EP0278961B1 - Echangeur de chaleur a contre-courant a faisceau helicoidal de tubes - Google Patents

Echangeur de chaleur a contre-courant a faisceau helicoidal de tubes Download PDF

Info

Publication number
EP0278961B1
EP0278961B1 EP87905169A EP87905169A EP0278961B1 EP 0278961 B1 EP0278961 B1 EP 0278961B1 EP 87905169 A EP87905169 A EP 87905169A EP 87905169 A EP87905169 A EP 87905169A EP 0278961 B1 EP0278961 B1 EP 0278961B1
Authority
EP
European Patent Office
Prior art keywords
helical
tubes
heat exchanger
tube
exchanger according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87905169A
Other languages
German (de)
English (en)
Other versions
EP0278961A1 (fr
Inventor
Emil Bader
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT87905169T priority Critical patent/ATE58012T1/de
Publication of EP0278961A1 publication Critical patent/EP0278961A1/fr
Application granted granted Critical
Publication of EP0278961B1 publication Critical patent/EP0278961B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/02Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled
    • F28D7/024Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being helically coiled the conduits of only one medium being helically coiled tubes, the coils having a cylindrical configuration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S165/00Heat exchange
    • Y10S165/355Heat exchange having separate flow passage for two distinct fluids
    • Y10S165/40Shell enclosed conduit assembly
    • Y10S165/427Manifold for tube-side fluid, i.e. parallel
    • Y10S165/429Line-connected conduit assemblies
    • Y10S165/43Manifolds connected in parallel, e.g. multi-stage

Definitions

  • the present invention relates to a counterflow heat exchanger with at least one coil tube bundle and a coil flow channel for the flow of a primary fluid and a secondary fluid in counterflow, the coil tubes at the ends of each tube bundle being connected to a central distributor or central collector for the primary fluid and each tube bundle consisting of coil tubes are wound in a corresponding helical surface with a constant pitch around a common longitudinal axis and are strung together without gaps to form a closed helical flow channel between a core tube and a jacket tube.
  • GB-A-791843 describes a heat exchanger of this type with two tube bundles each consisting of three spiral tubes or one tube bundle consisting of four spiral tubes, which are connected radially to a distribution box and parallel to the longitudinal axis to a collecting box.
  • the helical tubes are almost in contact, do not have to be in contact with one another, do not form completely tight partition walls and delimit a not completely sealed helical channel.
  • the arrangement described here is unlikely to be intended or suitable for a heat exchanger with a large number of spiral tubes and tube bundles.
  • Known heat exchangers of the type mentioned at the outset generally have a small number of helical tubes and tube bundles. Connecting the hard-to-reach ends of the helical tubes that are lined up usually requires a significant bending of the tube ends from the corresponding helical surface in order to connect them to a conventional distributor or collector (e.g. by welding or soldering), is intrinsically complicated and becomes significant as the number of tubes increases difficult.
  • Known heat exchangers with a small number of spiral tubes and a correspondingly limited heat exchange surface have a limited range of applications.
  • the helical tubes are strung together to form practically closed helical surfaces without gaps, in order to form closed helical channels and to ensure operation in the countercurrent flow with optimum efficiency.
  • corrosion-resistant materials is also particularly desirable or necessary, and plastic pipes could be particularly suitable for this purpose.
  • the object of the invention is to provide a heat exchanger of the type mentioned at the outset, which can have a larger number of spiral tubes and can also be produced simply and inexpensively.
  • auxiliary distributor or auxiliary collector which consists of a perforated connection plate which is perpendicular to the corresponding spiral surface and a removable cover for connection to the central distributor or central collector for the primary fluid and is arranged between the core tube and the jacket tube in such a way that the ends of the spiral tubes are connected to the auxiliary distributor or auxiliary collector without substantial deviation from the corresponding spiral surface.
  • This perforated connection plate of each auxiliary distributor or auxiliary collector is in each case provided with staggered bores, the ends of the adjoining helical tubes being accommodated in corresponding staggered bores of the connection plate without substantial deviation from the corresponding helical surface and being firmly connected to the latter.
  • the terminal plate each he f indungsgemäss
  • the auxiliary manifold or auxiliary collector provided is provided with two rows of staggered bores, which run parallel to the corresponding helical surface at a small distance on both sides thereof, the ends of the helical tubes alternately being slightly bent on both sides of this helical surface, then running parallel to this helical surface and are alternately connected to corresponding holes in the two rows.
  • each tube bundle consists of flexible helical tubes which rest freely on support arms, these support arms being firmly connected to the core tube and being distributed in the corresponding helix area around the core tube, so that the helical tubes are supported against each other in an immovable position.
  • the flexible spiral tubes can advantageously be curved and supported in opposite axial directions by the support arms in the corresponding spiral surface.
  • the spiral tubes and the auxiliary distributors or auxiliary collectors according to the invention can advantageously be made of any suitable plastics, for example Teflon.
  • the ends of the helical tubes can easily be tightly connected in the corresponding bores of the connection plate by means of a fusion connection.
  • All parts of the heat exchanger can preferably consist of the same plastics, or at least be covered with them, in order to achieve the highest possible resistance of the entire heat exchanger to chemical attacks and thereby to achieve a maximum service life.
  • the support arms are advantageously provided with teeth for receiving the helical tubes and profiled for stiffening.
  • These support arms are also advantageously inclined with respect to the common longitudinal axis, preferably alternately in opposite axial directions.
  • the support arms perform various functions with regard to the construction of the spiral tube bundles on the core tube, which can be explained as follows.
  • the pipes are each tensioned as a result of the required tensile force so that the pipe coils formed one after the other come to lie close together.
  • This tensile force hugs the first or innermost tube coil on the core tube and each additional tube coil on the previous one.
  • This tensile force exerts a radial force on the pipes, which can be broken down into two components, one of which is parallel and the other is directed transversely to the longitudinal axis of the support arm.
  • each support arm acts as a beam clamped on one side (on the core tube).
  • the outer ends of the support arms can be held by lateral tensioning straps, so that the support arms are supported by these straps and thus stiffened, and that their overall height can be kept correspondingly small.
  • the support arms are distributed in different radial planes and are connected to one another at their free ends by tensioning straps in each radial plane.
  • tensioning straps are thus advantageously arranged in such a way that on the one hand they keep the distances between the superimposed support arms constant, so that the height or the cross section of the spiral flow channels is kept the same everywhere.
  • the tensioning straps secure the outermost windings, which can be particularly important when moving the spiral tube bundle arrangement relative to the jacket tube.
  • the heat exchanger according to the invention in particular when using metallic helical tubes, can be rotatably mounted about its common longitudinal axis and connected to a drive which is designed such that it can set the heat exchanger in an oscillating rotary movement.
  • the heat transfer in the countercurrent heat exchanger according to the invention with helical tube bundles is increased here in that the entire heat exchanger is rotated back and forth in a constant sequence about its longitudinal axis.
  • the heat transfer between a flowing fluid and a pipe wall is known to be greatest in the start-up section, and depending on the flow conditions in the start-up section it can be many times greater than after a certain section through which flow passes. This phenomenon is exploited here in that the heat exchanger can be rotated back and forth around its longitudinal axis.
  • the additional speeds of the two liquids with respect to the pipe wall, which overlap the basic currents constantly swell up and down both in the pipes and outside.
  • Are the additional relative speeds and the basic flow within the same order of magnitude are thereby repeatedly brought about in time with the oscillating rotary movement, hydrodynamic starting conditions which lead to an increase in the heat transfer on the inside and outside of the tube wall.
  • FIG. 1 shows an embodiment of the heat exchanger with two spiral tube bundles 1A, 1B for the flow of a primary fluid in countercurrent flow with a secondary fluid which flows through two corresponding spiral flow channels 2A, 2B, which are formed between the two parallel spiral tube bundles 1A and 1B.
  • the primary fluid is fed from a primary inlet 3 via a central distributor 4 and two auxiliary distributors 5A, 5B to the upper end of the spiral tube bundles 1A, 1B and at its lower end via two auxiliary collectors 6A, 6B, one Central collector 7 and an upper primary outlet 8 discharged.
  • the auxiliary distributors 5A, 5B and the auxiliary collectors 6A, 6B consist of a two-part connection chamber and are referred to below as the connection chamber.
  • each tube bundle 1A, 1B with their corresponding connection chambers 5A, 5B and 6A, 6B are arranged in a closed annular space between a core tube 9 and a coaxial jacket tube 10 with a common longitudinal axis of the heat exchanger.
  • each tube bundle 1A, 1B consists of ten helical tubes which are wound around the common longitudinal axis in a corresponding helical plane with a constant pitch and are closely lined up between the core tube 9 and the jacket tube 10.
  • the heat exchanger housing consists of the casing tube 10 with an outer flange 11, a bottom 12 and an end cover 13, which here consists of one piece with the core tube 9 and is tightly connected to the outer flange 11. Together with the core tube 9, the casing tube 10 and the base 12, this closing cover 13 forms the closed annular space which encloses the tube bundles 1A, 1B with their four connection chambers 5A, 5B, 6A, 6B, a secondary inlet 14 in the base 12 supplying a secondary fluid , which flows through the spiral flow channels 2A, 2B upwards and is discharged through a lateral secondary outlet 15 at the upper end of the casing tube 10.
  • connection chambers 5A, 5B and 6A, 6B The structure of the connection chambers 5A, 5B and 6A, 6B is shown in cross-section in FIG. 2 and consists of a perforated connection plate 16 and a removable cover 17 attached thereon with a pipe section 18 which connects the connection chamber to the corresponding central distributor arranged in the core tube 9 4 or central collector 7 connects.
  • connection plate 16 of the connection chambers 5A, 5B, 6A, 6B is arranged perpendicular to the corresponding spiral plane and is provided with bores which are offset in two rows to accommodate the ends of the spiral pipes and which run parallel to the spiral plane at a short distance.
  • the ends of the helical tubes lined up in a row are received in the corresponding offset bores of the two rows in the connection plate 16, tightly connected to it and thus connected in parallel to the corresponding connection chamber 5A, 5B or 6A, 6B.
  • the lid 17 is attached to the connection plate 16 in any suitable way, e.g. tightly connected with screws and sealants.
  • the ends of the helical tubes only have to be bent slightly in order to be inserted and fastened alternately in rows of corresponding bores arranged offset in two adjacent planes parallel to the corresponding helical plane in the perforated connection plate 16.
  • connection chambers offer decisive advantages over known pipe connections, which require a significant bending of the pipe ends in order to connect them tightly with a conventional connection plate or the like.
  • the arrangement of the connection chambers thus bypasses the important problems when connecting the tube bundles in a very simple manner, whereby the complicated bending for connecting numerous inaccessible adjacent tubes and any impairment of their strength due to their deformation when bending with an insufficient bending radius are simply avoided.
  • the entire insert consisting of the end cover 13 with the core tube 9 and the tube bundles 1A, 1B with the connection chambers 5A, 5B and 6A, 6B, the primary inlet 3, the central distributor 4 and the central collector 7 with the primary outlet 8 are pulled out of the jacket tube 10 as a whole.
  • the tube bundles can thus be exposed in a particularly simple manner and by suitable means, e.g. with liquid jets or brushes that are inserted laterally, can be cleaned quickly and effectively as required.
  • the embodiment of the heat exchanger described above comprises two helical tube bundles, the number of which can be increased slightly.
  • both the number of adjacent spiral tubes of the tube bundle and the number of tube bundles can be increased without any particular difficulty by appropriately equipping the heat exchanger with the connection chambers required in each case.
  • connection chambers in several transverse planes as the number of tube bundles increases. with respect to the common longitudinal axis so that any number of tube bundles with the same pitch at both ends thereof can be equipped according to the invention with auxiliary distributors and auxiliary collectors between the core tube and the jacket tube.
  • the tube bundles of the heat exchanger consist of tubes with low rigidity, e.g. made of plastic tubes or soft metal tubes
  • the tube bundles made of flexible tubes are supported by staggered support arms, as shown in FIGS. 3 to 7.
  • the heat exchanger shown in cross-section in FIG. 3 essentially corresponds to the arrangement described in accordance with FIGS. 1, 2, parts of the same type being identified in all figures with the same reference symbols.
  • FIG. 3 shows the four spiral tube bundles 1A to 1D with the four auxiliary distributors or connection chambers 5A to 5D, as well as support arms 20 and tensioning straps 21.
  • the heat exchanger is equipped with a plurality of support arms 20, each of which supports a coil tube bundle, is fastened to the core tube 9 and is distributed in the coil planes corresponding to the tube bundles, the coil tubes abutting against these support arms 20 and are supported.
  • these support arms 20 extend radially outward from the core tube 9 to the inside of the jacket tube 10, wherein they are held at their free outer end by tensioning straps 21.
  • the support arms 20 are distributed in different radial planes, so that they are each aligned in corresponding rows parallel to the common longitudinal axis, as can be seen in particular from FIG. 6, the axial distance between the support arms in each row corresponding to the distance between the adjacent turns of the tube bundle and thus determines the axial height of each spiral flow channel.
  • Fig. 4 shows, for simplification of the drawing, only two helical tube sections and two support arms 20 fastened to the core tube 9, which are arranged in the corresponding helical plane and are slightly inclined outward in opposite directions with respect to the perpendicular to the longitudinal axis.
  • the helical tubes alternately lie freely on opposite sides of the successively arranged support arms 20 and are thereby alternately slightly curved in opposite axial directions.
  • FIG. 5 shows the development of a helical tube which is supported in this way by the support arms 20 and is alternately slightly bent.
  • the spiral tubes are braced on the support arms 20 by such a wave-like arrangement and are thus held in their position on each support arm.
  • tensioning straps 21 for holding the support arms 20 at their free ends in the same radial plane and with the required distance, which determines the axial height of the spiral flow channels.
  • These straps 21 each consist of a longitudinal band with a smooth outside, have approximately the same width as the support arms 20 and are folded at regular intervals, which correspond to the required axial height of the spiral flow channels.
  • These folded tensioning straps 21 thus have a series of parallel inward support surfaces 22 for supporting the corresponding support arms 20, each of which is provided with an incision 23 at its free end.
  • the position of the support arms 20 is secured here with a snap connection, which consists of the incision 23 at the end of each support arm 20 and a corresponding barb 24 which protrudes from the support surface 22 and is provided for hooking into the incision 23.
  • Fig. 7 essentially shows the shape of the tensioning strap 21 and its interaction with a support arm 20.
  • the tensioning straps 21 shown here can e.g. are made from metal strips of 0.2 mm thickness, which due to their folded shape have a high rigidity.
  • the helical tubes are arranged adjacent to one another on the support arms 20, the outermost windings each being secured in their position at the end of the support arms 20 in that the Barbs 24 of the straps 21 are adapted to be received in the corresponding incisions 23 at the ends of the support arms 20.
  • the straps 21 secure both the required outer radius of the tube bundle and their exact adaptation to the inner diameter of the casing tube 10, thereby ensuring the required sealing of the spiral flow channels and their constant axial height on the circumference of the tube bundle.
  • These lateral straps 21 are also used to absorb forces that may act on the outermost pipe windings due to an axial movement of the jacket tube 10 with respect to the tube bundle, especially when the jacket tube is removed for cleaning the tube bundle.
  • the arrangement of the tensioning straps 20 shown in FIGS. 6 and 7 does not result in a significant reduction in the flow cross-section of the helical flow channels and the outer surface of the helical tube bundle.
  • FIG. 8 shows an embodiment with helical tube bundles 1A, 1B, 1C, which bear on both sides on double-flange support arms 120 with crossbars 121.
  • each tensioning strap according to FIG. 8 consists of a flat longitudinal strap 122 and is connected to the outermost web of the support arm 120 by suitable fastening means, e.g. inward protruding locking pins which snap into corresponding openings in the outermost web of the double-flanged support arm 120 in order to act as a snap lock.
  • suitable fastening means e.g. inward protruding locking pins which snap into corresponding openings in the outermost web of the double-flanged support arm 120 in order to act as a snap lock.
  • the side straps can also have any other suitable shape to achieve interaction with the support arms.
  • the embodiment according to FIG. 8 is particularly suitable for applications which require the heat exchanger to be made of plastic in order to ensure sufficient resistance to corrosive media.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

Un échangeur de chaleur à contre-courant comprend plusieurs faisceaux de tubes (1A, 1B) dans lesquels s'écoule un fluide primaire, et un fluide secondaire s'écoule à contre-courant dans des canaux hélicoïdaux (2A, 2B) formés entre les enroulements des faisceaux de tubes (1A, 1B). Chaque faisceau de tubes (1A, 1B) se compose de dix tubes hélicoïdaux agencés en ligne les uns à côté des autres et formant les canaux hélicoïdaux (2A, 2B) d'écoulement du fluide secondaire entre le tube central (9) et l'enveloppe tubulaire (10). Les tubes hélicoïdaux sont reliés par les deux extrémités de chaque faisceau de tubes (1A, 1B) à une chambre de jonction (5A, 5B; 6A, 6B) formée d'une plaque percée de jonction (16) et d'un couvercle (17). Les faisceaux hélicoïdaux et tubes reposent librement sur des bras de support (20) hélicoïdaux fixés sur le tube central (9), distribués sur plusieurs plans radiaux et s'étendant jusqu'à l'enveloppe tubulaire (10). Des bandes de serrage (21) relient les bras de support (20) situés sur le même plan radial. On peut attacher les faisceaux hélicoïdaux de tubes afin de les nettoyer, après les avoir enlevé tous ensemble de l'enveloppe tubulaire (10) avec leurs chambres de jonction (5A, 5B; 6A, 6B), le couvercle de fermeture (13), le tube central (9), l'entrée primaire (3) et la sortie primaire (8).

Claims (12)

1. Echangeur de chaleur à courants inversés comportant au moins un faisceau de tubes hélicoïdaux (1A, 1B) et un canal d'écoulement hélicoïdal (2A, 2B) pour le passage d'un fluide primaire et d'un fluide secondaire en contre-courant, les tubes hélicoïdaux étant raccordés respectivement aux extrémités de chaque faisceau de tubes à un distributeur central (4) et à un collecteur central (7) pour le fluide primaire et chaque faisceau étant composé de tubes hélicoïdaux enroulés autour d'un axe longitudinal commun dans une surface hélicoïdale correspondante à pas constant et juxtaposés sans lacune l'un contre l'autre, afin de constituer un canal d'écoulement hélicoïdal fermé entre un tuyau central (9) et une chemise tubulaire (10), caractérisé par le fait que:
(a) les tubes hélicoïdaux sont reliés aux extrémités de chaque faisceau de tubes (1A, 1B) à un distributeur auxiliaire (5A, 5B) ou un collecteur auxiliaire (6A, 6B) qui est composé d'une plaque de raccordement perforée (16) disposée perpendiculairement à la surface hélicoïdale correspondante et d'un couvercle amovible (17) de raccordement au distributeur central (4) ou au collecteur central (7) pour le fluide primaire et est disposé entre le tuyau central (9) et la chemise tubulaire (10) de manière que les extrémités des tubes hélicoïdaux soient raccordées, essentiellement sans déviation de la surface hélicoïdale correspondante, au distributeur auxiliaire (5A, 5B) ou au collecteur auxiliaire (6A, 6B); et
(b) la plaque de raccordement perforée (16) de chaque distributeur auxiliaire (5A, 5B) et collecteur auxiliaire (6A, 6B) est munie de perforations disposées en quinconce, les extrémités des tubes juxtaposés étant logées dans des perforations correspondantes disposées en quinconce dans la plaque de raccordement (16), et étant solidaires de celle-ci, essentiellement sans déviation de la surface hélicoïdale correspondante.
2. Echangeur de chaleur selon la revendication 1, caractérisé par le fait que la plaque de raccordement (16) de chaque distributeur auxiliaire et collecteur auxiliaire est munie de deux rangées de perforations disposées en quinconce, qui s'étendent parallèlement à la surface hélicoïdale correspondante à faible distance de part et d'autre de celle-ci, les extrémités des tubes hélicoïdaux étant légèrement écartées alternativement de part et d'autre de cette surface hélicoïdale, s'étendant ensuite parallèlement à cette surface hélicoïdale et étant raccordées alternativement dans des perforations correspondantes des deux rangées.
3. Echangeur de chaleur selon la revendication 1, caractérisé par le fait que chaque faisceau de tubes (1A à 1D) est composé de tubes hélicoïdaux flexibles qui s'appuient librement sur des consoles (20), ces consoles étant solidaires du tuyau central (9) et réparties sur la surface hélicoïdale correspondante autour du tuyau central (9), de manière que les tubes hélicoïdaux soient appuyés les uns contre les autres en position fixe.
4. Echangeur de chaleur selon la revendication 3, caractérisé par le fait que les tubes hélicoïdaux flexibles sont cintrés et supportés dans des directions axiales opposées par les consoles sur la surface hélicoïdale correspondante.
5. Echangeur de chaleur selon la revendication 3, caractérisé par le fait que les consoles (20) sont munies d'une denture adaptée à recevoir les tubes hélicoïdaux.
6. Echangeur de chaleur selon la revendication 3, caractérisé par le fait que les consoles sont dentées afin de les renforcer.
7. Echangeur de chaleur selon la revendication 3, caractérisé par le fait que les consoles (20) sont inclinées par rapport à l'axe longitudinal commun.
8. Echangeur de chaleur selon la revendication 7, caractérisé par le fait que les consoles (20) sont inclinées alternativement dans des directions axiales opposées.
9. Echangeur de chaleur selon la revendication 3, caractérisé par le fait que les tubes hélicoïdaux sont formés d'une matière plastique.
10. Echangeur de chaleur selon la revendication 9, caractérisé par le fait que le distributeur auxiliaire et le collecteur auxiliaire sont formés essentiellement d'une matière plastique, les extrémités des tubes hélicoïdaux étant raccordées par fusion dans les perforations respectives de la plaque de raccordement (16).
11. Echangeur de chaleur selon la revendication 1, caractérisé par le fait que l'ensemble de l'échangeur de chaleur est monté de manière qu'il puisse tourner autour de l'axe longitudinal commun et est agencé de manière qu'il puisse être soumis à un mouvement oscillant par un moyen entraînement.
12. Echangeur de chaleur selon la revendication 3, caractérisé par le fait que les consoles sont réparties dans plusieurs plans radiaux et reliées les unes aux autres à leur extrémité libre par des bandes de fixation (21) dans chaque plan radial.
EP87905169A 1986-08-21 1987-08-21 Echangeur de chaleur a contre-courant a faisceau helicoidal de tubes Expired - Lifetime EP0278961B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT87905169T ATE58012T1 (de) 1986-08-21 1987-08-21 Gegenstrom-waermeaustauscher mit wendelrohrbuendel.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH334886 1986-08-21
CH3348/86 1986-08-21

Publications (2)

Publication Number Publication Date
EP0278961A1 EP0278961A1 (fr) 1988-08-24
EP0278961B1 true EP0278961B1 (fr) 1990-10-31

Family

ID=4254029

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87905169A Expired - Lifetime EP0278961B1 (fr) 1986-08-21 1987-08-21 Echangeur de chaleur a contre-courant a faisceau helicoidal de tubes

Country Status (5)

Country Link
US (1) US4893672A (fr)
EP (1) EP0278961B1 (fr)
JP (1) JPH01500685A (fr)
AU (1) AU7807487A (fr)
WO (1) WO1988001362A1 (fr)

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8811813D0 (en) * 1988-05-19 1988-06-22 York Int Ltd Heat exchanger
GB2251678A (en) * 1990-11-28 1992-07-15 Shell Int Research Heat exchange apparatus
FR2674322B1 (fr) * 1991-03-20 1998-02-13 Valeo Thermique Moteur Sa Echangeur de chaleur a faisceau de tubes, en particulier pour vehicule automobile.
JP2835286B2 (ja) * 1994-08-11 1998-12-14 昇 丸山 熱交換コイル組立体及びその複合体
AU728554B2 (en) * 1997-07-17 2001-01-11 Vos International Ltd Heat exchanger for cooking apparatus
EP0996846A4 (fr) 1997-07-17 2000-10-11 Vos Ind Ltd Echangeur thermique pour appareil de cuisson
EP0942250A1 (fr) * 1998-03-09 1999-09-15 Romabau AG Echangeur de chaleur cryogénique
TW445366B (en) * 1998-05-15 2001-07-11 Noboru Maruyama Assembly body of heat exchange coils
US6027241A (en) * 1999-04-30 2000-02-22 Komax Systems, Inc. Multi viscosity mixing apparatus
CN2404087Y (zh) * 2000-01-26 2000-11-01 淮阴辉煌太阳能有限公司 装配式螺旋套管热交换器
US6250098B1 (en) * 2000-02-08 2001-06-26 Chung-Ping Huang Support frame for an ice-storing tank for an air conditioner with an ice-storing mode
US20030079872A1 (en) * 2000-10-06 2003-05-01 Kevin Bergevin Refrigerant-capable heat exchanger made from bendable plastic tubing and method
EP1461278A4 (fr) * 2001-12-04 2005-06-22 Ecotechnology Ltd Chambre de creation d'ecoulement
US7082955B2 (en) * 2001-12-04 2006-08-01 Ecotechnology, Ltd. Axial input flow development chamber
US6944771B2 (en) * 2001-12-20 2005-09-13 Koninklijke Philips Electronics N.V. Method and apparatus for overcoming a watermark security system
US7160024B2 (en) * 2003-08-05 2007-01-09 Ecotechnology, Ltd. Apparatus and method for creating a vortex flow
US7322404B2 (en) * 2004-02-18 2008-01-29 Renewability Energy Inc. Helical coil-on-tube heat exchanger
PL1672304T3 (pl) * 2004-12-18 2007-11-30 Neue Energie Verwertungsgesellschaft Mbh Wymiennik ciepła
US8534346B1 (en) 2006-11-16 2013-09-17 Climatecraft Technologies, Inc. Flexible heat exchanger
US11884555B2 (en) 2007-06-07 2024-01-30 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
US8505323B2 (en) * 2007-06-07 2013-08-13 Deka Products Limited Partnership Water vapor distillation apparatus, method and system
CN100533037C (zh) * 2008-01-04 2009-08-26 华南理工大学 一种连续螺旋折流板双壳程组合异形管管束换热器
JP5151760B2 (ja) * 2008-07-22 2013-02-27 住友金属鉱山株式会社 向流式直接加熱型熱交換器
DE102008037726A1 (de) * 2008-08-14 2010-05-06 Khs Ag Verfahren und Vorrichtung zur Wärmebehandlung von flüssigen Lebensmitteln
US20100193168A1 (en) * 2009-02-02 2010-08-05 Johnson Jr Alfred Leroy Heat exchanger
NL2003980C2 (nl) 2009-12-18 2011-06-21 Muelink & Grol Bv Rookgasafvoerappendage met warmtewisselaar.
US8261551B2 (en) * 2010-09-28 2012-09-11 Doyle Brewington Energy producing device
DE102011017030A1 (de) * 2011-04-14 2012-10-18 Linde Ag Wärmetauscher mit Kernrohr und Ringkanal
ITTO20110446A1 (it) * 2011-05-19 2012-11-20 Cosmogas Srl Scambiatore di calore e procedimento di realizzazione
US11352267B2 (en) 2011-07-15 2022-06-07 Deka Products Limited Partnership Water distillation apparatus, method and system
DE102011119076B4 (de) * 2011-11-21 2014-06-26 Automatik Plastics Machinery Gmbh Vorrichtung und Verfahren zum Druckabbau eines Fluids mit darin enthaltenen Granulatkörnern
KR101363545B1 (ko) 2012-07-11 2014-02-14 엘지전자 주식회사 열교환기
KR101384758B1 (ko) * 2012-07-11 2014-04-14 엘지전자 주식회사 열교환기
CN102927837A (zh) * 2012-11-02 2013-02-13 镇海石化建安工程有限公司 一种换热器结构
EP2762820B1 (fr) 2013-02-01 2016-04-27 LG Electronics, Inc. Climatiseur et son échangeur de chaleur
GB201401092D0 (en) * 2014-01-23 2014-03-12 Rolls Royce Plc Heat exchanger support
NO20140389A1 (no) * 2014-03-25 2015-09-28 Vetco Gray Scandinavia As Undersjøisk varmevekslerinnretning og en fremgangsmåte for å forbedre graden av varmeoverføring i en undersjøisk varmeveksler
US9248418B1 (en) 2014-03-31 2016-02-02 Komax Systems, Inc. Wafer mixing device
US10060680B2 (en) 2014-06-30 2018-08-28 Modine Manufacturing Company Heat exchanger and method of making the same
WO2016057471A1 (fr) * 2014-10-07 2016-04-14 Unison Industries, Llc Échangeur de chaleur enroulé en spirale à écoulements croisés
AU2015339717A1 (en) * 2014-10-27 2017-06-15 Ebullient, Llc Heat exchanger with helical passageways
US9891002B2 (en) 2014-10-27 2018-02-13 Ebullient, Llc Heat exchanger with interconnected fluid transfer members
US20160120059A1 (en) 2014-10-27 2016-04-28 Ebullient, Llc Two-phase cooling system
US10495384B2 (en) * 2015-07-30 2019-12-03 General Electric Company Counter-flow heat exchanger with helical passages
EP3287730A1 (fr) 2016-08-25 2018-02-28 Bosch Termoteknik Isitma ve Klima Sanayi Ticaret Anonim Sirketi Fluide caloporteur
US10539371B2 (en) * 2017-01-18 2020-01-21 Qorvo Us, Inc. Heat transfer device incorporating a helical flow element within a fluid conduit
EP3406997B1 (fr) * 2017-05-25 2020-09-23 HS Marston Aerospace Limited Agencements tubulaires entrelacés pour échangeurs de chaleur et systèmes de transfert de chaleur à contre-courant
CA3200543A1 (fr) 2017-07-28 2019-01-31 Fluid Handling Llc Procedes d'acheminement de fluide pour echangeur de chaleur en spirale a section transversale en treillis fabrique par fabrication additive
IT201700096656A1 (it) * 2017-08-28 2019-02-28 Cosmogas Srl Scambiatore di calore per una caldaia, e tubo di scambiatore di calore
US10928058B2 (en) * 2018-02-08 2021-02-23 Vytis, Ltd. Flash boiler
MX2021004317A (es) 2018-10-15 2021-08-11 Deka Products Lp Aparato, método y sistema de destilación de agua.
CN109595970A (zh) * 2018-12-28 2019-04-09 滨州中科催化技术有限公司 螺旋折流板及换热器
WO2021026397A1 (fr) * 2019-08-07 2021-02-11 A. O. Smith Corporation Chauffe-eau sans réservoir à haute efficacité
KR102348684B1 (ko) * 2019-11-28 2022-01-11 한국생산기술연구원 열교환기, 열교환기 모듈 및 이를 포함하는 가압 순산소 연소 발전 시스템
RS20200036A1 (sr) 2020-01-13 2021-07-30 Stamenic Aleksandar Uređaj za razmenu energije između medijuma sa poboljšanom strukturom i performansama
US11453160B2 (en) 2020-01-24 2022-09-27 Hamilton Sundstrand Corporation Method of building a heat exchanger
US11441850B2 (en) * 2020-01-24 2022-09-13 Hamilton Sundstrand Corporation Integral mounting arm for heat exchanger
US11703283B2 (en) 2020-01-24 2023-07-18 Hamilton Sundstrand Corporation Radial configuration for heat exchanger core
US11460252B2 (en) 2020-01-24 2022-10-04 Hamilton Sundstrand Corporation Header arrangement for additively manufactured heat exchanger
US11927402B2 (en) * 2021-07-13 2024-03-12 The Boeing Company Heat transfer device with nested layers of helical fluid channels
CN116878333B (zh) * 2023-09-05 2023-11-07 山东瑞多节能环保科技有限公司 一种污水换热器在线清洗装置及清洗方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA644419A (en) * 1962-07-10 H. Ammon Johannes Vapor generating unit
US1840940A (en) * 1927-10-13 1932-01-12 Baker Ice Machine Co Inc Refrigeration unit
US2519084A (en) * 1945-03-13 1950-08-15 Westinghouse Electric Corp Shell and tube heat exchanger having zig-zag tubes
US2566976A (en) * 1949-11-09 1951-09-04 Clarence R Bernstrom Water heater
FR1035120A (fr) * 1951-04-05 1953-08-17 élément d'échangeur thermique
GB791843A (en) * 1955-03-12 1958-03-12 Ostbo Nils Recuperative heat exchanger
DE1094774B (de) * 1957-08-07 1960-12-15 Suislavia Handels A G Waermetauscher
US3130780A (en) * 1960-12-29 1964-04-28 Combustion Eng Live steam reheater
FR1517138A (fr) * 1967-02-27 1968-03-15 Mashinostroitelny Zd Im 40 Let échangeur thermique à tubes
US3561524A (en) * 1969-10-08 1971-02-09 Satterthwaite James G Marine keel cooler
DE2302769C3 (de) * 1973-01-20 1980-01-31 Sueddeutsche Kuehlerfabrik Julius Fr. Behr Gmbh & Co Kg, 7000 Stuttgart Rohrbündel-Wärmetauscher
US4013402A (en) * 1975-06-11 1977-03-22 Foster Wheeler Energy Corporation Fired heater for a multiphase feedstock
US4041726A (en) * 1976-03-29 1977-08-16 Paul Mueller Company Hot water system
US4121656A (en) * 1977-05-27 1978-10-24 Ecodyne Corporation Header
US4346759A (en) * 1978-04-10 1982-08-31 Aerco International, Inc. Heat reclaiming system
DE2938324A1 (de) * 1979-09-21 1981-04-09 Willi Ing.(grad.) 3000 Hannover Strohmeyer Waermetauscher, insbesondere zum anschluss an heizungsanlagen in ein- und mehrfamilienhaeusern
GB2082312A (en) * 1980-08-21 1982-03-03 Imi Radiators Header tank construction
JPS5886387A (ja) * 1981-11-19 1983-05-23 Kiyoteru Takayasu 熱交換器
US4596286A (en) * 1984-10-09 1986-06-24 Joy Manufacturing Company Rotary processor

Also Published As

Publication number Publication date
WO1988001362A1 (fr) 1988-02-25
JPH01500685A (ja) 1989-03-09
US4893672A (en) 1990-01-16
AU7807487A (en) 1988-03-08
EP0278961A1 (fr) 1988-08-24

Similar Documents

Publication Publication Date Title
EP0278961B1 (fr) Echangeur de chaleur a contre-courant a faisceau helicoidal de tubes
DE69415779T2 (de) Wärmetauscher
DE69306065T2 (de) Wärmetauscher
DE2728971C3 (de) Einsatz für ein Wärmetauscherrohr
DE69513582T3 (de) Wärmetauscherschlange
AT391443B (de) Kuehlereinheit
CH558584A (de) Abstandsgitter fuer eine kernbrennstoffelementanordnung.
EP0121079A1 (fr) Echangeur de chaleur
DE102005021610A1 (de) Wärmetauscher
EP3523590A1 (fr) Échangeur de chaleur
CH617504A5 (fr)
CH666539A5 (de) Waermetauscherrohr und daraus gebildeter waermetauscher.
EP2447626B1 (fr) Echangeur thermique, notamment pour l'application dans des meubles réfrigérants
DE2712818A1 (de) Rohrfoermiger koerper
EP2192367B1 (fr) Echangeur thermique
DE3401853A1 (de) Waermetauscher und verfahren zu seiner herstellung
DE3226420C2 (de) Statische Mischvorrichtung zum Mischen von Gasen, Flüssigkeiten und Feststoffen in ein- oder mehrphasigen Systemen
DE3208838C2 (de) Wärmeübertrager
DE2946879C2 (fr)
DE2012883C3 (de) Rohrbündel-Wärmetauscher
DE3110719C2 (de) Wärmetauscher mit mehreren, in einem Gehäuse untergebrachten, spiralförmigen Verteilerrohrabschnitten
DE102006001351A1 (de) Spiralwärmetauscher
EP0770845A2 (fr) Tube d'échangeur de chaleur avec éléments turbulateurs générateurs de tourbillons
DE2430584A1 (de) Waermetauschereinsatz
DE3904250C2 (de) Flachrohr für Wärmeaustauscher

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19880420

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19881102

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 19901031

Ref country code: FR

Effective date: 19901031

Ref country code: BE

Effective date: 19901031

Ref country code: NL

Effective date: 19901031

Ref country code: GB

Effective date: 19901031

Ref country code: SE

Effective date: 19901031

REF Corresponds to:

Ref document number: 58012

Country of ref document: AT

Date of ref document: 19901115

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3765930

Country of ref document: DE

Date of ref document: 19901206

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910723

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19910827

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19910831

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19910911

Year of fee payment: 5

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19920821

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Effective date: 19920831

Ref country code: LI

Effective date: 19920831

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19930501