bedeckende Auflage (49) angeordnet ist.
15. Schichtstoff nach Anspruch 14, dadurch gekennzeichnet, daß die Auflage (49) mindestens bereichsweise als Membran (50) ausgebildet ist, die mindestens in einer im wesentlichen quer zu ihrer Ausdehnung verlau­fenden Richtung wasserdampfdurchlässig ausgebildet ist.
16. Schichtstoff nach Anspruch 1 bis 14, dadurch gekennzeichnet, daß die Auflage (49) als Faserverbund (51) ausgebildet ist.
17. Schichtstoff nach Anspruch 14, dadurch gekennzeichnet, daß der Faserverbund (51) als Gewirk ausgebildet ist.
18. Schichtstoff nach Anspruch 14, dadurch gekennzeichnet, daß der Faserverbund (51) als eine der Lagen (5,6) ausgebildet ist.
19. Schichtstoff nach Anspruch 1 bis 14, dadurch gekennzeichnet, daß die Auflage (49) aus einem Faserverbund (51) ausgebildet ist, der im Bereich seiner den Fasern (7) abgewandt angeordneten Oberfläche mit der Membran (50) verbunden ist.
20. Schichtstoff nach Anspruch 1 bis 19, dadurch gekennzeichnet, daß die Auflage (49) mit der Reflektionsschicht (14) überzogen ist.
21. Schichtstoff nach Anspruch 1 bis 20, dadurch gekennzeichnet, daß im Bereich jeder der Auflageflächen (2,3) eine Auflage (49) angeordnet ist.
22. Schichtstoff nach Anspruch 21, dadurch gekennzeichnet, daß eine der Auflagen (49) eine Reflektionsbeschichtung aufweist.
23. Schichtstoff nach Anspruch 1 bis 22, dadurch gekennzeichnet, daß mindestens eine der Auflagen (49) aufkaschiert ist.
24. Schichtstoff nach Anspruch 1 bis 23, dadurch gekennzeichnet, daß mindestens eine der Auflagen (49) vorausgerüstet ist.
25. Schichtstoff nach Anspruch 1 bis 24, dadurch gekennzeichnet, daß mindestens eine der Auflagen (49) nachausgerüstet ist.
26. Verfahren zur Herstellung eines Schichtstoffes mit zwei sich einan­der mit einem von der Schichtstoffdicke vorgegebenen Abstand gegenüber­liegenden Auflageflächen, zwischen denen mindestens zwei Lagen aufeinan­derliegender Fasern vorgesehen sind, zwischen denen Lufträume einge­schlossen sind, die untereinander in Verbindung stehen, dadurch gekenn­zeichnet, daß der Schichtstoff (1) auf mindestens eine Auflagefläche (2,3) mit einem Metall bedampft wird, und das Metall auf den der Auf­lagefläche(2,3) zugewandten Fasern (7) niedergeschlagen wird.
27. Verfahren nach Anspruch 26, dadurch gekennzeichnet, daß der Metall­dampf (15) auf eine mit einem Haftvermittler vorbereitete Oberfläche der Fasern (7) aufgebracht wird.
28. Verfahren nach Anspruch 26 und 27, dadurch gekennzeichnet, daß die Auflage (49) ihrer Bedampfung mit dem Schichtstoff verbunden wird.
EP88710040A 1987-10-22 1988-10-24 Schichtstoff und Verfahren zu seiner Herstellung Withdrawn EP0313508A3 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3735689 1987-10-22
DE19873735689 DE3735689A1 (de) 1987-10-22 1987-10-22 Schichtstoff und verfahren zu seiner herstellung

Publications (2)

Publication Number Publication Date
EP0313508A2 true EP0313508A2 (de) 1989-04-26
EP0313508A3 EP0313508A3 (de) 1990-02-28

Family

ID=6338814

Family Applications (1)

Application Number Title Priority Date Filing Date
EP88710040A Withdrawn EP0313508A3 (de) 1987-10-22 1988-10-24 Schichtstoff und Verfahren zu seiner Herstellung

Country Status (2)

Country Link
EP (1) EP0313508A3 (de)
DE (1) DE3735689A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110359312A (zh) * 2014-05-20 2019-10-22 Gpcp知识产权控股有限责任公司 非木材纤维的漂白及碎屑减少方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009006525B4 (de) * 2009-01-28 2011-09-15 Daimler Ag Flächenbauteil mit dekorativer Sichtfläche

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1939339A1 (de) * 1968-08-03 1970-02-19 Rolls Royce Verfahren zur Herstellung von umhuellten bzw. ummantelten Fasern
EP0109638A1 (de) * 1982-11-23 1984-05-30 Bayer Ag Verfahren zur Herstellung metallisierter textiler Flächengebilde
EP0194564A2 (de) * 1985-03-08 1986-09-17 Konrad Hornschuch Aktiengesellschaft Reflektierende Textilbahn, Verfahren zu ihrer Herstellung und ihre Verwendung

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB809958A (en) * 1954-12-10 1959-03-04 Degussa Improvements in or relating to metallising fully synthetic high polymer textile fibres
DE1182631B (de) * 1961-09-27 1964-12-03 Georg Werner Kunsch Verfahren zur Metallisierung von textilen Flaechengebilden durch Aufdampfen von Metallen im Hochvakuum
DE2146103A1 (de) * 1971-09-15 1973-03-22 Lentia Gmbh Schichtmaterial
DE7213792U (de) * 1972-04-13 1972-08-24 Sandler C Wattiervlies insbesondere fuer anoraks
SE418513B (sv) * 1975-02-05 1981-06-09 Huyck Corp Flerskiktig pappersmaskinsbeklednad samt sett att framstella dylikt
DE2651238A1 (de) * 1976-11-10 1978-05-18 Ver Seidenwebereien Ag Verfahren zur herstellung eines kugel- und schlagfesten textilen flaechengebildes
GB1601427A (en) * 1977-06-20 1981-10-28 Siemens Ag Deposition of a layer of electrically-conductive material on a graphite body
US4537811A (en) * 1978-04-24 1985-08-27 Energy Sciences, Inc. Electron beam irradiating process for rendering rough or topographically irregular surface substrates smooth; and coated substrates produced thereby
EP0099562A3 (de) * 1982-07-21 1985-12-11 Akzo GmbH Verbundstoffbahn
FR2548589B1 (fr) * 1983-07-07 1987-02-20 Aerospatiale Procede et dispositif d'impregnation metallique d'un substrat se presentant sous la forme d'une nappe de fibres conductrices du courant electrique
DE8506847U1 (de) * 1985-03-08 1986-07-03 Konrad Hornschuch Ag, 7119 Weissbach Reflektierende Textilbahn

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1939339A1 (de) * 1968-08-03 1970-02-19 Rolls Royce Verfahren zur Herstellung von umhuellten bzw. ummantelten Fasern
EP0109638A1 (de) * 1982-11-23 1984-05-30 Bayer Ag Verfahren zur Herstellung metallisierter textiler Flächengebilde
EP0194564A2 (de) * 1985-03-08 1986-09-17 Konrad Hornschuch Aktiengesellschaft Reflektierende Textilbahn, Verfahren zu ihrer Herstellung und ihre Verwendung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110359312A (zh) * 2014-05-20 2019-10-22 Gpcp知识产权控股有限责任公司 非木材纤维的漂白及碎屑减少方法

Also Published As

Publication number Publication date
EP0313508A3 (de) 1990-02-28
DE3735689A1 (de) 1989-05-18

Similar Documents

Publication Publication Date Title
DE69612012T2 (de) Verbundwerkstoff zur verwendung bei der herstellung des shuhwerks
EP0435001B1 (de) Schichtstoff
EP1108375B1 (de) Bekleidungsstück, insbesondere Unterbekleidungsstück für Personen im Militär- und im Zivilschutzbereich
DE2201105A1 (de) Verfahren zur Herstellung eines boucleartige Noppen,Rippen od.dgl. aufweisenden textilen Verbundstoffes
EP0598085B1 (de) Tuftingteppich und verfahren zu seiner herstellung
WO2005024122A1 (de) Verfahren zur beschichtung einer teppichrohware mittels einer breitschlitzdüse
EP0525291A1 (de) Vliesstoff-Laminat mit hohem spezifischen Volumen und guter Festigkeit
DE2424877A1 (de) Textiler verbundstoff
EP0682722B1 (de) Tuftingteppich und verfahren zu seiner herstellung
DE3887811T2 (de) Faseriger Schichtstoff und Verfahren zur Herstellung desselben.
CH701218A1 (de) Verfahren zur Herstellung eines Verbundwerkstoffs.
DE3881054T2 (de) Tarndecke.
DE1940465A1 (de) Ungewobene Ware und Verfahren zu ihrer Herstellung
DE9411193U1 (de) Dämmaterial
EP0313508A2 (de) Schichtstoff und Verfahren zu seiner Herstellung
DE3307090A1 (de) Verfahren zum herstellen eines schichtstoffes aus kohlenstoff
DE1635711B2 (de)
DE2632569A1 (de) Nichtgewebter fussbodenbelag, insbesondere teppich
DE2234008C3 (de) Verfahren zur Herstellung von Schichtstoffen
DE3233688C2 (de) Beschichtungswerkstoff, Verfahren zur Herstellung desselben und seine Verwendung
DE3321094C2 (de) Abgesteppter Textilstoff
DE8717867U1 (de) Schichtstoff
DE9007323U1 (de) Hitzeschutzkleidung
CH494639A (de) Wärmeisolierendes Material, Verfahren zu dessen Herstellung sowie Verwendung des Materials
DE4217442C2 (de) Tuftingteppich und Verfahren zu seiner Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19900828

17Q First examination report despatched

Effective date: 19920330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19930430