EP0301116B1 - Submergible electrohydraulic drive unit for hammering and servicing devices in under water operation - Google Patents

Submergible electrohydraulic drive unit for hammering and servicing devices in under water operation Download PDF

Info

Publication number
EP0301116B1
EP0301116B1 EP87110894A EP87110894A EP0301116B1 EP 0301116 B1 EP0301116 B1 EP 0301116B1 EP 87110894 A EP87110894 A EP 87110894A EP 87110894 A EP87110894 A EP 87110894A EP 0301116 B1 EP0301116 B1 EP 0301116B1
Authority
EP
European Patent Office
Prior art keywords
drive unit
unit according
pressure medium
wall
supporting plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87110894A
Other languages
German (de)
French (fr)
Other versions
EP0301116A1 (en
Inventor
Hans Kühn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Menck GmbH
Original Assignee
Menck GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Menck GmbH filed Critical Menck GmbH
Priority to EP87110894A priority Critical patent/EP0301116B1/en
Priority to DE8787110894T priority patent/DE3771217D1/en
Priority to NO873379A priority patent/NO168125C/en
Priority to JP62254524A priority patent/JPH0678621B2/en
Priority to US07/133,904 priority patent/US4817734A/en
Publication of EP0301116A1 publication Critical patent/EP0301116A1/en
Application granted granted Critical
Publication of EP0301116B1 publication Critical patent/EP0301116B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B7/00Special methods or apparatus for drilling
    • E21B7/12Underwater drilling
    • E21B7/124Underwater drilling with underwater tool drive prime mover, e.g. portable drilling rigs for use on underwater floors
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D13/00Accessories for placing or removing piles or bulkheads, e.g. noise attenuating chambers
    • E02D13/10Follow-blocks of pile-drivers or like devices
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/02Placing by driving
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D7/00Methods or apparatus for placing sheet pile bulkheads, piles, mouldpipes, or other moulds
    • E02D7/26Placing by using several means simultaneously
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S173/00Tool driving or impacting
    • Y10S173/01Operable submerged in liquid

Definitions

  • the invention relates to a submersible electrohydraulic drive unit for ramming and working equipment designed for underwater use, with hydraulic pumps each to be driven by electric motors and connected to a pressure medium container, which can be connected to a drive device of the ramming or working device via flexible connecting lines.
  • a ramming device with an impact body displaceably guided in a housing, a drive piston connected to it and sealingly displaceable in a hydraulic cylinder, as well as a drive unit connected to the hydraulic cylinder via pressure medium lines and a reversing device, each of which is known by a Electric motor to be driven hydraulic pumps and a pressure medium container and is guided on the projecting at the upper end of the housing pressure medium cylinder by means of shock absorbers up and down.
  • This well-known construction has proven itself excellently for ramming work under water, but requires a shape that is precisely adapted to the upper end section of the ramming device and a shock-absorbing sliding guidance of the entire drive unit on the ramming device.
  • the object of the invention is now a submersible electrohydraulic To create drive unit of the type mentioned, which can be used economically with a simple, uncomplicated construction for piling rigs, as well as for other underwater work equipment, without noticeably limiting their applicability.
  • the submersible electro-hydraulic drive unit of the type mentioned is equipped with the features of claim 1.
  • this drive unit can be used in a practically unlimited depth of water with a single, multiple or jointly driven pump units in a casing with a central receiving shaft, depending on the energy requirement, and can be used to attach a pile hammer or a vibration piling device depending on the requirements or another underwater working device equipped, for example, with rinsing devices or a rotatable tool carrier.
  • the compact design results in a robust construction which is favorable for the harsh off-shore working conditions and which protects the expensive piling or working equipment against damage on all sides. Due to the preferably both vertically and horizontally elastically sprung mounting of the pump units relative to the casing, the drive unit can also be used for work associated with strong shocks or vibrations. The energy transfer from the drive unit to the attached implement can take place via appropriate plug-in couplings, which facilitates quick replacement of the implement.
  • the drive unit can also stand or stand on the seabed or an underwater structure hanging on a suspension cable to drive one or more implements lowered on separate suspension cables.
  • the drive unit shown in FIGS. 1 to 3 has a substantially cylindrical casing M with an annular upper support plate 4 with a lifting eye 44, an annular lower support plate 5, a cylindrical outer casing wall 2 connecting them and a cylindrical inner wall concentric with this 3, which encloses a continuous receiving shaft 1.
  • the inner wall 3 has through-openings 9 arranged in its upper and lower sections distributed over the circumference and is in the jacket wall 2 Loosely centered by means of annular centering elements 6 in the embodiment shown and by hydraulic cylinders 7 with pistons 8 projecting outwards against the upper support plate 4 or the lower support plate 5 which are arranged on the upper edge or the lower edge and each contain prestressed gas or are connected to a hydraulic accumulator (not shown) supported on both sides.
  • hydraulic cylinders 7 spring cylinders acted upon by high gas pressure or appropriately preloaded elastic means can also be used.
  • prestressed hydraulic cylinders 7 are also attached to the passage openings 9 of the inner wall 3, the pistons 8 of which protrude inwards into the receiving shaft 1 and an elastic support of the inner wall 3 against a ramming pile inserted into the receiving shaft 1 or enable a piling or working device arranged in it.
  • five pump units 10 each arranged at the same circumferential spacing, each consisting of a vertically oriented, submersible electric motor 12 and a hydraulic pump 13 connected coaxially with its lower end are arranged in the annular space 22 between the jacket wall 2 and the inner wall 3.
  • Each pump unit 10 is supported on a supporting projection of the inner wall 3 via elastic support elements 11.
  • the pump units 10 each have associated, essentially cylindrical pressure medium containers 14, which are each attached to the inner wall 3 in a vertically aligned manner between adjacent pump units 10.
  • Each hydraulic pump 13 is connected on the one hand via a connecting line 21 with a built-in vibration-damping expansion compensator 24 to the lower part of the associated pressure medium container 14 and, on the other hand, via a hose-like connecting line 18 with a collecting connection 19, from which the pressure medium via further hose lines, not shown, to the ramming or driven Tool is fed.
  • the return flow of the pressure medium from the ramming or working device also takes place via the collecting connection 19, which communicates via a connecting line 20 with the upper part of the associated pressure medium container 14. Since each pump unit 10 has its own elongated cylindrical pressure medium container 14, effective cooling of the pressure medium by the surrounding water is achieved at the same time.
  • each pressure medium container 14 contains, on the one hand, an opening 27 with the interior the pressure medium container 14 and on the other hand via an outer opening 28 with the environment communicating cylinder 25 with a displaceable floating piston 26.
  • the pressure in the pressure medium container 14 is always automatically adjusted to the pressure of the surrounding water via the floating piston 26, so that on the one hand the container wall 29 is not exposed to any external overpressure and, on the other hand, the pressure medium of the hydraulic pump 13 in each case runs quickly. Since the connecting lines 20 running from the collecting connections 19 to the associated pressure medium containers 14 are connected to one another by a ring line 30, even in the event that a floating piston 26 is stuck in the pressure medium container 14 concerned, pressure equalization is nevertheless produced via the floating holes 26 of the remaining pressure medium containers, so that the system remains functional.
  • the hydraulic pump 13 sucks pressure medium from the pressure medium container 14 via the connecting line 21 and leads it via the hose line 18 and the collecting connection 19 to the ramming or working device to be driven, while the returning pressure medium runs back from the collecting connection 19 via the connecting line 20 into the pressure medium container 14 .
  • the drive unit Since the pump units 10 and the pressure medium containers 14 are attached in a uniformly distributed manner over the circumference of the cylindrical casing M, the drive unit causes practically no tilting of the same when connected to a ramming or working device.
  • the drive unit shown in FIG. 4 according to FIG. 1 carries a working device detachably connected to the upper support plate 4 by threaded bolts 23 with a work spindle 33 which can be driven by hydraulic motors 31 and a gear 32, which extends through the receiving shaft 1 and on the lower support plate 5 concentrically attached guide tube 34 extends coaxially and is connected at its free lower end to a replaceable tool carrier 37 in a rotationally fixed manner.
  • the work spindle 33 is rotatably supported by radial bearings 35 arranged in the support plates 4 and 5 and in the guide tube 34, and is additionally secured against vertical displacements by axial bearings 36 each interacting with a support plate 4 or 5.
  • the hydraulic motors 31 are driven by pressure medium supplied by the hydraulic pumps 13 via the hose line 18, the collecting connection 19 and a connecting line 41, which then flows back to the pressure medium container 14 via the connecting line 42, the collecting connection 19 and the connecting line 20.
  • the implement is supplied with power via the connection box 16 connected to the umbilical 15 and a supply line led via a connection 43.
  • a substantially semicircular support element 46 is attached to the upper support plate 4, on which the loop-like sagging umbilical 15 is placed.
  • the working device connected to the drive unit is suspended by means of a lifting eye 44 pivotably articulated at its upper end on a suspension cable 45 of a crane arranged on a workshop ship, not shown, and is lowered and raised to the desired water depth together with the drive unit.
  • the implement connected to the drive unit can also be used in an inclined to horizontal orientation by means of additional devices (not shown), for example, additional support elements which engage the guide tube 34 or the lower support plate 5.
  • the tool holder 37 attached to the lower end of the work spindle 33 is provided with conventional devices for the interchangeable mounting of work tools, not shown, for carrying out cutting, machining, grinding, sawing and drilling work and / or flushing, pressure jet or burning work.
  • work tools can be supplied with pressure media, gases or electrical current these are supplied through supply lines, not shown, which run inside the hollow work spindle 33, at the upper end of which, via a conventional rotary feedthrough 39, only shown schematically, with a pump or corresponding supply lines in the umbilical 15, and through an outlet opening 40 adjacent to the tool carrier 37 with the are connected to work tools to be supplied.
  • a drive unit which is modified only with regard to the cross-section of the jacket wall 2, the inner wall 3 and the receiving shaft 1, which is rectangular here, is shown with a vibration piling device 47 detachably fastened to its upper support plate 4 by means of threaded bolts 23.
  • the lower support plate 5 is provided with an insertion cone 53 for a ram pile 48 which is essentially rectangular in cross section. Otherwise, the drive unit corresponds to the explanations given above in connection with FIGS. 1 to 3.
  • the vibratory pile driver 47 is provided in the usual manner with unbalance motors 49, which are only indicated schematically, and rests on the pile pile 48 which extends through the receiving shaft 1 and whose upper end edge engages in a recess 50 on the underside of the vibratory pile driver 47.
  • the vibrating ramming device is provided with horizontally oriented press cylinders 51, the pistons 52 of which are pressed firmly against the outer wall of the ramming pile 48 by supply of pressure medium from the drive unit, which results in a firm, frictional connection which is favorable for the transmission of the vibrations will be produced.
  • connection lines to at least one hydraulic pump 13 of the drive unit required for supplying the pressure cylinders 51 with pressure medium and the corresponding switching elements are not shown in FIG. 5 for reasons of clarity.
  • the signal transmission to the vibration piling device 47 takes place via a signal line 54. This with the drive unit
  • the connected vibratory piling device 47 is lowered via a lifting eye 44 pivotably articulated at the upper end and a carrying rope 45 guided through it so that the driving pile 48 is inserted into the receiving shaft 1 through the insertion cone 53 until the recess 50 of the vibrating piling device 47 on the upper edge of the pile.
  • the vibratory pile driver 47 is supplied with pressure medium from the drive unit via the connecting lines 18 and 20, which drives the unbalance motors 49 in a conventional manner to generate a vibration with a frequency and amplitude suitable for driving the pile driver 48, via corresponding hydraulic motors.
  • the lower support plate 5 is provided on the one hand with an integrally machined insertion cone 59 and on the other hand with a guide tube 61 extending upwards through the receiving shaft 1 for a cylindrical ramming pile 60.
  • the upper support plate 4 is detachably connected to a fastening flange 62 attached to the outer circumference of the hammer housing 63 of a ramming hammer 55 by means of threaded bolts.
  • an impacting body (not shown) is usually displaceably guided upwards and downwards, which is connected via a piston rod to a piston which can be displaceably sealed in a hydraulic cylinder.
  • the chambers of the hydraulic cylinder are connected to the common connection 19 of the drive unit via a conventional reversing device, not shown, a connection 64 and two hose lines 56 and 57.
  • the pressure medium conveyed by the hydraulic pumps 13 flows via the hose line 18, the collecting connection 19 and the hose line 56 to the connection 64, while the pressure medium displaced from the hydraulic cylinder flows back via the hose line 57, the collecting connection 19 and the connecting line 20 to the pressure medium containers 14.
  • the electrical control and monitoring signals required for the operation of the ramming hammer are transmitted via a signal line 58 transfer.
  • the inner wall 3 of the drive unit which carries the pump units 10 and the pressure medium containers 14, is resiliently supported at the top and bottom via the pistons 8 of the hydraulic cylinders 7 against the outer surface of the guide tube 61, so that the pump units 10 and the pressure medium containers 14 are driven by the ramming of the ramming hammer 55 are not affected.
  • the hammer housing 63 is expediently also resiliently supported on the striking plate S resting on the driven pile 60 by prestressed spring devices, in particular hydraulic cylinders connected to hydraulic accumulators, with outwardly projecting support pistons.
  • the drive unit can also be modified by omitting the guide tube 61, so that the pistons 8 of the horizontal hydraulic cylinders 7 are resiliently supported directly against the ram pile 60.
  • the drive unit expediently simultaneously forms the pile collar which is anyway required for guiding the driven pile 60.
  • the drive unit with the lower support plate 5 is lowered from above over the outer circumference of the hammer housing 63 to an attachment flange 62 projecting outward thereon, the lower support plate 5 advantageously being releasably secured to the attachment flange.
  • the drive unit since the drive unit encloses the main part of the hammer housing 63, there is in some cases an advantageously shorter overall length of the device to be lowered.
  • the hammer housing 63 is, however, provided with a pile collar 65 attached to the underside of the fastening flange 62, which ensures a secure, free-running fit on the driven pile 60.
  • This arrangement also enables driving of ram piles 60 with a very large diameter can no longer be accommodated in the receiving shaft 1 of the drive unit.
  • the lower support plate 5 is detachably connected via threaded bolts 23 to the mounting flange 74 of a flushing device 66, which has a flushing pipe 72 passing through the receiving shaft 1 with a built-in check valve 73 and a plurality of pump units 67 arranged at the upper end of the flushing pipe 72
  • a flushing device 66 which has a flushing pipe 72 passing through the receiving shaft 1 with a built-in check valve 73 and a plurality of pump units 67 arranged at the upper end of the flushing pipe 72
  • Each has a water pump 68 driven by a hydraulic motor 70, which sucks in sea water surrounding a suction opening 69 and conveys it into the rinsing pipe 72 via associated inlet openings 71.
  • the flushing device 66 is fixed in a liquid-tight manner by means of a coupling part 76, acting in the manner of a bayonet lock, on a lockable oil delivery device 75 arranged on the seabed.
  • the hydraulic motors 70 are supplied with pressure medium from the hydraulic pumps 13 of the drive unit via the hose line 18, the collecting connection 19 and the connecting line 41, which then flows back via the connecting line 42, the collecting connection 19 and the connecting line 20 to the pressure medium container 14.
  • the check valve 73 allows the pressurized water flow conveyed by the water pumps 68 to pass to the oil delivery device 75 and the borehole underneath, but conversely prevents any leakage in the direction of the flushing pipe 72.
  • pressurized water can be pressed in economically through a borehole into an oil deposit in order to squeeze out otherwise unavailable amounts of oil elsewhere in the deposit and thus make it more productive.
  • a major advantage is that there is no need to use an expensive, long, high-pressure hose of large diameter from the ship to the borehole that is at risk of damage.
  • the drive unit has pump units 67 installed in the annular space 22 between the jacket wall 2 and the inner wall 3, each with a hydraulic motor 70 connected via a connecting line 80 to an associated hydraulic pump and a water pump 68 connected to this which communicates with the flushing pipe 72 via an inlet opening 71 passing through the inner wall 3.
  • the flushing device 66 is connected by means of a coupling part 76 acting in the manner of a bayonet lock to a connecting piece 83 which is fixed to an inspection flange 77 of a pipeline 78 laid on the seabed.
  • the flushing device 66 connected to the drive unit is lowered and raised by means of a lifting eye 44 pivotably articulated at its upper end and a carrying rope 45 passed through it.
  • the pump units 10 and 67 are each elastically supported on support supports 79 attached to the pressure medium container 14 via elastic support elements 11.
  • the pressure medium containers 14 are in turn releasably attached to a bracket 85 on the inner wall 3 of the drive unit.
  • each pressure medium container 14 together with the associated electric motor 12, the hydraulic pump 13 driven by it, the hydraulic motor 70 and the water pump 68 driven by it can be quickly and easily installed and removed in the annular space 22 accessible after detachable segments of the jacket wall 2 will.
  • the pressure medium conveyed by the hydraulic pump 13 via the connecting line 80 to the hydraulic motor 70 flows back via a connecting line 81 to the connection 82 of the pressure medium container 14. For this the pressure medium is sucked in by the hydraulic pump 13 via a connection 84 and the connecting line 21.
  • the electric motor 12 fastened to the inner wall 3 via support elements 88 and 89 drives the water pump 68 connected to it via a support plate 87 directly via a gear 86.
  • the water pump 68 and the electric motor 12 are connected coaxially to a unit which is fastened to the inner wall 3 via support plates 90 and 91.
  • This embodiment is suitable for cases in which a direct drive of the water pump 68 is permitted without speed transmission.
  • the drive unit can also be designed such that it drives a ramming or working device, which is spaced apart from it on its own support element, on its own connecting lines in a position set down on the seabed or an underwater structure or hanging on a support element.
  • the drive unit shown in FIGS. 14 and 15, which is set down on the sea floor, can be released on the one hand to increase its stability with a base plate 96 which may be fastened to the lower support plate 5 and on the other hand with a threaded bolt 97 with the upper support plate 4 connected turret 92 provided.
  • the hose lines 100 and 101 can run without difficulty to a ramming hammer 94, which sits freely on a ramming pile 93 pre-installed in a guide device 95 at a greater lateral distance from the drive unit.
  • the umbilical 15 is carried by a plurality of buoyancy containers 98, the buoyancy of the bottom buoyancy container 98 being dimensioned such that it holds the section of the umbilical 15 above the drive unit tautly vertically, while the other buoyancy containers 98 the umbilical 15 each step-like, forming sagging loops 99 lead to the water surface.
  • the drive unit is arranged on an underwater structure 115 or also on a ship's deck above water and connected to a hydraulically driven vibration piling device 47 via longer hose lines 100 and 101.
  • the vibration piling device 47 is intended to shake a larger number of anchor piles 108 with anchor chains 116 attached to them to hold an underwater structure (not shown) in the seabed.
  • the required electrical energy is in turn supplied to the drive unit via an umbilical 15. Since the longer hose lines 100 and 101 leading from the drive unit to the vibratory ramming device 47 accommodate a pressure medium filling quantity which is dependent on their diameter, the quantity of pressure medium remaining in the pressure medium containers 14 can be so small that the supply of the hydraulic pumps 13 with pressure medium does not occur more is guaranteed.
  • the drive unit is provided in the manner shown in FIG. 17 with an additional pressure medium container 109 inserted into the receiving shaft 1, which is held on the upper support plate 4 and communicates with the pressure medium containers 14 via a connecting line 110. If the drive unit is not set up under water but on a ship's deck, the floating piston 26 in the cylinder 25 is no longer pressed so strongly against the pressure medium in the pressure medium container 14 because of the lack of water pressure on its outer surface and the friction of its seal. Although due to the difference in height between the drive unit and the working device arranged at a greater depth, the pressure medium should still flow rapidly via the hose line 100, the oscillating mode of operation can nevertheless cause the pressure medium supply to be cut off briefly, which is damaging to the hydraulic motors in the long run.
  • the drive unit for use over water is provided with an air line 111 running parallel to the umbilical 15 via the support element 106 to the upper side of the additional pressure medium container 109 to generate a prestress promoting the inflow by slight overpressure.
  • the compressed air space 112 created by the removal of pressure medium in the additional pressure medium container 109 serves at the same time as a buffer space which receives the pressure medium quantities flowing back in an oscillating manner via the hose line 100 without undesired pressure peaks.
  • a cooling water line 113 is introduced into the interior of the drive unit, which is delimited by the jacket wall 2 which is sealingly connected to the base plate 96 is.
  • the cooling water then flows out of the interior via a drain line 114. In this way, the pump units 10 and the hydraulic oil in the pressure medium containers 14 and 109 are cooled in the same way as when used under water.
  • the drive unit explained above with reference to preferred embodiments can be modified by the person skilled in the art in various ways depending on the requirements of the individual case, provided that it is designed as a multipurpose drive unit for various ramming or working devices to be optionally installed and a jacket housing with a central receiving shaft and ring-shaped upper and lower support plates for fixing the device to be operated in each case and between the receiving shaft and an outer jacket wall arranged in a spring-loaded manner pump units and pressure medium containers.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Paleontology (AREA)
  • Structural Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Civil Engineering (AREA)
  • Geology (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
  • Earth Drilling (AREA)
  • Gripping Jigs, Holding Jigs, And Positioning Jigs (AREA)
  • Apparatuses For Bulk Treatment Of Fruits And Vegetables And Apparatuses For Preparing Feeds (AREA)

Description

Die Erfindung betrifft eine tauchfähige elektrohydraulische Antriebseinheit für zum Unterwassereinsatz ausgelegte Ramm-und Arbeitsgeräte, mit jeweils durch Elektromotoren anzutreibenden, mit einem Druckmittelbehälter verbundenen Hydraulikpumpen, die über flexible Verbindungsleitungen mit einer Antriebsvorrichtung des Ramm- oder Arbeitsgeräts verbindbar sind.The invention relates to a submersible electrohydraulic drive unit for ramming and working equipment designed for underwater use, with hydraulic pumps each to be driven by electric motors and connected to a pressure medium container, which can be connected to a drive device of the ramming or working device via flexible connecting lines.

Aus der DE-A- 24 54 521 ist eine Rammvorrichtung mit in einem Gehäuse verschiebbar geführtem Schlagkörper, einem mit diesem verbundenen, in einem Hydraulikzylinder dichtend verschiebbaren Antriebskolben, sowie einer mit dem Hydraulikzylinder über Druckmittelleitungen und eine Umsteuervorrichtung verbundenen Antriebseinheit bekannt, die jeweils durch einen Elektromotor anzutreibende Hydraulikpumpen und einen Druckmittelbehälter umfaßt und auf dem am oberen Ende des Gehäuses vorspringenden Druckmittelzylinder über Stoßdämpfvorrichtungen aufwärts und abwärts verschiebbar geführt ist. Diese bekannte Konstruktion hat sich für Rammarbeiten unter Wasser hervorragend bewährt, erfordert jedoch eine dem oberen Endabschnitt des Rammgeräts genau angepaßte Formgebung und eine stoßgedämpft verschiebbare Führung der ganzen Antriebseinheit an der Rammvorrichtung.From DE-A-24 54 521 a ramming device with an impact body displaceably guided in a housing, a drive piston connected to it and sealingly displaceable in a hydraulic cylinder, as well as a drive unit connected to the hydraulic cylinder via pressure medium lines and a reversing device, each of which is known by a Electric motor to be driven hydraulic pumps and a pressure medium container and is guided on the projecting at the upper end of the housing pressure medium cylinder by means of shock absorbers up and down. This well-known construction has proven itself excellently for ramming work under water, but requires a shape that is precisely adapted to the upper end section of the ramming device and a shock-absorbing sliding guidance of the entire drive unit on the ramming device.

Da die zur Ausbeutung von auf oder unter dem Meeresboden befindlichen Rohstoffvorkommen dienenden Arbeiten und die dafür unter Wasser zu installierenden Vorrichtungen und Konstruktionen in immer tieferes Wasser vordringen und dabei häufig verschiedenartige Arbeitsgeräte in großer Wassertiefe eingesetzt werden müssen, wird es immer schwieriger, diese mit einem vertretbaren Zeit- und Arbeitsaufwand an die jeweiligen Arbeitsstellen unter Wasser heranzubringen und dort mit wirtschaftlichem Wirkungsgrad anzutreiben. Es wäre zwar im Prinzip möglich, für jedes einzelne in großer Wassertiefe einzusetzende Arbeitsgerät eine speziell angepaßte, tauchfähige elektrohydraulische Antriebseinheit zu konstruieren, die von einer über Wasser befindlichen Stromquelle über eine zum Arbeitsgerät unter Wasser führende elektrische Versorgungsleitung mit viel geringerem Energieverlust angetrieben werden kann, als wenn das Hydraulikmedium selbst über entsprechend lange Leitungen von einer Hydraulikpumpe über Wasser zugeführt werden müßte. Da jedoch das Absenken und spätere Aufholen jedes der verschiedenen für eine Unterwasser-Installation benötigten Geräte und deren ausgerichtetes Heranführen in die erforderliche Arbeitsposition selbst bei günstigen Witterungsbedingungen jeweils einen erheblichen Zeitaufwand bedingen und außerdem eine entsprechend große Zahl von dem jeweiligen Arbeitsgerät angepaßten Unterwasser-Antriebseinheiten mitgeführt werden muß, wird hier relativ bald die Grenze der Wirtschaftlichkeit erreicht. Dies gilt um so mehr, weil die teuren und technisch anspruchsvollen Geräte und Antriebseinheiten zwar zur Durchführung des Vorhabens unerläßliche, aber vielfach nur kurzzeitige Spezialarbeiten ausführen, dann jedoch nicht mehr benötigt werden und somit bis zum nächsten Einsatz lange Zeit ungenutzt lagern.Since the work for the exploitation of raw material deposits located on or under the seabed and the devices and constructions to be installed under water penetrate ever deeper water, and various types of work equipment often have to be used at great depths, it is becoming increasingly difficult to find them with an acceptable level Bringing time and effort to the respective workplaces under water and driving them there with economic efficiency. In principle, it would be possible to design a specially adapted, submersible electrohydraulic drive unit for each individual tool to be used at great depths of water, which can be driven from a power source above water via an electrical supply line leading to the tool under water with much less energy loss than if the hydraulic medium itself would have to be supplied by water from a hydraulic pump via correspondingly long lines. However, since the lowering and later catching up of each of the various devices required for an underwater installation and their aligned introduction into the required working position each require a considerable amount of time, even in favorable weather conditions, and also a correspondingly large number of underwater drive units adapted to the respective working device are carried along must, the limit of economy will be reached relatively soon. This is all the more true because the expensive and technically demanding devices and drive units, although essential to carry out the project, often perform only short-term special work, are then no longer required and therefore remain unused for a long time until the next use.

Aufgabe der Erfindung ist es nun, eine tauchfähige elektrohydraulische Antriebseinheit der eingangs genannten Art zu schaffen, die bei einfacher, unaufwendiger Konstruktion sowohl für Rammgeräte, als auch für andere Unterwasser-Arbeitsgeräte wirtschaftlich eingesetzt werden kann, ohne deren Anwendbarkeit merklich einzuschränken.The object of the invention is now a submersible electrohydraulic To create drive unit of the type mentioned, which can be used economically with a simple, uncomplicated construction for piling rigs, as well as for other underwater work equipment, without noticeably limiting their applicability.

Zur Lösunger dieser Aufgabe ist die tauchfähige elektrohydraulische Antriebseinheit der eingangs genannten Art mit den Merkmalen des Patentanspruches 1 ausgestattet.To solve this problem, the submersible electro-hydraulic drive unit of the type mentioned is equipped with the features of claim 1.

Diese Antriebseinheit ist bei einfacher, robuster Konstruktion durch die Anordnung von je nach Energiebedarf einzeln, zu mehreren oder gemeinsam angetriebenen Pumpeneinheiten in einem Mantelgehäuse mit zentralem Aufnahmeschacht vielseitig in praktisch unbegrenzter Wassertiefe einsetzbar und kann je nach den Bedürfnissen zum Anbau eines Rammhammers oder eines Vibrations-Rammgerätes oder eines sonstigen, beispielsweise mit Spülvorrichtungen oder einem verdrehbaren Werkzeugträger ausgestatteten Unterwasser-Arbeitsgerät verwendet werden. Die kompakte Ausgestaltung ergibt eine für die rauhen Off-Shore-Arbeitsbedingungen günstige, robuste Konstruktion, durch welche die teuren Ramm- oder Arbeitsgeräte allseitig gegen Beschädigungen geschützt werden. Durch die vorzugsweise sowohl vertikal, als auch horizontal elastisch abgefederte Lagerung der Pumpeneinheiten gegenüber dem Mantelgehäuse kann die Antriebseinheit auch für mit starken Stößen oder Vibrationen verbundene Arbeiten eingesetzt werden. Der Energietransfer von der Antriebseinheit auf das jeweils angebaute Arbeitsgerät kann über entsprechende Steckkupplungen erfolgen, wodurch ein schnelles Auswechseln des Arbeitsgerätes erleichtert wird.With a simple, robust design, this drive unit can be used in a practically unlimited depth of water with a single, multiple or jointly driven pump units in a casing with a central receiving shaft, depending on the energy requirement, and can be used to attach a pile hammer or a vibration piling device depending on the requirements or another underwater working device equipped, for example, with rinsing devices or a rotatable tool carrier. The compact design results in a robust construction which is favorable for the harsh off-shore working conditions and which protects the expensive piling or working equipment against damage on all sides. Due to the preferably both vertically and horizontally elastically sprung mounting of the pump units relative to the casing, the drive unit can also be used for work associated with strong shocks or vibrations. The energy transfer from the drive unit to the attached implement can take place via appropriate plug-in couplings, which facilitates quick replacement of the implement.

Vorteilhafte weitere Ausgestaltungen der Antriebseinheit sind in den Unteransprüchen beschrieben.Advantageous further configurations of the drive unit are described in the subclaims.

Aufgrund ihrer besonderen Bauart kann die Antriebseinheit auch auf dem Meeresboden oder einem Unterwasser-Bauwerk stehend oder an einem Tragseil hängend zum Antrieb von einem oder mehreren an separaten Tragseilen abgesenkten Arbeitsgeräten dienen.Due to its special design, the drive unit can also stand or stand on the seabed or an underwater structure hanging on a suspension cable to drive one or more implements lowered on separate suspension cables.

Im folgenden werden bevorzugte Ausführungsformen der Antriebseinheit unter Bezugnahme auf die beigefügten Zeichnungen weiter erläutert. Es zeigen:

Figur 1
einen schematischen Längsschnitt durch eine Antriebseinheit,
Figur 2
einen Querschnitt durch die Antriebseinheit gemäß Figur 1,
Figur 3
eine Pumpeneinheit mit Druckmittelbehälter der Antriebseinheit gemäß Figur 1 in abgewickelter Ansicht,
Figur 4
einen schematischen Längsschnitt durch eine leicht abgewandelte Antriebseinheit mit angebautem Arbeitsgerät,
Figur 5
einen schematischen Längsschnitt durch eine Antriebseinheit gemäß Figur 1 mit einem angebauten Vibrations-Rammgerät,
Figur 6
einen Querschnitt durch eine Antriebseinheit gemäß Figur 5,
Figur 7
einen schematischen Längsschnitt durch eine leicht abgewandelte Antriebseinheit mit angebautem Rammhammer,
Figur 8
eine teilweise geschnitttene schematische Ansicht einer das Hammergehäuse eines Rammhammers umschließenden Antriebseinheit,
Figur 9
einen schematischen Längsschnitt durch eine Antriebseinheit gemäß Figur 1 mit angebautem Spülgerät,
Figur 10
einen schematischen Längsschnitt durch eine abgewandelte Antriebseinheit mit angebautem Spülgerät,
Figur 11
eine Pumpeneinheit der Antriebseinheit gemäß Figur 10 in abgewickelter Ansicht,
Figur 12
eine andere Ausführungsform einer Pumpeneinheit der Antriebseinheit gemäß Figur 10,
Figur 13
eine weitere abgewandelte Ausbildung der Pumpeneinheiten einer Antriebseinheit gemäß Figur 10,
Figur 14
eine schematische Darstellung des Antriebs eines Rammgerätes durch eine auf dem Meeresboden abgesetzte Antriebseinheit,
Figur 15
einen teilweisen Längsschnitt durch den Drehkopf der Antriebseinheit gemäß Figur 14,
Figur 16
eine schematische Darstellung einer auf einer Unterwasser-Struktur abgesetzten Antriebseinheit mit Zusatz-Druckmittelbehälter und
Figur 17
einen schematischen Längsschnitt durch eine Antriebseinheit gemäß der Figuren 1 und 16 mit angebautem Zusatz-Druckmittelbehälter.
In the following preferred embodiments of the drive unit are further explained with reference to the accompanying drawings. Show it:
Figure 1
2 shows a schematic longitudinal section through a drive unit,
Figure 2
2 shows a cross section through the drive unit according to FIG. 1,
Figure 3
2 shows a pump unit with a pressure medium container of the drive unit according to FIG. 1 in a developed view,
Figure 4
2 shows a schematic longitudinal section through a slightly modified drive unit with an attached implement,
Figure 5
2 shows a schematic longitudinal section through a drive unit according to FIG. 1 with an attached vibratory piling device,
Figure 6
3 shows a cross section through a drive unit according to FIG. 5,
Figure 7
2 shows a schematic longitudinal section through a slightly modified drive unit with an attached ramming hammer,
Figure 8
2 shows a partially sectioned schematic view of a drive unit enclosing the hammer housing of a ramming hammer,
Figure 9
2 shows a schematic longitudinal section through a drive unit according to FIG. 1 with an attached flushing device,
Figure 10
2 shows a schematic longitudinal section through a modified drive unit with an attached flushing device,
Figure 11
6 shows a pump unit of the drive unit according to FIG. 10 in a developed view,
Figure 12
another embodiment of a pump unit of the drive unit according to FIG. 10,
Figure 13
a further modified embodiment of the pump units of a drive unit according to FIG. 10,
Figure 14
1 shows a schematic representation of the drive of a pile driver by a drive unit set down on the seabed,
Figure 15
14 shows a partial longitudinal section through the rotary head of the drive unit according to FIG. 14,
Figure 16
a schematic representation of a drive unit placed on an underwater structure with additional pressure medium container and
Figure 17
a schematic longitudinal section through a drive unit according to Figures 1 and 16 with attached additional pressure medium container.

Die in den Fig. 1 bis 3 dargestellte Antriebseinheit besitzt ein im wesentlichen zylindrisches Mantelgehäuse M mit einer ringförmigen oberen Tragplatte 4 mit einer Tragöse 44, einer ringförmigen unteren Tragplatte 5, einer diese verbindenden, zylindrischen äußeren Mantelwand 2 und einer zu dieser konzentrischen, zylindrischen Innenwand 3, die einen durchgehenden Aufnahmeschacht 1 umschließt. Während die äußere Mantelwand 2 mit den Tragplatten 4 und 5 durch in an ihren Enden angeordnete Gewindebohrungen eingeschraubte Gewindebolzen 23 starr verbunden ist, weist die Innenwand 3 in ihrem oberen und ihrem unteren Abschnitt über den Umfang verteilt angeordnete Durchtrittsöffnungen 9 auf und ist in der Mantelwand 2 über bei der dargestellten Ausführungsform ringförmige Zentrierelemente 6 lose zentriert und durch jeweils am Oberrand bzw. am Unterrand angeordnete, jeweils vorgespanntes Gas enthaltende oder mit einem nicht dargestellten Hydrospeicher verbundene Hydraulikzylinder 7 mit auswärts vorstehenden Kolben 8 gegen die obere Tragplatte 4 bzw. die untere Tragplatte 5 beidseitig federnd abgestützt. An Stelle der Hydraulikzylinder 7 können auch durch hohen Gasdruck oder entsprechend vorgespannte elastische Mittel beaufschlagte Federzylinder verwendet werden. An den Durchtrittsöffnungen 9 der Innenwand 3 sind ferner ähnliche, vorgespannte Hydraulikzylinder 7 angebracht, deren Kolben 8 einwärts in den Aufnahmeschacht 1 vorstehen und eine elastische Abstützung der Innenwand 3 gegen einen in den Aufnahmeschacht 1 eingeführten Rammpfahl oder ein darin angeordnetes Ramm- oder Arbeitsgerät ermöglichen.The drive unit shown in FIGS. 1 to 3 has a substantially cylindrical casing M with an annular upper support plate 4 with a lifting eye 44, an annular lower support plate 5, a cylindrical outer casing wall 2 connecting them and a cylindrical inner wall concentric with this 3, which encloses a continuous receiving shaft 1. While the outer jacket wall 2 is rigidly connected to the support plates 4 and 5 by threaded bolts 23 screwed into threaded bores arranged at their ends, the inner wall 3 has through-openings 9 arranged in its upper and lower sections distributed over the circumference and is in the jacket wall 2 Loosely centered by means of annular centering elements 6 in the embodiment shown and by hydraulic cylinders 7 with pistons 8 projecting outwards against the upper support plate 4 or the lower support plate 5 which are arranged on the upper edge or the lower edge and each contain prestressed gas or are connected to a hydraulic accumulator (not shown) supported on both sides. Instead of the hydraulic cylinders 7, spring cylinders acted upon by high gas pressure or appropriately preloaded elastic means can also be used. Similar, prestressed hydraulic cylinders 7 are also attached to the passage openings 9 of the inner wall 3, the pistons 8 of which protrude inwards into the receiving shaft 1 and an elastic support of the inner wall 3 against a ramming pile inserted into the receiving shaft 1 or enable a piling or working device arranged in it.

In dem zwischen der Mantelwand 2 und der Innenwand 3 liegenden Ringraum 22 sind bei der dargestellten Ausführungsform fünf jeweils in gleichen Umfangsabständen angeordnete Pumpeneinheiten 10 aus jeweils einem senkrecht ausgerichteten, tauchfähigen Elektromotor 12 und einer mit dessen unterem Ende koaxial verbundenen Hydraulikpumpe 13 angeordnet. Jede Pumpeneinheit 10 ist über elastische Stützelemente 11 auf einem Tragvorsprung der Innenwand 3 abgestützt. Zu den Pumpeneinheiten 10 gehören jeweils zugeordnete, im wesentlichen zylindrische Druckmittelbehälter 14, die jeweils zwischen benachbarten Pumpeneinheiten 10 senkrecht ausgerichtet an der Innenwand 3 befestigt sind. Jede Hydraulikpumpe 13 ist einerseits über eine Verbindungsleitung 21 mit eingebautem vibrationsdämpfenden Dehnungsausgleicher 24 mit dem unteren Teil des zugehörigen Druckmittelbehälters 14 und andererseits über eine schlauchartige Verbindungsleitung 18 mit einem Sammelanschluß 19 verbunden, von dem das Druckmittel über nicht dargestellte weitere Schlauchleitungen dem jeweils anzutreibenden Ramm- oder Arbeitsgerät zugeführt wird. Der Rückstrom des Druckmittels vom Ramm- oder Arbeitsgerät erfolgt ebenfalls über den Sammelanschluß 19, der über eine Verbindungsleitung 20 mit dem oberen Teil des zugehörigen Druckmittelbehälters 14 kommuniziert. Da jede Pumpeneinheit 10 einen eigenen langgestreckt zylindrischen Druckmittelbehälter 14 aufweist, wird gleichzeitig eine wirksame Kühlung des Druckmittels durch das umgebende Wasser erzielt. Die Elektromotoren 12 sind jeweils über eine gesonderte elektrische Leitung 17 mit einem wasserdichten Anschlußkasten 16 verbunden, an den ein von einer Energiequelle über Wasser heruntergeführtes Umbilical 15 mit einer mindestens der Anzahl der Elektromotoren 12 entsprechenden Zahl von getrennten elektrischen Kraftleitungen wasserdicht angeschlossen werden kann. Jeder Druckmittelbehälter 14 enthält an seinem oberen Ende einen einerseits über eine Öffnung 27 mit dem Innenraum des Druckmittelbehälters 14 und andererseits über eine äußere Öffnung 28 mit der Umgebung kommunizierenden Zylinder 25 mit einem darin verschiebbaren Schwimmkolben 26. Durch diese Anordnung wird über den Schwimmkolben 26 der Druck im Druckmittelbehälter 14 stets selbsttätig dem Druck des umgebenden Wassers angepaßt, so daß einerseits die Behälterwand 29 keinem äußeren Überdruck ausgesetzt ist und andererseits das Druckmittel der Hydraulikpumpe 13 jeweils zügig zuläuft. Da die von den Sammelanschlüssen 19 zu den zugehörigen Druckmittelbehältern 14 verlaufenden Verbindungsleitungen 20 untereinander durch eine Ringleitung 30 verbunden sind, wird selbst im Falle des Festsitzens eines Schwimmkolbens 26 in dem betroffenen Druckmittelbehälter 14 dennoch über die Schwimmholben 26 der übrigen Druckmittelbehälter ein Druckausgleich hergestellt, so daß die Anlage weiterhin funktionsfähig bleibt.In the illustrated embodiment, five pump units 10, each arranged at the same circumferential spacing, each consisting of a vertically oriented, submersible electric motor 12 and a hydraulic pump 13 connected coaxially with its lower end are arranged in the annular space 22 between the jacket wall 2 and the inner wall 3. Each pump unit 10 is supported on a supporting projection of the inner wall 3 via elastic support elements 11. The pump units 10 each have associated, essentially cylindrical pressure medium containers 14, which are each attached to the inner wall 3 in a vertically aligned manner between adjacent pump units 10. Each hydraulic pump 13 is connected on the one hand via a connecting line 21 with a built-in vibration-damping expansion compensator 24 to the lower part of the associated pressure medium container 14 and, on the other hand, via a hose-like connecting line 18 with a collecting connection 19, from which the pressure medium via further hose lines, not shown, to the ramming or driven Tool is fed. The return flow of the pressure medium from the ramming or working device also takes place via the collecting connection 19, which communicates via a connecting line 20 with the upper part of the associated pressure medium container 14. Since each pump unit 10 has its own elongated cylindrical pressure medium container 14, effective cooling of the pressure medium by the surrounding water is achieved at the same time. The electric motors 12 are each connected via a separate electrical line 17 to a watertight junction box 16, to which an umbilical 15 which is led down from an energy source over water and can be connected in a watertight manner with a number of separate electrical power lines corresponding to at least the number of electric motors 12. At its upper end, each pressure medium container 14 contains, on the one hand, an opening 27 with the interior the pressure medium container 14 and on the other hand via an outer opening 28 with the environment communicating cylinder 25 with a displaceable floating piston 26. Through this arrangement, the pressure in the pressure medium container 14 is always automatically adjusted to the pressure of the surrounding water via the floating piston 26, so that on the one hand the container wall 29 is not exposed to any external overpressure and, on the other hand, the pressure medium of the hydraulic pump 13 in each case runs quickly. Since the connecting lines 20 running from the collecting connections 19 to the associated pressure medium containers 14 are connected to one another by a ring line 30, even in the event that a floating piston 26 is stuck in the pressure medium container 14 concerned, pressure equalization is nevertheless produced via the floating holes 26 of the remaining pressure medium containers, so that the system remains functional.

Im Betrieb wird durch die Hydraulikpumpe 13 über die Verbindungsleitung 21 Druckmittel aus dem Druckmittelbehälter 14 angesaugt und über die Schlauchleitung 18 und den Sammelanschluß 19 zum anzutreibenden Ramm- oder Arbeitsgerät geführt, während das rückströmende Druckmittel vom Sammelanschluß 19 über die Verbindungsleitung 20 in den Druckmittelbehälter 14 zurückläuft.In operation, the hydraulic pump 13 sucks pressure medium from the pressure medium container 14 via the connecting line 21 and leads it via the hose line 18 and the collecting connection 19 to the ramming or working device to be driven, while the returning pressure medium runs back from the collecting connection 19 via the connecting line 20 into the pressure medium container 14 .

Da die Pumpeneinheiten 10 und die Druckmittelbhälter 14 über den Umfang des zylindrischen Mantelgehäuses M gleichmäßig verteilt angebracht sind, bewirkt die Antriebseinheit bei ihrer Verbindung mit einem Ramm- oder Arbeitsgerät praktisch keine gewichtsbedingte Verkantung desselben.Since the pump units 10 and the pressure medium containers 14 are attached in a uniformly distributed manner over the circumference of the cylindrical casing M, the drive unit causes practically no tilting of the same when connected to a ramming or working device.

Die in Fig. 4 dargestellte Antriebseinheit gemäß Fig. 1 trägt ein mit der oberen Tragplatte 4 durch Gewindebolzen 23 lösbar verbundenes Arbeitsgerät mit einer über Hydraulikmotoren 31 und ein Getriebe 32 antreibbaren Arbeitsspindel 33, die sich durch den Aufnahmeschacht 1 und ein an der unteren Tragplatte 5 konzentrisch angebrachtes Führungsrohr 34 koaxial hindurcherstreckt und an ihrem freien unteren Ende mit einem auswechselbaren Werkzeugträger 37 drehfest verbunden ist. Die Arbeitsspindel 33 ist durch in den Tragplatten 4 und 5 sowie im Führungsrohr 34 angeordnete Radiallager 35 drehbar gelagert und zusätzlich durch jeweils mit einer Tragplatte 4 bzw. 5 zusammenwirkende Axiallager 36 gegen vertikale Verschiebungen gesichert.The drive unit shown in FIG. 4 according to FIG. 1 carries a working device detachably connected to the upper support plate 4 by threaded bolts 23 with a work spindle 33 which can be driven by hydraulic motors 31 and a gear 32, which extends through the receiving shaft 1 and on the lower support plate 5 concentrically attached guide tube 34 extends coaxially and is connected at its free lower end to a replaceable tool carrier 37 in a rotationally fixed manner. The work spindle 33 is rotatably supported by radial bearings 35 arranged in the support plates 4 and 5 and in the guide tube 34, and is additionally secured against vertical displacements by axial bearings 36 each interacting with a support plate 4 or 5.

Die Hydraulikmotoren 31 werden durch von den Hydraulikpumpen 13 über die Schlauchleitung 18, den Sammelanschluß 19 und eine Verbindungsleitung 41 zugeführtes Druckmittel angetrieben, das dann über die Verbindungsleitung 42, den Sammelanschluß 19 und die Verbindungsleitung 20 zum Druckmittelbehälter 14 zurückströmt. Zusätzlich wird das Arbeitsgerät über den mit dem Umbilical 15 verbundenen Anschlußkasten 16 und eine über einen Anschluß 43 geführte Versorgungsleitung mit Strom versorgt. Zur Abstützung des Umbilicals 15 ist an der oberen Tragplatte 4 ein im wesentlichen halbkreisförmiges Stützelement 46 angebracht, auf das sich das schlaufenartig durchhängende Umbilical 15 auflegt. Das mit der Antriebseinheit verbundene Arbeitsgerät ist mittels einer an seinem oberen Ende schwenkbar angelenkten Tragöse 44 an einem Tragseil 45 eines auf einem nicht dargestellten Werkstattschiff angeordneten Kranes aufgehängt und wird durch diesen zusammen mit der Antriebseinheit in die gewünschte Wassertiefe abgesenkt und wieder angehoben. Bei Bedarf kann das mit der Antriebseinheit verbundene Arbeitsgerät auch durch nicht dargestellte, zusätzliche Vorrichtungen, beispielsweise am Führungsrohr 34 oder an der unteren Tragplatte 5 angreifende, zusätzliche Tragelemente in geneigter bis horizontaler Ausrichtung eingesetzt werden.The hydraulic motors 31 are driven by pressure medium supplied by the hydraulic pumps 13 via the hose line 18, the collecting connection 19 and a connecting line 41, which then flows back to the pressure medium container 14 via the connecting line 42, the collecting connection 19 and the connecting line 20. In addition, the implement is supplied with power via the connection box 16 connected to the umbilical 15 and a supply line led via a connection 43. To support the umbilical 15, a substantially semicircular support element 46 is attached to the upper support plate 4, on which the loop-like sagging umbilical 15 is placed. The working device connected to the drive unit is suspended by means of a lifting eye 44 pivotably articulated at its upper end on a suspension cable 45 of a crane arranged on a workshop ship, not shown, and is lowered and raised to the desired water depth together with the drive unit. If necessary, the implement connected to the drive unit can also be used in an inclined to horizontal orientation by means of additional devices (not shown), for example, additional support elements which engage the guide tube 34 or the lower support plate 5.

Der am unteren Ende der Arbeitsspindel 33 angebrachte Werkzeugträger 37 ist mit herkömmlichen Vorrichtungen zur auswechselbaren Halterung nicht dargestellter Arbeitswerkzeuge zur Durchführung von Schneid-, Zerspanungs-, Schleif-, Säge- und Bohrarbeiten und/oder Spül-, Druckstrahl- oder Brennarbeiten versehen. Soweit diese Arbeitswerkzeuge mit Druckmitteln, Gasen oder elektrischem Strom versorgt werden müssen, können diese durch nicht gezeigte Versorgungsleitungen zugeführt werden, die im Inneren der hohlen Arbeitsspindel 33 verlaufen, an deren oberem Ende über eine nur schematisch dargestellte, herkömmliche Drehdurchführung 39 mit einer Pumpe oder entsprechenden Zuleitungen im Umbilical 15 sowie durch eine dem Werkzeugträger 37 benachbarte Austrittsöffnung 40 mit den zu versorgenden Arbeitswerkzeugen verbunden sind.The tool holder 37 attached to the lower end of the work spindle 33 is provided with conventional devices for the interchangeable mounting of work tools, not shown, for carrying out cutting, machining, grinding, sawing and drilling work and / or flushing, pressure jet or burning work. As far as these work tools can be supplied with pressure media, gases or electrical current these are supplied through supply lines, not shown, which run inside the hollow work spindle 33, at the upper end of which, via a conventional rotary feedthrough 39, only shown schematically, with a pump or corresponding supply lines in the umbilical 15, and through an outlet opening 40 adjacent to the tool carrier 37 with the are connected to work tools to be supplied.

In den Fig. 5 und 6 ist eine nur hinsichtlich des hier rechteckig ausgebildeten Querschnitts der Mantelwand 2, der Innenwand 3 und des Aufnahmeschachts 1 abgewandelte Antriebseinheit mit einem an deren oberer Tragplatte 4 über Gewindebolzen 23 lösbar befestigten Vibrations-Rammgerät 47 dargestellt. Die untere Tragplatte 5 ist mit einem Einführkonus 53 für einen im Querschnitt im wesentlichen rechteckigen Rammpfahl 48 versehen. Im übrigen entspricht die Antriebeinheit den vorstehend in Verbindung mit den Fig. 1 bis 3 gegebenen Erläuterungen.5 and 6, a drive unit which is modified only with regard to the cross-section of the jacket wall 2, the inner wall 3 and the receiving shaft 1, which is rectangular here, is shown with a vibration piling device 47 detachably fastened to its upper support plate 4 by means of threaded bolts 23. The lower support plate 5 is provided with an insertion cone 53 for a ram pile 48 which is essentially rectangular in cross section. Otherwise, the drive unit corresponds to the explanations given above in connection with FIGS. 1 to 3.

Das Vibrations-Rammgerät 47 ist in üblicher Weise mit nur schematisch angedeuteten Unwuchtmotoren 49 versehen und ruht auf dem sich durch den Aufnahmeschacht 1 hindurcherstreckenden Rammpfahl 48, dessen oberer Endrand in eine unterseitige Ausnehmung 50 des Vibrations-Rammgerätes 47 eingreift. Zur optimalen Übertragung der Vibrationen auf den Rammpfahl 48 ist das Vibrations-Rammgerät mit horizontal ausgerichteten Preßzylindern 51 versehen, deren Kolben 52 durch Druckmittelzufuhr von der Antriebseinheit fest gegen die Außenwand des Rammpfahles 48 angepreßt werden, wodurch ein für die Übertragung der Vibrationen günstiger, fester Reibschluß hergestellt wird. Die zur Druckmittelversorgung der Preßzylinder 51 erforderlichen Verbindungsleitungen zu mindestens einer Hydraulikpumpe 13 der Antriebseinheit und die entsprechenden Umschaltorgane sind in Fig. 5 aus Übersichtlichkeitsgründen nicht dargestellt. Die Signalübertragung zum Vibrations-Rammgerät 47 erfolgt über eine Signalleitung 54. Das mit der Antriebseinheit verbundene Vibrations-Rammgerät 47 wird über eine am oberen Ende schwenkbar angelenkte Tragöse 44 und ein durch diese geführtes Tragseil 45 so abgesenkt, daß der Rammpfahl 48 durch den Einführkonus 53 in den Aufnahmeschacht 1 eingeführt wird, bis sich die Ausnehmung 50 des Vibrations-Rammgerätes 47 auf den Oberrand des Rammpfahles auflegt. Im Betrieb wird das Vibrations-Rammgerät 47 von der Antriebseinheit über die Verbindungsleitungen 18 und 20 mit Druckmittel versorgt, das über entsprechende Hydraulikmotoren die Unwuchtmotoren 49 in herkömmlicher Weise zur Erzeugung einer Vibration mit zum Eintreiben des Rammpfahles 48 geeigneter Frequenz und Amplitude antreibt.The vibratory pile driver 47 is provided in the usual manner with unbalance motors 49, which are only indicated schematically, and rests on the pile pile 48 which extends through the receiving shaft 1 and whose upper end edge engages in a recess 50 on the underside of the vibratory pile driver 47. For optimal transmission of the vibrations to the ramming pile 48, the vibrating ramming device is provided with horizontally oriented press cylinders 51, the pistons 52 of which are pressed firmly against the outer wall of the ramming pile 48 by supply of pressure medium from the drive unit, which results in a firm, frictional connection which is favorable for the transmission of the vibrations will be produced. The connection lines to at least one hydraulic pump 13 of the drive unit required for supplying the pressure cylinders 51 with pressure medium and the corresponding switching elements are not shown in FIG. 5 for reasons of clarity. The signal transmission to the vibration piling device 47 takes place via a signal line 54. This with the drive unit The connected vibratory piling device 47 is lowered via a lifting eye 44 pivotably articulated at the upper end and a carrying rope 45 guided through it so that the driving pile 48 is inserted into the receiving shaft 1 through the insertion cone 53 until the recess 50 of the vibrating piling device 47 on the upper edge of the pile. In operation, the vibratory pile driver 47 is supplied with pressure medium from the drive unit via the connecting lines 18 and 20, which drives the unbalance motors 49 in a conventional manner to generate a vibration with a frequency and amplitude suitable for driving the pile driver 48, via corresponding hydraulic motors.

Bei der in Fig. 7 dargestellten Antriebseinheit ist die untere Tragplatte 5 einerseits mit einem einstückig angearbeiteten Einführkonus 59 und andererseits mit einem sich durch den Aufnahmeschacht 1 aufwärts erstreckenden Führungsrohr 61 für einen zylindrischen Rammpfahl 60 versehen. Die obere Tragplatte 4 ist mit einem am Außenumfang des Hammergehäuses 63 eines Rammhammers 55 angebrachten Befestigungsflansch 62 durch Gewindebolzen lösbar verbunden. Im Hammergehäuse 63 ist in üblicherweise ein nicht dargestellter Schlagkörper aufwärts und abwärts verschiebbar geführt, der über eine Kolbenstange mit einem in einem Hydraulikzylinder dichtend verschiebbaren Kolben verbunden ist. Die Kammern des nicht dargestellten Hydraulikzylinders sind über eine herkömmliche, nicht dargestellte Umsteuervorrichtung, einen Anschluß 64 sowie zwei Schlauchleitungen 56 und 57 mit dem Sammelanschluß 19 der Antriebseinheit verbunden. Das von den Hydraulikpumpen 13 geförderte Druckmittel strömt über die Schlauchleitung 18, den Sammelanschluß 19 und die Schlauchleitung 56 zum Anschluß 64, während das aus dem Hydraulikzylinder verdrängte Druckmittel über die Schlauchleitung 57, den Sammelanschluß 19 und die Verbindungsleitung 20 zu den Druckmittelbehältern 14 zurückströmt. Die für den Betrieb des Rammhammers erforderlichen elektrischen Steuer- und Kontrollsignale werden über eine Signalleitung 58 übertragen.In the drive unit shown in FIG. 7, the lower support plate 5 is provided on the one hand with an integrally machined insertion cone 59 and on the other hand with a guide tube 61 extending upwards through the receiving shaft 1 for a cylindrical ramming pile 60. The upper support plate 4 is detachably connected to a fastening flange 62 attached to the outer circumference of the hammer housing 63 of a ramming hammer 55 by means of threaded bolts. In the hammer housing 63, an impacting body (not shown) is usually displaceably guided upwards and downwards, which is connected via a piston rod to a piston which can be displaceably sealed in a hydraulic cylinder. The chambers of the hydraulic cylinder, not shown, are connected to the common connection 19 of the drive unit via a conventional reversing device, not shown, a connection 64 and two hose lines 56 and 57. The pressure medium conveyed by the hydraulic pumps 13 flows via the hose line 18, the collecting connection 19 and the hose line 56 to the connection 64, while the pressure medium displaced from the hydraulic cylinder flows back via the hose line 57, the collecting connection 19 and the connecting line 20 to the pressure medium containers 14. The electrical control and monitoring signals required for the operation of the ramming hammer are transmitted via a signal line 58 transfer.

Bei dieser Ausführungsform ist die die Pumpeneinheiten 10 und die Druckmittelbehälter 14 tragende Innenwand 3 der Antriebseinheit oben und unten über die Kolben 8 der Hydraulikzylinder 7 gegen die Außenfläche des Führungsrohres 61 federnd abgestützt, so daß die Pumpeneinheiten 10 und die Druckmittelbehälter 14 durch die Rammschläge des Rammhammers 55 nicht beeinträchtigt werden. Dies gilt um so mehr, als das Hammergehäuse 63 auf der auf dem Rammpfahl 60 aufliegenden Schlagplatte S zweckmäßig ebenfalls durch vorgespannte Federvorrichtungen, insbesondere mit Hydrospeichern verbundene Hydraulikzylinder mit auswärts vorstehenden Stützkolben federnd abgestützt ist.In this embodiment, the inner wall 3 of the drive unit, which carries the pump units 10 and the pressure medium containers 14, is resiliently supported at the top and bottom via the pistons 8 of the hydraulic cylinders 7 against the outer surface of the guide tube 61, so that the pump units 10 and the pressure medium containers 14 are driven by the ramming of the ramming hammer 55 are not affected. This is all the more true since the hammer housing 63 is expediently also resiliently supported on the striking plate S resting on the driven pile 60 by prestressed spring devices, in particular hydraulic cylinders connected to hydraulic accumulators, with outwardly projecting support pistons.

Zum Eintreiben von Rammpfählen 60 großen Durchmessers kann die Antriebseinheit auch durch Weglassung des Führungsrohres 61 modifiziert werden, so daß sich die Kolben 8 der horizontalen Hydraulikzylinder 7 federnd direkt gegen den Rammpfahl 60 abstützen. In beiden Fällen bildet die Antriebseinheit in zweckmäßiger Weise gleichzeitig die zur Führung des Rammpfahles 60 ohnehin benötigte Pfahlmanschette.To drive ram piles 60 of large diameter, the drive unit can also be modified by omitting the guide tube 61, so that the pistons 8 of the horizontal hydraulic cylinders 7 are resiliently supported directly against the ram pile 60. In both cases, the drive unit expediently simultaneously forms the pile collar which is anyway required for guiding the driven pile 60.

Bei der in Fig. 8 dargestellten Anordnung ist die Antriebseinheit mit der unteren Tragplatte 5 von oben über den Außenumfang des Hammergehäuses 63 bis auf einen an diesem auswärts vorspringenden Befestigungsflansch 62 abgesenkt, wobei die untere Tragplatte 5 zweckmäßig am Befestigungsflansch lösbar festgelegt ist. Da bei dieser Anordnung die Antriebseinheit den Hauptteil des Hammergehäuses 63 umschließt, ergibt sich eine in manchen Fällen vorteilhafte geringere Baulänge der abzusenkenden Einrichtung. Bei der gezeigten Ausführungsform ist das Hammergehäuse 63 jedoch mit einer an der Unterseite des Befestigungsflansches 62 angebrachten Pfahlmanschette 65 versehen, die einen sicheren freireitenden Sitz auf dem Rammpfahl 60 gewährleistet. Diese Anordnung ermöglicht auch das Eintreiben vom Rammpfählen 60 mit sehr großem Durchmesser, die nicht mehr in den Aufnahmeschacht 1 der Antriebseinheit aufgenommen werden können.In the arrangement shown in FIG. 8, the drive unit with the lower support plate 5 is lowered from above over the outer circumference of the hammer housing 63 to an attachment flange 62 projecting outward thereon, the lower support plate 5 advantageously being releasably secured to the attachment flange. In this arrangement, since the drive unit encloses the main part of the hammer housing 63, there is in some cases an advantageously shorter overall length of the device to be lowered. In the embodiment shown, the hammer housing 63 is, however, provided with a pile collar 65 attached to the underside of the fastening flange 62, which ensures a secure, free-running fit on the driven pile 60. This arrangement also enables driving of ram piles 60 with a very large diameter can no longer be accommodated in the receiving shaft 1 of the drive unit.

Bei der in Fig. 9 dargestellten Anordnung ist die untere Tragplatte 5 über Gewindebolzen 23 mit dem Befestigungsflansch 74 eines Spülgeräts 66 lösbar verbunden, das ein den Aufnahmeschacht 1 durchsetzendes Spülrohr 72 mit eingebautem Rückschlagventil 73 sowie mehrere am oberen Ende des Spülrohres 72 angeordnete Pumpeneinheiten 67 aus jeweils einer durch einen Hydraulikmotor 70 angetriebenen Wasserpumpe 68 aufweist, die über eine Ansaugöffnung 69 umgebendes Meerwasser ansaugt und dieses über zugeordnete Eintrittsöffnungen 71 in das Spülrohr 72 fördert. Bei der dargestellten Anordnung ist das Spülgerät 66 über ein nach Art eines Bajonettverschlusses wirkendes Kupplungsteil 76 an einer auf dem Meeresboden angeordneten, absperrbaren Ölfördervorrichtung 75 flüssigkeitsdicht festgelegt. Die Hydraulikmotoren 70 werden von den Hydraulikpumpen 13 der Antriebseinheit über die Schlauchleitung 18, den Sammelanschluß 19 und die Verbindungsleitung 41 mit Druckmittel versorgt, das dann über die Verbindungsleitung 42, den Sammelanschluß 19 und die Verbindungsleitung 20 zum Druckmittelbehälter 14 zurückströmt. Das Rückschlagventil 73 läßt den von den Wasserpumpen 68 geförderten Druckwasserstrom zur Ölfördervorrichtung 75 und dem darunterliegenden Bohrloch hindurchtreten, verhindert aber umgekehrt jedes Austreten in Richtung zum Spülrohr 72.In the arrangement shown in FIG. 9, the lower support plate 5 is detachably connected via threaded bolts 23 to the mounting flange 74 of a flushing device 66, which has a flushing pipe 72 passing through the receiving shaft 1 with a built-in check valve 73 and a plurality of pump units 67 arranged at the upper end of the flushing pipe 72 Each has a water pump 68 driven by a hydraulic motor 70, which sucks in sea water surrounding a suction opening 69 and conveys it into the rinsing pipe 72 via associated inlet openings 71. In the arrangement shown, the flushing device 66 is fixed in a liquid-tight manner by means of a coupling part 76, acting in the manner of a bayonet lock, on a lockable oil delivery device 75 arranged on the seabed. The hydraulic motors 70 are supplied with pressure medium from the hydraulic pumps 13 of the drive unit via the hose line 18, the collecting connection 19 and the connecting line 41, which then flows back via the connecting line 42, the collecting connection 19 and the connecting line 20 to the pressure medium container 14. The check valve 73 allows the pressurized water flow conveyed by the water pumps 68 to pass to the oil delivery device 75 and the borehole underneath, but conversely prevents any leakage in the direction of the flushing pipe 72.

Auf diese Weise kann mittels der universell einsetzbaren Antriebseinheit mit dem daran angebrachten, einfachen Spülgerät auf wirtschaftliche Weise Druckwasser durch ein Bohrloch in eine Öllagerstätte eingepreßt werden, um sonst nicht mehr gewinnbare Ölmengen an anderer Stelle der Lagerstätte auszupressen und sie so ergiebiger zu machen. Ein wesentlicher Vorteil liegt darin, daß dabei auf die Verwendung eines beschädigungsgefährdeten, teuren, langen Hochdruckschlauches großen Durchmessers vom Schiff zum Bohrloch verzichtet werden kann.In this way, by means of the universally applicable drive unit with the simple flushing device attached to it, pressurized water can be pressed in economically through a borehole into an oil deposit in order to squeeze out otherwise unavailable amounts of oil elsewhere in the deposit and thus make it more productive. A major advantage is that there is no need to use an expensive, long, high-pressure hose of large diameter from the ship to the borehole that is at risk of damage.

Dieser Vorteil ist um so größer, je höher der erforderliche Wasserdruck und je größer die Wassertiefe ist.The greater the required water pressure and the greater the water depth, the greater this advantage.

Bei der in den Fig. 10 und 11 dargestellten Ausführungsform weist die Antriebseinheit in dem Ringraum 22 zwischen der Mantelwand 2 und der Innenwand 3 eingebaute Pumpeneinheiten 67 mit jeweils einem über eine Verbindungsleitung 80 mit einer zugeordneten Hydraulikpumpe verbundenem Hydraulikmotor 70 und einer mit diesem verbundenen Wasserpumpe 68 auf, die über eine die Innenwand 3 durchsetzende Eintrittsöffnung 71 mit dem Spülrohr 72 kommuniziert. Hierdurch ergibt sich eine noch kürzere und kompaktere Bauart. Bei der dargestellten Anordnung ist die Spülvorrichtung 66 mittels eines nach Art eines Bajonettverschlusses wirkenden Kupplungsteils 76 mit einem Anschlußstutzen 83 verbunden, der an einem Inspektionsflansch 77 einer auf dem Meeresboden verlegten Pipeline 78 festgelegt ist. Das mit der Antriebseinheit verbundene Spülgerät 66 wird über eine an seinem oberen Ende schwenkbar angelenkte Tragöse 44 und ein durch diese hindurchgeführtes Tragseil 45 abgesenkt und angehoben.In the embodiment shown in FIGS. 10 and 11, the drive unit has pump units 67 installed in the annular space 22 between the jacket wall 2 and the inner wall 3, each with a hydraulic motor 70 connected via a connecting line 80 to an associated hydraulic pump and a water pump 68 connected to this which communicates with the flushing pipe 72 via an inlet opening 71 passing through the inner wall 3. This results in an even shorter and more compact design. In the arrangement shown, the flushing device 66 is connected by means of a coupling part 76 acting in the manner of a bayonet lock to a connecting piece 83 which is fixed to an inspection flange 77 of a pipeline 78 laid on the seabed. The flushing device 66 connected to the drive unit is lowered and raised by means of a lifting eye 44 pivotably articulated at its upper end and a carrying rope 45 passed through it.

Bei der in Fig. 11 dargestellten abgewandelten Ausführungsform sind die Pumpeneinheiten 10 und 67 jeweils über elastische Stützelemente 11 auf am Druckmittelbehälter 14 angebrachten Tragstützen 79 elastisch abgestützt. Die Druckmittelbehälter 14 sind ihrerseits auf einer Konsole 85 an der Innenwand 3 der Antriebseinheit lösbar befestigt. Auf diese Weise kann jeder Druckmittelbehälter 14 zusammen mit dem zugehörigen Elektromotor 12, der von diesem angetriebenen Hydraulikpumpe 13, dem Hydraulikmotor 70 und der von diesem angetriebenen Wasserpumpe 68 rasch und einfach in den nach Abnehmen lösbarer Segmente der Mantelwand 2 zugänglichen Ringraum 22 ein- und ausgebaut werden. Das von der Hydraulikpumpe 13 über die Verbindungsleitung 80 zum Hydraulikmotor 70 geförderte Druckmittel strömt über eine Verbindungsleitung 81 zum Anschluß 82 des Druckmittelbehälters 14 zurück. Aus diesem wird das Druckmittel von der Hydraulikpumpe 13 über einen Anschluß 84 und die Verbindungsleitung 21 angesaugt.In the modified embodiment shown in FIG. 11, the pump units 10 and 67 are each elastically supported on support supports 79 attached to the pressure medium container 14 via elastic support elements 11. The pressure medium containers 14 are in turn releasably attached to a bracket 85 on the inner wall 3 of the drive unit. In this way, each pressure medium container 14 together with the associated electric motor 12, the hydraulic pump 13 driven by it, the hydraulic motor 70 and the water pump 68 driven by it can be quickly and easily installed and removed in the annular space 22 accessible after detachable segments of the jacket wall 2 will. The pressure medium conveyed by the hydraulic pump 13 via the connecting line 80 to the hydraulic motor 70 flows back via a connecting line 81 to the connection 82 of the pressure medium container 14. For this the pressure medium is sucked in by the hydraulic pump 13 via a connection 84 and the connecting line 21.

Bei der in Fig. 12 dargestellten, abgewandelten Anordnung treibt der über Stützelemente 88 und 89 an der Innenwand 3 befestigte Elektromotor 12 die mit ihm über eine Stützplatte 87 verbundene Wasserpumpe 68 direkt über ein Getriebe 86.In the modified arrangement shown in FIG. 12, the electric motor 12 fastened to the inner wall 3 via support elements 88 and 89 drives the water pump 68 connected to it via a support plate 87 directly via a gear 86.

Bei der in Fig. 13 dargestellten Ausführungsform sind die Wasserpumpe 68 und der Elektromotor 12 koaxial zu einer Einheit verbunden, die über Stützplatten 90 und 91 an der Innenwand 3 befestigt ist. Diese Ausführungsform eignet sich für Fälle, bei denen ein direkter Antrieb der Wasserpumpe 68 ohne Drehzahlübersetzung zulässig ist.In the embodiment shown in FIG. 13, the water pump 68 and the electric motor 12 are connected coaxially to a unit which is fastened to the inner wall 3 via support plates 90 and 91. This embodiment is suitable for cases in which a direct drive of the water pump 68 is permitted without speed transmission.

Die vorstehend unter Bezugnahme auf die Fig. 1 bis 13 beschriebenen Ausführungsformen können natürlich je nach den Anforderungen des vorgesehenen Einsatzes in vielfältiger Weise modifiziert werden, um unter Verwendung einer kompletten Antriebseinheit durch wahlweisen, baukastenartigen Anbau der für den jeweiligen Arbeitszweck benötigten Ramm- oder Arbeitsgeräte durch wenige Befestigungsteile und Steckverbindungen oder allenfalls gewisse Modifizierungen einzelner Teile eine möglichst universelle Einsetzbarkeit der Antriebseinheit für verschiedene Geräte zu erreichen. In diesem Zusammenhang kann die Antriebseinheit auch so ausgestaltet werden, daß sie in auf dem Meeresboden oder einem Unterwasserbauwerk abgesetzter oder an einem Tragelement hängender Stellung ein von ihr beabstandet an einem eigenen Tragelement abgesenktes Ramm- oder Arbeitsgerät über eigene Verbindungsleitungen antreibt.The embodiments described above with reference to FIGS. 1 to 13 can of course be modified in a variety of ways depending on the requirements of the intended use, in order to use a complete drive unit by optional modular assembly of the ramming or working equipment required for the respective working purpose Few fastening parts and plug connections or at most certain modifications of individual parts to achieve the universal use of the drive unit for different devices. In this connection, the drive unit can also be designed such that it drives a ramming or working device, which is spaced apart from it on its own support element, on its own connecting lines in a position set down on the seabed or an underwater structure or hanging on a support element.

Hierzu ist die in Fig. 14 und 15 dargestellte, auf dem Meeresboden abgesetzte Antriebseinheit einerseits zur Erhöhung ihrer Standfestigkeit mit einer gegebenenfalls an der unteren Tragplatte 5 befestigten Basisplatte 96 und andererseits mit einem mit der oberen Tragplatte 4 über Gewindebolzen 97 lösbar verbundenen Drehkopf 92 versehen. Dieser besitzt einen in einem Gehäuse 103 verdrehbar gelagerten Drehzapfen 102 mit einem zentrischen Durchgangskanal 107 für das Umbilical 15 und zwei Durchgangskanälen 104 und 105, die jeweils zu einer in die Umfangsfläche des Drehzapfens 102 eingetieften Ringnut führen und über diese unabhängig von der Drehstellung des Drehzapfens 102 mit einer zugeordneten Verbindungsleitung 41 bzw. 42 kommunizieren und an ihrem anderen Ende jeweils mit einem zugeordneten, längeren Verbindungsschlauch 100 bzw. 101 verbunden sind. Diese sind zur Vermeidung von Abknickungen über eine torusartig gewölbte Stützfläche eines ringförmigen Kragens 106 geführt. Da der Drehkopf 92 über 360° frei verdrehbar ist, können die Schlauchleitungen 100 und 101 ohne Schwierigkeiten zu einem Rammhammer 94 verlaufen, der auf einem in einer Führungsvorrichtung 95 in größerem seitlichen Abstand von der Antriebseinheit vorinstallierten Rammpfahl 93 freireitend aufsitzt. Das Umbilical 15 wird durch mehrere Auftriebsbehälter 98 getragen, wobei der Auftrieb des untersten Auftriebsbehälters 98 so bemessen ist, daß er das Teilstück des Umbilicals 15 über der Antriebseinheit straff senkrecht hält, während die übrigen Auftriebsbehälter 98 das Umbilical 15 jeweils unter Bildung durchhängender Schlaufen 99 stufenförmig zur Wasserobefläche führen.For this purpose, the drive unit shown in FIGS. 14 and 15, which is set down on the sea floor, can be released on the one hand to increase its stability with a base plate 96 which may be fastened to the lower support plate 5 and on the other hand with a threaded bolt 97 with the upper support plate 4 connected turret 92 provided. This has a pivot 102, which is rotatably mounted in a housing 103, with a central through-channel 107 for the umbilical 15 and two through-channels 104 and 105, each of which lead to an annular groove recessed in the peripheral surface of the pivot 102 and via this irrespective of the rotational position of the pivot 102 communicate with an associated connecting line 41 or 42 and are each connected at their other end to an associated, longer connecting hose 100 or 101. To avoid kinks, these are guided over a toroidally curved support surface of an annular collar 106. Since the rotary head 92 can be freely rotated through 360 °, the hose lines 100 and 101 can run without difficulty to a ramming hammer 94, which sits freely on a ramming pile 93 pre-installed in a guide device 95 at a greater lateral distance from the drive unit. The umbilical 15 is carried by a plurality of buoyancy containers 98, the buoyancy of the bottom buoyancy container 98 being dimensioned such that it holds the section of the umbilical 15 above the drive unit tautly vertically, while the other buoyancy containers 98 the umbilical 15 each step-like, forming sagging loops 99 lead to the water surface.

Auf diese Weise können mehrere in der Nähe der auf dem Meeresboden abgesetzten Antriebseinheit vorinstallierte Rammpfähle 93 nacheinander mit dem gleichen Rammhammer 94 eingetrieben werden, ohne daß hierzu die Antriebseinheit verlagert werden muß. So wurde bei der in Fig. 14 dargestellten Anordnung zunächst der rechts wiedergegebene Rammpfahl 93 eingerammt und der Rammhammer 94 dann auf den links dargestellten, vorinstallierten Rammpfahl 93 überführt. So können beispielsweise mehrere an einer Offshore-Plattform vorinstallierte Rammpfähle zeit- und arbeitssparend eingetrieben werden.In this way, several ram piles 93 preinstalled in the vicinity of the drive unit set down on the sea floor can be driven in succession with the same ram hammer 94 without the drive unit having to be moved for this purpose. In the arrangement shown in FIG. 14, the ram pile 93 shown on the right was first rammed in and the ram hammer 94 was then transferred to the preinstalled ram pile 93 shown on the left. For example, several driven piles pre-installed on an offshore platform can be driven in to save time and labor.

Bei der in Fig. 16 dargestellten Anordnung ist die Antriebseinheit auf einer Unterwasserstruktur 115 oder auch auf einem Schiffsdeck über Wasser angeordnet und mit einem hydraulisch angetriebenen Vibrations-Rammgerät 47 über längere Schlauchleitungen 100 und 101 verbunden. Mit dem Vibrations-Rammgerät 47 soll eine größere Anzahl von Ankerpfählen 108 mit daran befestigten Ankerketten 116 zur Halterung einer nicht dargestellten Unterwasserkonstruktion in den Meeresboden eingerüttelt werden. Der Antriebseinheit wird die benötigte elektrische Energie wiederum über ein Umbilical 15 zugeführt. Da nun die von der Antriebseinheit zum Vibrations-Rammgerät 47 führenden, längeren Schlauchleitungen 100 und 101 eine von ihrem Durchmesser abhängige Druckmittel-Füllmenge aufnehmen, kann dadurch die in den Druckmittelbehältern 14 verbleibende Druckmittelmenge so gering werden, daß die Versorgung der Hydraulikpumpen 13 mit Druckmittel nicht mehr gewährleistet ist. Um dies zu vermeiden, ist die Antriebseinheit in der aus Fig. 17 ersichtlichen Weise mit einem in den Aufnahmeschacht 1 eingesetzten Zusatz-Druckmittelbehälter 109 versehen, der an der oberen Tragplatte 4 gehaltert ist und über eine Verbindungsleitung 110 mit den Druckmittelbehältern 14 kommuniziert. Sofern nun die Antriebseinheit dabei nicht unter Wasser, sondern auf einem Schiffsdeck aufgestellt ist, wird der Schwimmkolben 26 im Zylinder 25 wegen des Fehlens des auf seiner Außenfläche lastenden Wasserdrucks und der Reibung seiner Dichtung nicht mehr so stark gegen das Druckmittel im Druckmittelbehälter 14 angedrückt. Obgleich durch den Höhenunterschied zwischen der Antriebseinheit und dem in größerer Tiefe angeordneten Arbeitsgerät diesem das Druckmittel über die Schlauchleitung 100 immer noch zügig zulaufen sollte, kann bei oszillierender Betriebsweise dennoch ein kurzzeitiger Abriß des Druckmittelzulaufs eintreten, was für die Hydraulikmotoren auf die Dauer schädlich ist. Aus diesem Grunde ist die Antriebseinheit für den Einsatz über Wasser mit einer parallel zum Umbilical 15 über das Stützelement 106 verlaufenden Luftleitung 111 zur Oberseite des Zusatz-Druckmittelbehälters 109 versehen, um durch geringen Überdruck eine den Zulauf fördernde Vorspannung zu erzeugen. Der durch Entnahme von Druckmittel im Zusatz-Druckmittelbehälter 109 entstehende Druckluftraum 112 dient gleichzeitig als Pufferraum, der die bei oszillierendem Betrieb über die Schlauchleitung 100 unstetig zurückströmenden Druckmittelmengen ohne unerwünschte Druckspitzen aufnimmt.In the arrangement shown in FIG. 16, the drive unit is arranged on an underwater structure 115 or also on a ship's deck above water and connected to a hydraulically driven vibration piling device 47 via longer hose lines 100 and 101. The vibration piling device 47 is intended to shake a larger number of anchor piles 108 with anchor chains 116 attached to them to hold an underwater structure (not shown) in the seabed. The required electrical energy is in turn supplied to the drive unit via an umbilical 15. Since the longer hose lines 100 and 101 leading from the drive unit to the vibratory ramming device 47 accommodate a pressure medium filling quantity which is dependent on their diameter, the quantity of pressure medium remaining in the pressure medium containers 14 can be so small that the supply of the hydraulic pumps 13 with pressure medium does not occur more is guaranteed. In order to avoid this, the drive unit is provided in the manner shown in FIG. 17 with an additional pressure medium container 109 inserted into the receiving shaft 1, which is held on the upper support plate 4 and communicates with the pressure medium containers 14 via a connecting line 110. If the drive unit is not set up under water but on a ship's deck, the floating piston 26 in the cylinder 25 is no longer pressed so strongly against the pressure medium in the pressure medium container 14 because of the lack of water pressure on its outer surface and the friction of its seal. Although due to the difference in height between the drive unit and the working device arranged at a greater depth, the pressure medium should still flow rapidly via the hose line 100, the oscillating mode of operation can nevertheless cause the pressure medium supply to be cut off briefly, which is damaging to the hydraulic motors in the long run. For this reason, the drive unit for use over water is provided with an air line 111 running parallel to the umbilical 15 via the support element 106 to the upper side of the additional pressure medium container 109 to generate a prestress promoting the inflow by slight overpressure. The compressed air space 112 created by the removal of pressure medium in the additional pressure medium container 109 serves at the same time as a buffer space which receives the pressure medium quantities flowing back in an oscillating manner via the hose line 100 without undesired pressure peaks.

Um die beim Unterwassereinsatz durch das umgebende Wasser eintretende Kühlung der Elektromotoren 12 und der Hydraulikpumpen 13 auch bei über Wasser aufgestellter Antriebseinheit zu erzielen, wird über eine Kühlwasserleitung 113 in den Innenraum der Antriebseinheit eingeführt, der durch die mit der Basisplatte 96 dichtend verbundene Mantelwand 2 umgrenzt ist. Das Kühlwasser strömt dann aus dem Innenraum über eine Ablaufleitung 114 ab. Auf diese Weise werden die Pumpeneinheiten 10 und das Hydrauliköl in den Druckmittelbehältern 14 und 109 in gleicher Weise gekühlt, wie beim Einsatz unter Wasser.In order to achieve the cooling of the electric motors 12 and the hydraulic pumps 13 that occurs during underwater use due to the surrounding water even when the drive unit is installed above water, a cooling water line 113 is introduced into the interior of the drive unit, which is delimited by the jacket wall 2 which is sealingly connected to the base plate 96 is. The cooling water then flows out of the interior via a drain line 114. In this way, the pump units 10 and the hydraulic oil in the pressure medium containers 14 and 109 are cooled in the same way as when used under water.

Die vorstehend unter Bezugnahme auf bevorzugte Ausführungsformen erläuterte Antriebseinheit kann vom Fachmann je nach den Anforderungen des Einzelfalles in verschiedener Weise zweckentsprechend abgewandelt werden, sofern sie dabei als Mehrzweck-Antriebseinheit für verschiedene, wahlweise anzubauende Ramm- oder Arbeitsgeräte ausgelegt ist und ein Mantelgehäuse mit einem zentralen Aufnahmeschacht und ringförmigen oberen und unteren Tragplatten zur Festlegung des jeweils zu betreibenden Geräts sowie zwischen dem Aufnahmeschacht und einer äußeren Mantelwand abgefedert angeordneten Pumpeneinheiten und Druckmittelbehältern aufweist.The drive unit explained above with reference to preferred embodiments can be modified by the person skilled in the art in various ways depending on the requirements of the individual case, provided that it is designed as a multipurpose drive unit for various ramming or working devices to be optionally installed and a jacket housing with a central receiving shaft and ring-shaped upper and lower support plates for fixing the device to be operated in each case and between the receiving shaft and an outer jacket wall arranged in a spring-loaded manner pump units and pressure medium containers.

Claims (28)

  1. Submersible electrohydraulic drive unit for hammering and servicing devices in under water operation, having hydraulic pumps which are each to be driven by electric motors, are connected to a pressure medium tank and are connectible by flexible connection lines to a drive device of the hammering or servicing device, characterised in that
    a) the drive unit is constructed as a multi-purpose device for driving various hammering and servicing devices, having a shell casing (M) which may be lowered underwater on a carrying element (45) and has a continuous central location shaft (1) for a foundation pile (60, 48) or the requisite hammering or servicing device (55, 47, 33, 66),
    b) the shell casing (M) has annular upper and lower supporting plates (4 and 5), an outer shell wall (2) connected to the latter, as well as an inner wall (3) surrounding the location shaft (1),
    c) the hydraulic pumps (13) are each combined with an associated electric motor (12) to form pump units (10) disposed at peripheral intervals between the inner wall (3) and the shell wall (2), preferably parallel to the location shaft (1),
    d) the pump units (10) are individually or jointly spring-mounted relative to the shell casing (M) so as to be movable to a limited extent at least in a direction parallel to the location shaft (1), and
    e) the upper supporting plate (4) and/or the lower supporting plate (5) are designed for optional, exchangeable fixing of a pile hammer (55) or servicing device (33, 37; 66) or a vibratory hammering device (47) which projects into the location shaft (1).
  2. Drive unit according to claim 1, characterised in that the pump units (10) are each mounted on the inner wall (3) of the shell casing (M) in a fixed or preferably resiliently supported manner and the inner wall (3) is supported at either end in a sprung manner against the upper and lower supporting plate (4, 5).
  3. Drive unit according to claim 1 or 2, characterised in that the pump units (10) and the inner wall (3) carrying said pump units are spring-mounted by means of prestressed spring devices, preferably hydraulic cylinders (7) connected to a prestressed hydraulic accumulator and having pistons (8) projecting therefrom.
  4. Drive unit according to one of claims 1 to 3, characterised in that the inner wall (3) of the shell casing (M) is guided by centring elements (6) so as to be displaceable to a limited extent in the outer shell wall (2) and is provided with spring devices disposed at peripheral intervals, in particular prestressed hydraulic cylinders (7) with radially inward-projecting pistons (8), for spring support against a servicing device (55, 33, 66, 47) or a foundation pile (48; 60) situated in the location shaft (1).
  5. Drive unit according to one of claims 1 to 4, characterised in that substantially cylindrical pressure medium tanks (14), whose longitudinal axis is coaxial or parallel to the longitudinal axis of the electric motor (12), are associated with each of the pump units (10).
  6. Drive unit according to one of claims 1 to 5, characterised in that the pump units (10) and the pressure medium tanks (14) are installed adjacent to one another and alternating in a peripheral direction between the outer shell wall (2) and the inner wall (3).
  7. Drive unit according to one of claims 1 to 6, characterised in that the outer shell wall (2) and the inner wall (3) of the shell casing (M) are concentric to one another and substantially cylindrical.
  8. Drive unit according to one of claims 1 to 7, characterised in that the outer shell wall (2) of the shell casing (M) is removable entirely or in portions.
  9. Drive unit according to one of claims 1 to 8, characterised in that the upper and lower supporting plates (4, 5) are interchangeable.
  10. Drive unit according to one of claims 1 to 9, characterised in that the pump units (10) are designed to be individually operable and are each connected by separate electric leads (17) to a watertight terminal box (16), to which an umbilical (15) provided with a corresponding number of separate electric leads is connectible in a watertight manner.
  11. Drive unit according to one of claims 1 to 10, characterised in that the pressure medium tanks (14) are connected so as to communicate with one another and their internal chamber, for automatic pressure adaptation to the ambient pressure, is in each case connected to the environment by a pressure compensation opening (27, 28) sealingly closed by a floating piston (26) or a flexible dividing wall.
  12. Drive unit according to one of claims 1 to 11, characterised in that the lower supporting plate (5) additionally carries a guide pipe (61) for a foundation pile (60), said guide pipe being surrounded by the inner wall (3) of the shell casing (M), and the inner wall (3) is resiliently supported on the outer periphery of the guide pipe (61).
  13. Drive unit according to one of claims 1 to 11, characterised in that the location shaft (1) has an inside width permitting the introduction of the hammer casing (63) of a pile hammer (55) and at least one supporting plate (4, 5) is designed for possibly spring-suspended placement and/or detachable fixing on at least one projection (62) on the outer periphery of the hammer casing (63).
  14. Drive unit according to one of claims 1 to 11, characterised in that the upper supporting plate (4) is designed for detachable fixing of a servicing device having at least one hydraulic motor (31) connectible to the hydraulic pumps (13) or pressure medium tanks (14) by connection lines (41 or 42), and a work spindle (33) drivable by said means and rotatably supported in the supporting plates (4, 5) for at least one tool carrier (37) which is to be, preferably exchangeably, mounted on the end of the work spindle projecting from the location shaft (1).
  15. Drive unit according to claim 14, characterised in that at least one supply line for an associated tool is provided extending from a pump via a rotary transmission leadthrough (39) through the hollow work spindle (33) to the tool carrier (37).
  16. Drive unit according to claim 14 or 15, characterised in that a guide pipe (34) projecting coaxially downwards relative to the location shaft (1) and having at least one pivot bearing (35, 36) for the work spindle (33) is detachably mounted on the lower supporting plate (5).
  17. Drive unit according to one of claims 1 to 11, characterised in that the upper supporting plate (4) is designed for detachable fixing of a vibratory hammering device (47) which is forcelockingly connectible to a foundation pile (48) inserted into the location shaft (1).
  18. Drive unit according to one of claims 1 to 11, characterised in that at least one supporting plate (4, 5) is designed for detachable fixing of a flushing device (66) situated in the location shaft (1) and having at least one hydraulic motor (70) which is preferably connectible by connection lines (41, 42) to the hydraulic pumps (13) or pressure medium tanks (14), at least one water pump (68) drivable by said means, a flushing pipe (72) connected to the delivery side of said water pump and extending through the location shaft (1), as well as a coupling part (76) surrounding the mouth of said flushing pipe for detachable fixing on an underwater installation (75) to be flushed.
  19. Drive unit according to claim 18, characterised in that a water pump (68) mounted in the chamber between the outer shell wall (2) and the inner wall (3) is associated with at least one pump unit (10) and is drivable by means of a hydraulic motor (70) connected by connection lines (80, 81) to a hydraulic pump (13) or a pressure medium tank (14).
  20. Drive unit according to claim 19, characterised in that at least one water pump (68) is drivable by means of an electric motor (12) directly or by way of a transmission (86).
  21. Drive unit according to one of claims 1 to 20, characterised in that the upper supporting plate (4) is designed for detachable fixing of an auxiliary pressure medium tank (109) which projects into the location shaft (1) and is connected by a connection line (110) to the pressure medium tank (14).
  22. Drive unit according to one of claims 1 to 21, characterised in that the upper supporting plate (4) is designed for optional fixing of a rotary head (92) communicating with the connection lines (41, 42) and having guide devices (106) for connection lines (100, 101) from the drive unit to at least one laterally removed hammering or servicing device (94).
  23. Drive unit according to one of claims 1 to 22, characterised in that the upper supporting plate (4) has devices for suspended fastening on a flexible carrying element (45).
  24. Drive unit according to one of claims 1 to 23, characterised in that the hydraulic pumps (13) and the pressure medium tanks (14) are each connected by a flexible connection line (18, 20) to a collective connection (19) and from there by detachable hose pipes (41, 42; 56, 57) to a hydraulic cylinder or hydraulic motor (31, 70) of the hammering or servicing device to be connected.
  25. Drive unit according to one of claims 1 to 24, characterised in that changeover devices are provided for apportionably supplying the pressure medium flow generated by the hydraulic pumps (13) through associated hose pipes (56, 57) to a plurality of hammering or servicing devices (55, 47, 33, 66).
  26. Drive unit according to claim 25, characterised in that the changeover devices are designed to supply pressure medium partflows of adjustable volume to hammering or servicing devices.
  27. Drive unit according to one of claims 1 to 26, characterised in that at least one buoyancy tank for receiving gas is disposed in the shell casing and/or in a guide shell (65) for the pile section (48, 60) which projects downwards from the lower supporting plate (5).
  28. Drive unit according to one of claims 1 to 27, characterised by at least one positioning device having a drivable propeller or some other device for generating a substantially horizontal thrust stream.
EP87110894A 1987-07-28 1987-07-28 Submergible electrohydraulic drive unit for hammering and servicing devices in under water operation Expired - Lifetime EP0301116B1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP87110894A EP0301116B1 (en) 1987-07-28 1987-07-28 Submergible electrohydraulic drive unit for hammering and servicing devices in under water operation
DE8787110894T DE3771217D1 (en) 1987-07-28 1987-07-28 SUBMERSIBLE ELECTROHYDRAULIC DRIVE UNIT FOR RAMM AND WORKING DEVICES DESIGNED FOR UNDERWATER USE.
NO873379A NO168125C (en) 1987-07-28 1987-08-12 DIVE-FITTED ELECTRO-HYDRAULIC DRIVE UNIT FOR FRAME AND WORK TOOLS INTENDED FOR WATER USE
JP62254524A JPH0678621B2 (en) 1987-07-28 1987-10-07 Underwater electro-hydraulic drive for underwater pile driving and working equipment
US07/133,904 US4817734A (en) 1987-07-28 1987-12-15 Submergible electrohydraulic drive unit for ramming and working devices to be used under water

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP87110894A EP0301116B1 (en) 1987-07-28 1987-07-28 Submergible electrohydraulic drive unit for hammering and servicing devices in under water operation

Publications (2)

Publication Number Publication Date
EP0301116A1 EP0301116A1 (en) 1989-02-01
EP0301116B1 true EP0301116B1 (en) 1991-07-03

Family

ID=8197161

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87110894A Expired - Lifetime EP0301116B1 (en) 1987-07-28 1987-07-28 Submergible electrohydraulic drive unit for hammering and servicing devices in under water operation

Country Status (5)

Country Link
US (1) US4817734A (en)
EP (1) EP0301116B1 (en)
JP (1) JPH0678621B2 (en)
DE (1) DE3771217D1 (en)
NO (1) NO168125C (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1248590B (en) * 1991-06-28 1995-01-19 Saipem Spa IMPROVED DEVICE FOR LIFTING AND BATTING OF FOUNDATION POLES OF OFFSHORE STRUCTURES
DE4300074C1 (en) * 1993-01-05 1994-05-05 Hans Kuehn Signal and data transmission device for underwater operating plant - uses communications umbilical coupled to separate underwater device linked to plant via cable or radio link
DE4300073C2 (en) * 1993-01-05 1994-10-27 Hans Kuehn Independent submersible drive unit for piling and working tools that can be used under water
DE4300075C1 (en) * 1993-01-05 1994-03-17 Hans Kuehn Drive energy transmission system for underwater plant - uses supply lines and umbilical cable handled separately with plug-in coupling at bottom end.
NO971478D0 (en) 1997-04-02 1997-04-02 Norwegian Anchoring Technology Method for establishing and connecting and disconnecting positioned point fixings into varying subsea formations, as well as equipment for such
US6129487A (en) * 1998-07-30 2000-10-10 Bermingham Construction Limited Underwater pile driving tool
NZ528332A (en) * 2003-09-22 2006-04-28 Ramet Holdings Ltd Impact driver for driving poles, piles or posts including linear induction motor
GB0507549D0 (en) * 2005-04-14 2005-05-18 Fast Frames Uk Ltd Method and apparatus for driving a pile into underwater substrates
US8033756B2 (en) * 2008-07-21 2011-10-11 Adamson James E Deep water pile driver
US8955612B2 (en) * 2009-02-10 2015-02-17 Onesteel Wire Pty Limited Fence post driver
US7736094B1 (en) * 2009-02-24 2010-06-15 The United States Of America As Represented By The Secretary Of The Navy Self-contained burying device for submerged environments
DK2325397T3 (en) 2009-11-24 2012-10-22 Ihc Holland Ie Bv System and method for installing foundation elements in an underwater foundation
US9617702B2 (en) 2010-01-19 2017-04-11 University Of Washington Through Its Center For Commercialization Pile with sound abatement
US9816246B2 (en) 2010-01-19 2017-11-14 University Of Washington Through Its Center For Commercialization Pile with sound abatement for vibratory installations
DK2526231T3 (en) * 2010-01-19 2018-07-02 Univ Washington Through Its Center For Commercialization Foundation pile for minimizing noise transmission and method for pile driving
NL2006017C2 (en) 2011-01-17 2012-07-18 Ihc Holland Ie Bv Pile driver system for and method of installing foundation elements in a subsea ground formation.
EP2527539B1 (en) 2011-05-27 2013-09-11 BAUER Maschinen GmbH Submarine drilling assembly and method for inserting a foundation element into the soil of a body of water
CA2854007C (en) 2011-11-03 2018-10-16 University Of Washington Through Its Center For Commercialization Pile with low noise generation during driving
KR20220031669A (en) 2019-09-09 2022-03-11 가부시기가이샤 닛뽕쇼꾸바이 Higher secondary alcohol alkoxylate precursor, higher secondary alcohol alkoxylate adduct, higher secondary alkyl ether sulfate ester salt, and method for preparing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1125818A (en) * 1965-12-11 1968-09-05 Auxiliaire Des Producteurs De An equipment for wire-lining operations in submarine or subaqueous oil wells
FR1591586A (en) * 1968-06-27 1970-05-04
NL180448C (en) * 1974-11-16 1987-02-16 Koehring Gmbh PILING EQUIPMENT WITH WATERPROOF HOUSING AND A PRESSURE-DRIVEN IMPACT BODY.
NL167747C (en) * 1978-04-19 1982-01-18 Hollandsche Betongroep Nv DRIVING EQUIPMENT.
DE3047375C2 (en) * 1980-12-16 1985-09-05 Koehring Gmbh, 2000 Hamburg Submersible pile driving device

Also Published As

Publication number Publication date
DE3771217D1 (en) 1991-08-08
NO168125C (en) 1992-01-15
JPS6436823A (en) 1989-02-07
NO873379L (en) 1989-01-30
US4817734A (en) 1989-04-04
EP0301116A1 (en) 1989-02-01
NO168125B (en) 1991-10-07
NO873379D0 (en) 1987-08-12
JPH0678621B2 (en) 1994-10-05

Similar Documents

Publication Publication Date Title
EP0301116B1 (en) Submergible electrohydraulic drive unit for hammering and servicing devices in under water operation
EP0301113B1 (en) Device for cutting tubular foundation piles under water
DE102008003968B3 (en) drilling rig
EP0301114B1 (en) Process for driving pile sections under water
EP2322724B1 (en) Submarine drilling assembly and method for inserting a tubular foundation element into the sea floor
DE3216685A1 (en) SELF-DRIVING DEVICE FOR UNDERGROUND LAYING AND DIGGING UNDERWAY PIPES
EP2562346A1 (en) Underwater drilling assembly and method for producing a borehole
US3174562A (en) Auger boring machine
EP0886714B1 (en) Device for drilling a bore hole in the ground
DE2824441C2 (en) Earth auger
EP0678134B1 (en) Submersible driving unit for underwater ramming machinery and tools
EP0263967B1 (en) Submersible pile hammer
DE2849245C2 (en) Method for the drilling sinking and for the expansion of shafts and equipment for carrying out the method
EP0757155A1 (en) Earth drilling device
DE2841203A1 (en) CONVEYING DEVICE FOR CONVEYING SLUDGE, ESPECIALLY ORE SLUDGE, FROM GREAT DEPTHS
DE102011000320A1 (en) Drilling rig for carrying out drilling in soil, comprises drilling frame, and drive unit slidably arranged on frame, where drive unit has rod cartridge for detachably connecting with drilling pipe, and drive motor standing with cartridge
EP3034702B1 (en) Method and device for erecting a foundation and foundation
DE10336315A1 (en) Vertical drill, to form a borehole for filling with concrete as a load-bearing pile/ground anchor, has a drill head suspended from a crane with a support system against the borehole wall
DE102012218285A1 (en) Device and method for creating a foundation and foundation
AT17985B (en) Shaft drilling apparatus.
DE2234611A1 (en) MACHINE FOR DIGGING SOIL IN THE PRESENCE OF LIQUID
DE3943151C2 (en)
DE102020125629A1 (en) System consisting of a cylindrical hollow body and a drilling device for creating a hole
DE10321617A1 (en) Device for producing an earth hole
DE2028531C (en) Protective device for an underwater wellhead and repair device for it

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880831

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL SE

17Q First examination report despatched

Effective date: 19901029

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MENCK GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19910703

Ref country code: SE

Effective date: 19910703

REF Corresponds to:

Ref document number: 3771217

Country of ref document: DE

Date of ref document: 19910808

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
EN Fr: translation not filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
NLS Nl: assignments of ep-patents

Owner name: MENCK GMBH

NLT1 Nl: modifications of names registered in virtue of documents presented to the patent office pursuant to art. 16 a, paragraph 1

Owner name: BOMAG-BETEILIGUNGS-GMBH

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030703

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20050201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050728

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20060717

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060923

Year of fee payment: 20

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20070727