EP0276215B1 - Process for extracting precious metals from ore concentrates - Google Patents

Process for extracting precious metals from ore concentrates Download PDF

Info

Publication number
EP0276215B1
EP0276215B1 EP86905719A EP86905719A EP0276215B1 EP 0276215 B1 EP0276215 B1 EP 0276215B1 EP 86905719 A EP86905719 A EP 86905719A EP 86905719 A EP86905719 A EP 86905719A EP 0276215 B1 EP0276215 B1 EP 0276215B1
Authority
EP
European Patent Office
Prior art keywords
gold
silicate
digestion
silver
temperatures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86905719A
Other languages
German (de)
French (fr)
Other versions
EP0276215A1 (en
Inventor
Eberhard Gock
Elias Asiam
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to AT86905719T priority Critical patent/ATE54675T1/en
Publication of EP0276215A1 publication Critical patent/EP0276215A1/en
Application granted granted Critical
Publication of EP0276215B1 publication Critical patent/EP0276215B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/08Obtaining noble metals by cyaniding

Definitions

  • the invention relates to a wet chemical process for the extraction of gold and silver by the direct oxidizing, sulfuric acid digestion of carbon-containing, pyrite-free or pyrite-containing ore concentrates, in particular arsenopyrite concentrates (FeAsS2) with a silicate or silicate and pyrite gangue, whereby arsenic and iron are converted almost completely into solution and the noble metals are enriched almost quantitatively together with the carbon of the carbon-containing substances in the silicate residue.
  • AuAsS2 arsenopyrite concentrates
  • gold and silver can be obtained by cyanide leaching with almost no loss of adsorption and subsequent precipitation.
  • the arsenopyrite concentrates generally contain silicates and, depending on the deposit type, pyrites and carbon-containing substances such as e.g. Graphite. Since the subsequent subsequent roasting process for the combustion of the sulfide sulfur in the presence of carbon-containing substances cannot be controlled thermally, attempts are made to produce carbon-free arsenopyrite concentrates by pressing the carbon-containing substances during flotation. This is only partially successful and is eliminated in the case of carbon-containing substances that contain adsorbed precious metals.
  • the roasting of arsenopyrite concentrates takes place in the temperature range between 500 ° and 800 ° C.
  • arsenic and arsenic sulfides must be completely oxidized in the gas phase. This requires a low oxygen pressure and a high S02 partial pressure in the roasting zone. Excessive oxygen partial pressure creates the conditions for the formation of metal arsenates.
  • the gross reaction process of roasting arsenopyrite corresponds to the following equation:
  • the disadvantage of this method is that the silicate gait is largely dissolved, which causes considerable filtration problems during the solid / liquid separation due to gel formation. Furthermore, the essentially amorphous Fe 2 0 3 has a very good dissolving behavior, so that in the subsequent solution of the noble metals with CI 2 gas, high reagent costs can be expected.
  • the object of the invention is to provide a wet-chemical process for the recovery of gold and silver as well as a high gold and high silver content, iron-, arsenic- and carbon-free silicate concentrate from pyrite-free ore concentrates, in particular from arsenopyrite or p yrit inconveniencen ore concentrates, in particular from arsenopyrite, in addition to Silicates can contain carbon-containing substances, which enables an almost quantitative gold and silver yield or the production of a high-gold and high-silver-containing, iron-, arsenic- and carbon-free silicate concentrate under the most economical process conditions and largely avoiding environmental pollution.
  • Claims 1 to 4 contain the solution to this problem.
  • the ore concentrates are subjected to mechano-chemical treatment with predominantly shocking loads with an energy expenditure of 50-500 kWh / t ore concentrate with or without sulfuric acid with a reaction time of 15 minutes to 6 hours and temperature rises of 50 ° -150 ° C in the presence of oxygen with a partial pressure of 0.2-20 bar oxidizing in one step, whereby the arsenic and iron part is almost completely converted into solution, while gold, silver and carbon-containing substances are almost completely in the silicate residue, which at temperatures of 400 ° -1000 ° C is decarbonized, enrich.
  • Gold and silver can be obtained from this decarbonized concentrate in a known manner by cyanide leaching and subsequent precipitation. The cyanide leach can be carried out in 3-10 hours.
  • the carbon-containing fraction of the noble metal-containing residue can be completely decarbonized even at temperatures which are far from the flash points usual for carbon-containing substances, so that precious metal losses due to adsorption are largely excluded in the subsequent cyanide leaching.
  • arsenopyrite concentrates containing noble metals which in addition to silicate and carbon-containing gait contain pyrite as an accompanying mineral, can also be digested in one step in the presence of oxygen if a mechano-chemical pretreatment with predominantly impacting stress is carried out. Pyrite suffers structural changes in the same way as arsenopyrite, which are characterized by a sulfur deficit in the crystal lattice.
  • reaction conditions for the oxidizing digestion of pyrite-containing arsenopyrite concentrates are determined by the reactivity of the pyrite.
  • reaction temperature of 140 ° C known from scientific studies on the complete oxidizing acid pressure decomposition of pyrite
  • a complete decomposition of the pyrite fraction in arsenopyrite concentrates can take place at temperatures of 110 ° C without the addition of sulfuric acid .
  • these silicate residues the leading gold and silver are almost quantitative even under these conditions.
  • a process step that is essential to the invention is the mechano-chemical pretreatment with predominantly impact stress, in which impact stresses in the arsenopyrite concentrates, in addition to the surface enlargement caused by the crushing effect, cause symmetry conversions and unstable intermediate states due to lattice defects and vacancies, the latter being generated as a result of the dissociation of a low sulfur content.
  • Vibratory grinding is particularly suitable as a mechano-chemical pretreatment process for generating structural changes due to its predominantly shocking loads at accelerations up to 15 g and point temperatures greater than 800 ° C.
  • arsenopyrites undergo extensive structural transformation from triclinic to monoclinic symmetry.
  • the accompanying minerals pyrite, quartz and carbon are put into active unstable intermediate states by lattice defects or lattice vacancies.
  • This effect of mechano-chemical structural transformation which is essential to the invention for the dissolving behavior of arsenopyrite concentrates, can be reproducibly demonstrated by X-ray fine structures.
  • Vibrating mills are to be regarded accordingly as physicochemical reactors (Gock, E .: Measures to reduce the energy requirement for vibratory grinding, processing technology, 1979, pp. 343-347).
  • An energy expenditure for vibratory grinding of 100-200 kWh / t ore concentrate has proven to be particularly advantageous in the method according to the invention.
  • the effect of the mechanochemical structural transformation of arsenopyrite concentrates achieved by vibratory grinding depends on the concentration of the mineral components, on the operating conditions of the mill as well as on the duration of the grinding and thus the energy expenditure per ton of concentrate. If a longer digestion time can be represented in terms of process technology, a shorter grinding time is sufficient. With regard to the volume of the digestion reactor, however, it is advantageous to keep the reaction time short. A reaction time of 15-240 minutes has proven to be particularly advantageous.
  • the vibratory grinding is therefore preferably carried out in such a way that the intensity ratios of the X-ray diffraction reflections 1 / lo that are measurable for arsenopyrite or the accompanying minerals quartz and pyrite are less than 0.4.
  • the digestion can contain metal.
  • Arsenopyrite concentrates with any proportions of silicate gait and carbon-containing substances 1 e.g. by low pressure leaching 3 with sulfuric acid at temperatures of 60 ° C-120 ° C, particularly preferably at 60 ° -100 ° C and an oxygen partial pressure of preferably 0.2-10 bar with a reaction time of 15-240 minutes in such a way that the arsenic - And iron content is completely transferred to solution 4 and the precious metals gold and silver accumulate almost quantitatively in the silicate, carbon-containing residue 8 and thus form a noble metal concentrate.
  • the reaction conditions are determined by it.
  • the dissolution is an exothermic reaction, so that the process does not require any heat.
  • the sulfide sulfur from arsenopyrite and pyrite is largely oxidized to sulfate, it is generally not necessary to add sulfuric acid in a cycle.
  • the noble metal concentrate can be e.g. due to the activated state of the carbon-containing substance. Decarbonize by annealing, preferably at 500 ⁇ 600 ° C. This largely prevents loss of precious metals due to adsorption during the subsequent cyanide leaching. Gold and silver can be obtained from the decarbonized concentrate in a known manner by cyanide leaching 10.
  • the reaction time for the almost quantitative extraction of gold and silver from these concentrates is 3 to a maximum of 10 hours.
  • the extraction of gold and silver from the cyanide solutions can e.g. by the CIP process with subsequent precipitation 11 by electrolysis or by zinc metal.
  • the solutions resulting from the digestion of arsenopyrite concentrates contain all of the leading arsenic and iron in the form of Fe3 + and As03- / 4-ions 4.
  • iron and arsenic can precipitate out as difficult-to-dissolve iron arsenate 5, which are fed to a landfill 6 or can be the starting material for the thermal extraction of arsenic.
  • the sulfuric acid released in the process is recirculated 7 into the low-pressure leaching stage 3.
  • the high carbon residue was first dried at 100 ° C and then annealed at 500 ° C for 60 minutes in the presence of atmospheric oxygen. The residue is completely decarbonized. In relation to the task, an enrichment by a factor of 3.4 was found for gold and silver in the silicate residue. Subsequent cyanide leaching of this precious metal concentrate led to a complete extraction of gold and silver after a leaching time of 4 hours; Without decarbonization, precious metal losses of up to 70% occur after the same leaching time.
  • the decarbonization was carried out at 600 ° C. over a period of 10 minutes.
  • the result was a completely decarbonized noble metal concentrate which showed the same favorable leaching behavior in the subsequent cyanide leaching.
  • the noble metal-rich residue was decarbonized in an air stream at 600 ° C. for 15 minutes. An enrichment level of 5.05 was found for gold and silver. The leaching of this precious metal concentrate with NaCN enabled a complete extraction of gold and silver after a reaction time of 5 hours.

Abstract

Wet chemical process for extracting gold and silver by direct oxidizing, sulphuric acid disintegration of carbon-containing arsenopyrite (FeAsS2) concentrates containing silicate gangue or silicate and pyritic gangue, in which arsenic and iron are fully transformed into solution and the precious metals are quantitatively enriched in the silicate residue. After decarbonization gold and silver can be obtained by cyanide leaching without adsorption losses. Also described is a wet chemical process for making concentrates with a high gold and silver content.

Description

Die Erfindung betrifft ein naßchemisches Verfahren zur Gewinnung von Gold und Silber durch den direkten oxidierenden, schwefelsauren Aufschluß kohlenstoffhaltiger, pyritfreier oder pyrithaltiger Erzkonzentrate, insbesondere Arsenopyritkonzentrate (FeAsS2) mit silikatischer Gangart bzw. silikatischer und pyritischer Gangart, wobei Arsen und Eisen fast vollständig in Lösung überführt und die Edelmetalle fast quantitativ zusammen mit dem Kohlenstoff der kohlenstoffhaltigen Substanzen im silikatischen Rückstand angereichert werden. Nach Entkarbonisieren des Rückstandes lassen sich Gold und Silber durch Cyanidlaugung fast ohne Adsorptionsverluste und anschließende Ausfällung gewinnen.The invention relates to a wet chemical process for the extraction of gold and silver by the direct oxidizing, sulfuric acid digestion of carbon-containing, pyrite-free or pyrite-containing ore concentrates, in particular arsenopyrite concentrates (FeAsS2) with a silicate or silicate and pyrite gangue, whereby arsenic and iron are converted almost completely into solution and the noble metals are enriched almost quantitatively together with the carbon of the carbon-containing substances in the silicate residue. After decarbonization of the residue, gold and silver can be obtained by cyanide leaching with almost no loss of adsorption and subsequent precipitation.

Zur Gewinnung von Gold und Silber aus Arsenopyriten werden diese üblicherweise durch Flotation angereichert. Als Gangart enthalten die Arsenopyritkonzentrate grundsätzlich Silikate und in Abhängigkeit vom Lagerstättentyp Pyrite und kohlenstoffhaltige Substanzen wie z.B. Graphit. Da der heute ausnahmslos nachfolgende Röstprozeß zur Verbrennung des Sulfidschwefels in Gegenwart kohlenstoffhaltiger Substanzen thermisch nicht beherrschbar ist, wird versucht, durch Drücken der kohlenstoffhaltigen Substanzen bei der Flotation kohlenstofffreie Arsenopyritkonzentrate zu erzeugen. Dieses gelingt nur partiell und scheidet bei kohlenstoffhaltigen Substanzen, die Edelmetalle adsorbiert enthalten, aus.To obtain gold and silver from arsenopyrites, these are usually enriched by flotation. The arsenopyrite concentrates generally contain silicates and, depending on the deposit type, pyrites and carbon-containing substances such as e.g. Graphite. Since the subsequent subsequent roasting process for the combustion of the sulfide sulfur in the presence of carbon-containing substances cannot be controlled thermally, attempts are made to produce carbon-free arsenopyrite concentrates by pressing the carbon-containing substances during flotation. This is only partially successful and is eliminated in the case of carbon-containing substances that contain adsorbed precious metals.

Das Abrösten von Arsenopyritkonzentraten erfolgt im Temperaturbereich zwischen 500° und 800°C. Um den Arsengehalt der Gase als As203 abscheiden zu können, müssen Arsen und Arsensulfide in der Gasphase vollständig oxidiert werden, Dazu ist in der Röstzone ein niedriger Sauerstoffdruck und hoher S02-Partialdruck erforderlich. Zu hoher Sauerstoffpartialdruck schafft die Voraussetzungen zur Bildung von Metallarsenaten. Der Bruttoreaktionsablauf der Röstung von Arsenopyrit entspricht der nachfolgenden Gleichung:

Figure imgb0001
The roasting of arsenopyrite concentrates takes place in the temperature range between 500 ° and 800 ° C. In order to be able to separate the arsenic content of the gases as As 2 0 3 , arsenic and arsenic sulfides must be completely oxidized in the gas phase. This requires a low oxygen pressure and a high S02 partial pressure in the roasting zone. Excessive oxygen partial pressure creates the conditions for the formation of metal arsenates. The gross reaction process of roasting arsenopyrite corresponds to the following equation:
Figure imgb0001

Die Nachteile dieses Verfahrens sind vielfältig. Zum einen bedeuten die nicht vermeidbaren SO - und As O - Emissionen eine unverantwortliche Umweltbelastung, zum anderen betragen die Goldverlust durch Staubaustrag in Abhängigkeit von der Rösttemperatur mehr als 30%; bei 802 C ist mit einem Goldverlust von 33,7% zu rechnen (s.a. Ullmanns Enzyklopädie der Technischen Chemie, Verlag Chemie, Weinheim/Bergstr., 1974). Weitere Edelmetallverluste ergeben sich bei der anschließenden Cyanidlaugung bei,unvollkommener Abröstung durch Arsen- bzw. Eisenarsenatüberzüge sowie durch Einschlüsse bei der Sinterung des anfallenden Hämatits (Fe203).The disadvantages of this method are numerous. On the one hand, the unavoidable SO and As O emissions mean an irresponsible environmental impact, on the other hand, the gold loss due to dust discharge is more than 30% depending on the roasting temperature; At 802 C, a gold loss of 33.7% is to be expected (see also Ullmann's Encyclopedia of Technical Chemistry, Verlag Chemie, Weinheim / Bergstr., 1974). Further precious metal losses result from the subsequent cyanide leaching, incomplete roasting by arsenic or iron arsenate coatings, and by inclusions during the sintering of the hematite (Fe 2 0 3 ).

Es fehlt daher nicht an Versuchen, den pyrometallurgischen Verfahrensschritt der Abröstung von Arsenopyritkonzentraten durch eine naßchemische Prozeßtechnik zu ersetzen.There is therefore no lack of attempts to replace the pyrometallurgical process step of roasting arsenopyrite concentrates with a wet chemical process technology.

Ein Vorschlag ist die oxidierende Drucklaugung von Arsenopyriten im Autoklaven mit NaOH bei 100°C und einem Sauerstoffpartialdruck von 10 bar. Dabie wird Arsen in wasserlösliches Na3As04 überführt und der Sulfidschwefel bis zum Sulfat oxidiert. Den Laugerückstand bilden im wesentlichen Fe203 und die Edelmetalle (Pawlek, F., Metallhüttenkunde, Verlag Walter der Gruyter, Berlin, New York, 1983, S. 639).One proposal is the oxidizing pressure leaching of arsenopyrites in an autoclave with NaOH at 100 ° C and an oxygen partial pressure of 10 bar. Dabie is converted into water-soluble Na 3 As0 4 arsenic and the sulfide sulfur is oxidized to the sulfate. The lye residue essentially forms Fe 2 0 3 and the precious metals (Pawlek, F., Metallhüttenkunde, Verlag Walter der Gruyter, Berlin, New York, 1983, p. 639).

Der Nachteil dieses Verfahrens ist, daß die silikatische Gangart weitgehend mit aufgelöst wird, wodurch bei der Trennung fest/flüssig durch Gelbildungen erhebliche Filtrationsprobleme entstehen. Weiterhin besitzt das im wesentlichen amorph anfallende Fe203 eine sehr gutes Löseverhalten, so daß bei der anschließend vorgesehenen Lösung der Edelmetalle mit CI2 Gas mit hohen Reagenzkosten zu rechnen ist.The disadvantage of this method is that the silicate gait is largely dissolved, which causes considerable filtration problems during the solid / liquid separation due to gel formation. Furthermore, the essentially amorphous Fe 2 0 3 has a very good dissolving behavior, so that in the subsequent solution of the noble metals with CI 2 gas, high reagent costs can be expected.

Der oxidierende saure Druckaufschluß von Arsenopyriten ist bei den für den basischen Aufschluß genannten Bedingungen grundsätzlich nicht möglich. Zum einen ist die Reaktionsgeschwindigkeit der Auflösung zu gering, zum anderen bewirken wiederum zu lange Reaktionsdauern Hydrolyseerscheinungen unter Bildung von schwerlöslichen Arsenaten und basischen Sulfaten, die die Extraktion des Edelmetallgehaltes mit Cyanidlaugung, insbesondere in Gegenwart kohlenstoffhaltiger Substanzen durch Adsorption unmöglich machen. (Gerlach, J., u. a.: Einfluß des Gitteraufbaues von Metallverhindungen auf ihre Laugbarkeit, Erzmetall, 1972, S. 450).The oxidizing acid pressure digestion of arsenopyrites is fundamentally not possible under the conditions mentioned for the basic digestion. On the one hand, the reaction rate of the dissolution is too slow, on the other hand, too long reaction times cause hydrolysis phenomena with the formation of poorly soluble arsenates and basic sulfates, which make it impossible to extract the noble metal content with cyanide leaching, especially in the presence of carbon-containing substances, by adsorption. (Gerlach, J., et al .: Influence of the lattice structure of metal compounds on their leachability, Erzmetall, 1972, p. 450).

Nach einem neuen Verfahrenskonzept der Stearns Catalytic Ltd. and Arseno Processing Ltd. (Gold recovery from arsenopyrite by the Arseno process, Western Miner, March 1983, S. 21) ist oder oxidierende sauer Druckaufschluß von pyritfreien Arsenopyritkonzentraten auch bei Temperaturen von 100°C möglich, wenn der Aufschluß in Gegenwart eines Katalysators erfolgt. Als weitere Reaktionsbedingungen werden Sauerstoffdruck von 7 bar und eine Reaktionsdauer von 15 Minuten angegeben.According to a new process concept by Stearns Catalytic Ltd. and Arseno Processing Ltd. (Gold recovery from arsenopyrite by the Arseno process, Western Miner, March 1983, p. 21) or oxidizing acidic pressure digestion of pyrite-free arsenopyrite concentrates is also possible at temperatures of 100 ° C. if the digestion is carried out in the presence of a catalyst. Oxygen pressure of 7 bar and a reaction time of 15 minutes are given as further reaction conditions.

Obgleich eingeräumt werden muß, daß dieses Verfahrenskonzept den gegenwärtig besten Vorschlag zur Aufarbeitung goldhaltiger pyritfreier Arsenopyritkonzentrate darstellt, weist er doch folgende Nachteile auf:

  • 1. Der Prozeß ist abhängig von Einsatz eines Katalysators, der nicht regenerierbar ist.
  • 2. Die Oxidation des Sulfidschwefels erfolgt uner den angegebenen Reaktionsbedingungen nur bis zum Elementarschwefel, der zwangsläufig bei der Trennung fest/flüssig in das silikatische Goldkonzentrat gerät. Bei der anschließenden oxidierenden Cyanidlaugung im basischen Milieu reagiert der Schwefel mit dem Sauerstoff unter Bildung von Thiosulfat, Polysulfat, Sulfat und Sulfit. Weniger als 0,05 ppm Sulfidschwefel (S2) setzen jedoch bereits die Goldausbeute bei der Cyanidlaugung gravierend herab (Adamson, R. 1., Gold Metallurgy in South Africa, Cape + transvaal Printers Ltd., 1972).
  • 3. Kohlenstoffhaltige Anteile konzentrieren sich im goldhaltigen silikatischen Rückstand. Es wird angegeben, das diese Anteile während des Prozesses passiviert werden, so daß bei der nachfolgenden Cyanidlaugung mit Goldverlusten durch Adsorption nicht zu rechnen ist. Mit einer Passivierung des Kohlenstoffs ist jedoch der in den Kohlenstoffpartikeln eingeschlossene Edelmetallanteil bei der nachfolgenden Cyanidlaugung nicht mehr gewinnbar, so daß entsprechende Ausbringungsverluste entstehen.
  • 4. Die Einhaltung der genannten Reaktionsbedingungen (100 C, 7 bar, 15 min) ist nur bei Abwesenheit von Pyrit möglich; bei 100°C und 8 bar 02-Druck lassen sich nach einer Laugedauer von 15 min maximal 20% des vorlaufenden Pyrits auflösen (Hähne; H.: Beitrag zur Drucklaugung von Eisensulfiden, Diss, TU Berlin, 1964). Die Abtrennung von Pyrit aus Arsenopyritkonzentrat setzt eine zusätzliche Prozeßstufe (Flotation) voraus. Dieser Weg ist aber nur möglch, wenn es sich um goldfreie Pyrite handelt; dies ist in den meisten Fällen nicht gegeben.
  • 5. Silber befindet sich sowohl im goldhaltigen Rückstand als auch in der Arsen-Eisen-Lösung; die gelöste Anteil ist derzeit nicht gewinnbar und stellt damit einen empfindlichen Verlust dar.
Although it must be admitted that this process concept is currently the best proposal for processing gold-containing pyrite-free arsenopyrite concentrates, it has the following disadvantages:
  • 1. The process depends on the use of a catalyst that cannot be regenerated.
  • 2. The oxidation of the sulfide sulfur takes place under the specified reaction conditions only up to the elementary sulfur, which inevitably gets into the silicate gold concentrate in the solid / liquid separation. In the subsequent oxidizing cyanide leaching in the basic environment, the sulfur reacts with the oxygen to form thiosulfate, polysulfate, sulfate and sulfite. However, less than 0.05 ppm of sulfide sulfur (S 2 ) already seriously reduces the gold yield in cyanide leaching (Adamson, R. 1., Gold Metallurgy in South Africa, Cape + transvaal Printers Ltd., 1972).
  • 3. Carbon-containing components are concentrated in the gold-containing silicate residue. It is stated that these portions are passivated during the process, so that gold losses due to adsorption are not to be expected in the subsequent cyanide leaching. With a passivation of the carbon, however, the noble metal portion enclosed in the carbon particles can no longer be obtained in the subsequent cyanide leaching, so that corresponding output losses occur.
  • 4. Compliance with the stated reaction conditions (100 C, 7 bar, 15 min) is only possible in the absence of pyrite; at 100 ° C and 8 bar 0 2 pressure, a maximum of 20% of the leading pyrite can be dissolved after a leaching time of 15 min (Hahn; H .: Contribution to the pressure leaching of iron sulfides, Diss, TU Berlin, 1964). The separation of pyrite from arsenopyrite concentrate requires an additional process step (flotation). This path is only possible if the pyrites are gold-free; in most cases this is not the case.
  • 5. Silver is found both in the gold-containing residue and in the arsenic-iron solution; the solved share is currently not recoverable and therefore represents a sensitive loss.

Aufgabe der Erfindung ist es, eine naßchemisches Verfahren zur Gewinnung von Gold und Silber sowie eines hochgold- und hochsilberhaltigen, eisen-, arsen- und kohlenstofffreien silikatischen Konzentrates aus pyritfreien Erzkonzentraten, insbesondere aus Arsenopyritkonzentraten oder aus pyrithaltigen Erzkonzentraten, insbesondere aus Arsenopyritkonzentraten, die neben Silikaten kohlenstoffhaltige Substanzen enthalten können, zur Verfügung zu stellen, das eine fast quantitative Gold- und Silberausbeute bzw. die Herstellung eines hochgold und hochsilberhaltigen, eisen-, arsen- und kohlenstofffreien silikatischen Konzentrates bei möglichst wirtschaftlichen Verfahrensbedingungen und unter weitgehender Vermeidung einer Umweltbelastung ermöglicht.The object of the invention is to provide a wet-chemical process for the recovery of gold and silver as well as a high gold and high silver content, iron-, arsenic- and carbon-free silicate concentrate from pyrite-free ore concentrates, in particular from arsenopyrite or p yrithaltigen ore concentrates, in particular from arsenopyrite, in addition to Silicates can contain carbon-containing substances, which enables an almost quantitative gold and silver yield or the production of a high-gold and high-silver-containing, iron-, arsenic- and carbon-free silicate concentrate under the most economical process conditions and largely avoiding environmental pollution.

Die Patentansprüche 1 bis 4 enthalten die Lösung dieser Aufgabe. Danach werden die Erzkonzentrate nach einer mechano-chemischen Behandlung mit überwiegend stoßender Beanspruchung mit einem Energieaufwand von 50-500 kWh/t Erzkonzentrat mit bzw. ohne Schwefelsäure bei einer Reaktionsdauer von 15 minuten bis 6 Stunden und Temperaturren von 50°-150°C in Gegenwart von Sauerstoff mit einem Partialdruck von 0,2-20 bar oxidierend in einer Stufe aufgeschlossen, wobei der Arsen- und Eisenanteil fast vollständig in Lösung überführt wird, während sich Gold, Silber und kohlenstoffhaltige Substanzen fast vollständig im silikatischen Rückstand, der bei Temperaturen von 400°-1000°C dekarbonisiert wird, anreichern. Aus diesem Entkarbonisierten Konzentrat können Gold und Silber in bekannter Weise durch Cyanidlaugung und anschließende Fällung gewonnen werden. Die Cyanidlaugung kann in 3-10 Stunden durchgeführt werden.Claims 1 to 4 contain the solution to this problem. Afterwards, the ore concentrates are subjected to mechano-chemical treatment with predominantly shocking loads with an energy expenditure of 50-500 kWh / t ore concentrate with or without sulfuric acid with a reaction time of 15 minutes to 6 hours and temperature rises of 50 ° -150 ° C in the presence of oxygen with a partial pressure of 0.2-20 bar oxidizing in one step, whereby the arsenic and iron part is almost completely converted into solution, while gold, silver and carbon-containing substances are almost completely in the silicate residue, which at temperatures of 400 ° -1000 ° C is decarbonized, enrich. Gold and silver can be obtained from this decarbonized concentrate in a known manner by cyanide leaching and subsequent precipitation. The cyanide leach can be carried out in 3-10 hours.

Entgegen der Lehrmeinung ist ein direkter Schwefelsaurer Aufschluß edelmetallhaltiger Arsenopyritkonzentrate, die nehen silikatischer Gangart insbesondere kohlenstoffhaltige Substanzen enthalten, in Gegenwart von Sauerstoff in einer Stufe auch bei den Angegebenen Temperaturen möglich, wenn die Erzkonzentrate mechano-chemisch mit überwiegend stoßender Beanspruchung vorbehandelt werden. Durch die mechano-chemische Vorbehandlung mit überwiegend stoßender Beanspruchung erfolgt eine Symmetrieumwandlung des üblicherweise triklinen Arsenopyrits nach monoklin und der kohlenstoffhaltige Anteil erfährt eine Herabsetzung seines Flammpunktes. Die beim Aufschluß entstehenden stabilen Sulfatlösungen enthalten das vorlaufende Arsen und Eisen, während sich gold und Silber fast quantitativ mit der silikatischen Gangart und den kohlenstoffhaltigen Substanzen im Rückstand befinden. Aufgrund der Aktivierung laßt sich der kohlenstoffhaltige Anteil des edelmetallhaltigen Rückstandes bereits bei Temperaturen, die weit den bei kohlenstoffhaltigen Substanzen üblichen Flammpunkten liegen, vollständig entkarbonisieren, so daß bei der nachfolgenden Cyanidlaugung Edelmetallverluste durch Adsorption weitgehend ausgeschlossen sind. Es wurde weiterhin gefunden, daß edelmetallhaltige Arsenopyritkonzentrate, die neben silikatischer und kohlenstoffhaltiger Gangart als Begleitmineral Pyrit enthalten, in Gegenwart von Sauerstoff ebenfalls in einer Stufe aufgeschlossen werden können, wenn eine mechano-chemische vorbehandlung mit überwiegend stoßender Beanspruchung erfolgt. Dabei erleidet Pyrit in gleicher Weise wie der Arsenopyrit Strukturumwandlungen, die durch eine Schwefeldefizit des Kristallgitters gekennzeichnet sind. Die Reaktionsbedingungen für den oxidierenden Aufschluß von pyrithaltigen Arsenopyritkonzentraten werden in diesem Fall von der Reaktionsfähigkeit des Pyrits bestimmt. Im Gegensatz zu der aus wissenschaftlichen Untersuchungen zum vollständigen oxidierenden sauren Druckaufschluß von Pyrit bekannten minimal erforderlichen Rekationstemperatur von 140°C (Hähne, H., s. o.) kann ein vollständiger Aufschluß des Pyritanteils in Arsenopyritkonzentraten bereits bei Temperaturen von 110°C ohne zusatz von Schwefelsäure erfolgen. In den silikatischen Rückständen befinden sich auch unter diesen Bedingungen das vorlaufende Gold und Silber fast quantitativ.Contrary to the doctrine, direct sulfuric acid digestion of arsenopyrite concentrates containing noble metals, which, due to their silicate nature, contain carbon-containing substances in particular, is possible in the presence of oxygen in one step, even at the temperatures specified, if the ore concentrates are pretreated mechano-chemically with predominantly impacting stress. The mechano-chemical pretreatment with predominantly impacting stress results in a symmetry conversion of the usually triclinic arsenopyrite to monoclinic and the carbon-containing fraction is reduced in its flash point. The stable sulfate solutions formed during the digestion contain the leading arsenic and iron, while gold and silver are almost quantitatively behind with the silicate gait and the carbon-containing substances. As a result of the activation, the carbon-containing fraction of the noble metal-containing residue can be completely decarbonized even at temperatures which are far from the flash points usual for carbon-containing substances, so that precious metal losses due to adsorption are largely excluded in the subsequent cyanide leaching. It was also found that arsenopyrite concentrates containing noble metals, which in addition to silicate and carbon-containing gait contain pyrite as an accompanying mineral, can also be digested in one step in the presence of oxygen if a mechano-chemical pretreatment with predominantly impacting stress is carried out. Pyrite suffers structural changes in the same way as arsenopyrite, which are characterized by a sulfur deficit in the crystal lattice. In this case, the reaction conditions for the oxidizing digestion of pyrite-containing arsenopyrite concentrates are determined by the reactivity of the pyrite. In contrast to the minimally required reaction temperature of 140 ° C (Hahn, H., see above) known from scientific studies on the complete oxidizing acid pressure decomposition of pyrite, a complete decomposition of the pyrite fraction in arsenopyrite concentrates can take place at temperatures of 110 ° C without the addition of sulfuric acid . In these silicate residues, the leading gold and silver are almost quantitative even under these conditions.

Demgemäß ist auch die Gewinnung von Gold und Silber aus Pyriten Gegenstand dieser Erfindung.Accordingly, the extraction of gold and silver from pyrites is also the subject of this invention.

Eine erfindungswesentlicher Verfahrensschritt ist die mechano-chemische Vorbehandlung mit überwiegend stoßender Beanspruchung, bei der durch Stoßbeanspruchung bei den Arsenopyritkonzentraten über die durch den Zerkleinerungseffekt bedingte Oberflächenvergrößerung hinaus Symmetrieumwandlungen und instabile Zwischenzustände durch Gitterstörungen und Gitterleerstellen, letztere als Folge der Dissoziation eines geringen Schwefelanteils, erzeugt werden. Diese Strukturveränderungen und -umorientierungen führen zu Veränderungen der thermodynamischen Voraussetzungen und rufen neben Suszeptibilitäts- und Leitfähigkeitsänderungen eine so starke Erhöhung der Reaktionsfähigkeit bei Arsenopyritkonzentraten jeder Zusammensetzung hervor, daß zum einen eine fast vollständige Auflösung des Arsen- und Eisenanteils in Gegenwart von Sauerstoff bereits bei Temperaturen von 60°C möglich ist und der edelmetallhaltige silikatische Rückstand bei Temperaturen von 500°C entkarbonisiert werden kann, so daß bei der nachfolgenden Cyanidlaugung eine fast quantitative Gewinnung von Gold und Silber garantiert ist.A process step that is essential to the invention is the mechano-chemical pretreatment with predominantly impact stress, in which impact stresses in the arsenopyrite concentrates, in addition to the surface enlargement caused by the crushing effect, cause symmetry conversions and unstable intermediate states due to lattice defects and vacancies, the latter being generated as a result of the dissociation of a low sulfur content. These structural changes and reorientations lead to changes in the thermodynamic conditions and, in addition to changes in susceptibility and conductivity, call for such a sharp increase the reactivity with arsenopyrite concentrates of any composition shows that, on the one hand, an almost complete dissolution of the arsenic and iron content in the presence of oxygen is already possible at temperatures of 60 ° C and the noble metal-containing silicate residue can be decarbonized at temperatures of 500 ° C, so that the subsequent cyanide leaching guarantees an almost quantitative extraction of gold and silver.

Als mechano-chemisches Vorbehandlungsverfahren zur Erzeugung von Strukturveränderungen ist die Schwingmahlung aufgrund ihrer überwiegend stoßenden Beanspruchung bei Beschleunigungen bis zu 15 g und Punkttemperaturen größer als 800°C besonders geignet. Bei 800°C erfahren Arsenopyrite eine weitgehende Strukturumwandlung von der triklinen zur monoklinen Symmetrie. Die Begleitminerale Pyrit, Quarz und Kohlenstoff werden durch Gitterstörungen bzw. Gitterleerstellen in aktive instabile Zwischenzustände versetzt. Dieser für das Löseverhalten von Arsenopyritkonzentraten erfindungswesentliche Effekt der mechano-chemischen Strukturumwandlung läßt sich durch Röntgenfeinstrukturen reproduzierbar nachweisen. Schwingmühlen sind entsprechend als physikalischchemische Reaktoren aufzufassen (Gock, E.: Maßnahmen zur Verringerung des Energiebedarfs bei der Schwingmahlung, Aufbereitungstechnik, 1979, S. 343-347). Als besonders vorteilhaft bei dem erfindungsgemäßen Verfahren hat sich ein Energieaufwand für die Schwingmahlung von 100-200 kWh/t Erzkonzentrat herausgestellt.Vibratory grinding is particularly suitable as a mechano-chemical pretreatment process for generating structural changes due to its predominantly shocking loads at accelerations up to 15 g and point temperatures greater than 800 ° C. At 800 ° C, arsenopyrites undergo extensive structural transformation from triclinic to monoclinic symmetry. The accompanying minerals pyrite, quartz and carbon are put into active unstable intermediate states by lattice defects or lattice vacancies. This effect of mechano-chemical structural transformation, which is essential to the invention for the dissolving behavior of arsenopyrite concentrates, can be reproducibly demonstrated by X-ray fine structures. Vibrating mills are to be regarded accordingly as physicochemical reactors (Gock, E .: Measures to reduce the energy requirement for vibratory grinding, processing technology, 1979, pp. 343-347). An energy expenditure for vibratory grinding of 100-200 kWh / t ore concentrate has proven to be particularly advantageous in the method according to the invention.

Bei herkömmlichen Mühlen, bei denen die stoßende Beanspruchung neben der reibenden Beanspruchung nur eine untergeordnete Rolle spielt, reicht die Beanspruchungsenergie für die Erzeugung von Strukturveränderungen regelmäßig nicht aus, um einen vollständigen Aufschluß von Arsenopyritkonzentraten unter diesen Bedingungen zu erreichen.In conventional mills, in which the impact stress only plays a minor role in addition to the friction stress, the stress energy for the generation of structural changes is usually not sufficient to achieve a complete digestion of arsenopyrite concentrates under these conditions.

Im Rahmen des erfindungsgemäßen Verfahrens ist von entscheidender Bedeutung, daß der Flammpunkt des Kohlenstoffs im silikatischen Rückstand herabgesetzt wird.In the process according to the invention it is of crucial importance that the flash point of the carbon in the silicate residue is reduced.

Der durch Schwingmahlung erzielte Effekt der mechanochemischen Strukturumwandlung von Arsenopyritkonzentraten ist abhängig von der Konzentration der Mineralbestandteile, von den Betriebsbedingungen der Mühle sowie von der Dauer der Mahlung und damit dem Energieaufwand pro Tonne Konzentrat. Läßt sich verfahrenstechnisch eine längere Aufschlußdauer vertreten, ist eine kürzere Mahldauer ausreichend. Im Hinblick auf das volumen des Aufschlußreaktors ist es jedoch vorteilhaft, die Reaktionsdauer gering zu halten. Als besonders vorteilhaft hat sich eine Reaktionsdauer von 15-240 Minuten erwiesen. Vorzugsweise erfolgt die Schwingmahlung deshalb derart, daß die für Arsenopyrit bzw. die Begleitminerale Quarz und Pyrit meßbaren Intensitätsverhältnisse der Röntgenbeugungsreflexe 1/lo kleiner 0,4 sind.The effect of the mechanochemical structural transformation of arsenopyrite concentrates achieved by vibratory grinding depends on the concentration of the mineral components, on the operating conditions of the mill as well as on the duration of the grinding and thus the energy expenditure per ton of concentrate. If a longer digestion time can be represented in terms of process technology, a shorter grinding time is sufficient. With regard to the volume of the digestion reactor, however, it is advantageous to keep the reaction time short. A reaction time of 15-240 minutes has proven to be particularly advantageous. The vibratory grinding is therefore preferably carried out in such a way that the intensity ratios of the X-ray diffraction reflections 1 / lo that are measurable for arsenopyrite or the accompanying minerals quartz and pyrite are less than 0.4.

Entsprechend dem Verfahrensschema in Abbildung 1 kann nach der erfindungswesentlichen mechano-chemischen Vorbehandlung mit überwiegend stoßender Beanspruchung durch kontinuierliche Schwingmahlung 2 der Aufschluß metallhaltiger. Arsenopyritkonzentrate mit beliebigen Anteilen silikatischer Gangart und kohlenstoffhaltiger Substanzen 1 z.B. durch Niedrigdrucklaugung 3 mit Schwefelsäure bei Temperaturen von 60°C-120°C, besonders bevorzugt bei 60°-100°C und einem Sauerstoffpartialdruck von vorzugsweise 0,2-10 bar bei einer Reaktionsdauer von 15-240 Minuten derart erfolgen, daß der Arsen- und Eisenanteil vollständig in Lösung 4 überführt wird und sich die Edelmetalle Gold und Silber fast quantitativ im silikatischen, kohlenstoffhaltigen Rückstand 8 anreichern und somit ein Edelmetallkonzentrat bilden. In Gegenwart von Pyrit als zusätzlichem Begleitmaterial werden die Reaktionsbedingungen von diesem bestimmt. Bei der Auflösung handelt es sich um eine exotherme Reaktion, so daß der Prozeß keine Wärmezufuhr benötigt. Da der Sulfidschwefel von Arsenopyrit und Pyrit weitgehend zu Sulfat oxidiert wird, ist im allgemeinen ein Schwefelsäurezusatz bei Kreislaufbetrieb nicht erforderlich. Nach der Trennung fest/flüssig läßt sich das Edelmetallkonzentrat aufgrund des aktivierten Zustandes der kohlenstoffhaltigen Substanz z.B. durch Tempern vorzugsweise bei 500°―600°C entkarbonisieren. Dadurch werden Edelmetallverluste durch Adsorption bei der nachfolgenden Cyanidlaugung weitgehend verhindert. Aus dem entkarbonisierten Konzentrat können Gold und Silber in bekannter Weise durch Cyanidlaugung 10 gewonnen werden.According to the process scheme in Figure 1, after the mechano-chemical pretreatment essential to the invention with predominantly impacting stress by continuous vibratory grinding 2, the digestion can contain metal. Arsenopyrite concentrates with any proportions of silicate gait and carbon-containing substances 1 e.g. by low pressure leaching 3 with sulfuric acid at temperatures of 60 ° C-120 ° C, particularly preferably at 60 ° -100 ° C and an oxygen partial pressure of preferably 0.2-10 bar with a reaction time of 15-240 minutes in such a way that the arsenic - And iron content is completely transferred to solution 4 and the precious metals gold and silver accumulate almost quantitatively in the silicate, carbon-containing residue 8 and thus form a noble metal concentrate. In the presence of pyrite as an additional accompanying material, the reaction conditions are determined by it. The dissolution is an exothermic reaction, so that the process does not require any heat. Since the sulfide sulfur from arsenopyrite and pyrite is largely oxidized to sulfate, it is generally not necessary to add sulfuric acid in a cycle. After the solid / liquid separation, the noble metal concentrate can be e.g. due to the activated state of the carbon-containing substance. Decarbonize by annealing, preferably at 500 ― 600 ° C. This largely prevents loss of precious metals due to adsorption during the subsequent cyanide leaching. Gold and silver can be obtained from the decarbonized concentrate in a known manner by cyanide leaching 10.

Im Vergleich zur Cyanidlaugung von abgerösteten Arsenopyritkonzentration, bei denen Laugezeiten bis zu 60 Stunden erforderlich werden können, beträgt die Reaktionsdauer beim erfindungsgemäßen Verfahren für die fast quantitative Extraktion von Gold und Silber aus diesen Konzentraten 3 bis maximal 10 Stunden. Die Gewinnung von Gold und Silber aus den Cyanidlösungen kann z.B. durch den CIP-Prozeß mit anschließender Fällung 11 durch Elektrolyse bzw. durch Zinkmetall erfolgen. Die beim Aufschluß von Arsenopyritkonzentraten anfallenden Lösungen enthalten das gesamte vorlaufende Arsen und Eisen in Form von Fe3+ und As03-/4-lonen 4. Durch Erhöhung des pH-Wertes lassen sich Eisen und Arsen als schwerlösbares Eisenarsenat ausfällen 5, das einer Deponie 6 zugeführt werden beziehungsweise Vorstoff für die Thermische Gewinnung von Arsen sein kann. Die dabei freiwerdende Schwefelsäure wird in die Niedrigdruck-Laugungsstufe 3 rezirkuliert 7.In comparison to the cyanide leaching of roasted arsenopyrite concentration, in which lye times of up to 60 hours may be required, the reaction time for the almost quantitative extraction of gold and silver from these concentrates is 3 to a maximum of 10 hours. The extraction of gold and silver from the cyanide solutions can e.g. by the CIP process with subsequent precipitation 11 by electrolysis or by zinc metal. The solutions resulting from the digestion of arsenopyrite concentrates contain all of the leading arsenic and iron in the form of Fe3 + and As03- / 4-ions 4. By increasing the pH, iron and arsenic can precipitate out as difficult-to-dissolve iron arsenate 5, which are fed to a landfill 6 or can be the starting material for the thermal extraction of arsenic. The sulfuric acid released in the process is recirculated 7 into the low-pressure leaching stage 3.

Die Erfindung wird anhand der folgenden Beispiele erläutert:The invention is illustrated by the following examples:

Beispiel 1example 1

Ein pyritfreies Arsenopyrit-Flotationskonzentrat mit:

  • 27,68% As
  • 20,42% Fe
  • 29,30% Si02
  • 7,41 % C
  • 410 g Au/t und 35 g Ag/t
    entsprechend einer mineralogischen Zusammensetzung von ca. 60% FeAsS, 30% Si02 und 7,4% C wurde in einer Schwingmühle mit überwiegend stoßender Beanspruchung mit einem Energieaufwand von 120 kWh/t mechano-chemisch vorbehandelt. Der Grad der Strukturumwandlungen bzw. der erzeugten Gitterstörungen, ausgedrückt durch das Verhältnis der mittleren Röntgenbeugungsintensitäten vor lo und nach I der mechano-chemischen Vorbehandlung, ergab dabei für Arsenopyrit 0,4 und repräsentativ für die Begleitminerale Q-SiO = 0,4.
A pyrite-free arsenopyrite flotation concentrate with:
  • 27.68% As
  • 20.42% Fe
  • 29.30% Si0 2
  • 7.41% C
  • 410 g Au / t and 35 g Ag / t
    Corresponding to a mineralogical composition of approx. 60% FeAsS, 30% Si0 2 and 7.4% C, it was mechano-chemically pretreated in an oscillating mill with predominantly impact stress with an energy expenditure of 120 kWh / t. The degree of structural transformations or the lattice disturbances generated, expressed by the ratio of the mean X-ray diffraction intensities before lo and after I of the mechano-chemical pretreatment, resulted in 0.4 for arsenopyrite and representative for the accompanying minerals Q -SiO = 0.4.

Der aufschluß erfolgte in einem Laborautoklaven mit einem Verhältnis zwischen Suspensions- und Gasvolumen von 1:2,5 bei einer Feststoffkonzentration von 150 g/I unter folgenden Reaktionsbedingungen:

  • Temperatur: 60°C
  • Sauerstoffdruck: 0,2 bar
  • H2S04-Anfangskonzentration 140 g/I
  • Reaktionsdauer: 240 min
The digestion was carried out in a laboratory autoclave with a ratio between suspension and gas volume of 1: 2.5 at a solids concentration of 150 g / l under the following reaction conditions:
  • Temperature: 60 ° C
  • Oxygen pressure: 0.2 bar
  • H 2 S0 4 initial concentration 140 g / l
  • Response time: 240 min

Nach der Trennung fest/flüssig wurden folgende Konszentrationen erreicht:

Figure imgb0002
After the separation of solid / liquid, the following concentrations were reached:
Figure imgb0002

Der stark kohlenstoffhaltige Rückstand wurde zunächst bei 100°C getrocknet und anschließend 60 Minuten in Gegenwart von Luftsauerstoff bei 500°C getempert. Der Rückstand wird dabei vollständig entkarbonisiert. Bezogen auf die Aufgabe konnte für Gold und Silber im silikatischen Rückstand eine Anreicherung um den Faktor 3,4 festgestellt werden. Eine anschließende Cyanidlaugung dieses Edelmetallkonzentrates führte bereits nach einer Laugedauer von 4 Stunden zu einer vollständigen Extraktion von Gold und Silber; ohne Entkarbonisierung treten nach der gleichen Laugedauer Edelmetallverluste bis zu 70% ein.The high carbon residue was first dried at 100 ° C and then annealed at 500 ° C for 60 minutes in the presence of atmospheric oxygen. The residue is completely decarbonized. In relation to the task, an enrichment by a factor of 3.4 was found for gold and silver in the silicate residue. Subsequent cyanide leaching of this precious metal concentrate led to a complete extraction of gold and silver after a leaching time of 4 hours; Without decarbonization, precious metal losses of up to 70% occur after the same leaching time.

Beispiel 2Example 2

Das in Beispiel 1 beschriebene pyritfreie Arsenpyrit-Flotationskonzentrat wurde nach gleicher mechano-chemischer Vorbehandlung durch Schwingmahlung mit überwiegend stoßender Beanspruchung in einem Laborautoklaven mit den ebenfalls genannten Relationen der volumina bei einer Feststoffkonzentration von 150 g/I unter folgenden Reaktionsbedingungen aufgeschlossen:

  • Temperatur: 100°C
  • Sauerstoffpartialdruck: 10 bar
  • H2S04-Anfangskonzsentration: 140 g/I
  • Reaktionsdauer: 60 min
The pyrite-free arsenpyrite flotation concentrate described in Example 1 was digested after the same mechano-chemical pretreatment by vibratory grinding with predominantly impacting stress in a laboratory autoclave with the ratios of the volumes also mentioned at a solids concentration of 150 g / l under the following reaction conditions:
  • Temperature: 100 ° C
  • Partial oxygen pressure: 10 bar
  • H 2 S0 4 initial concentration: 140 g / l
  • Response time: 60 min

Nach der Trennung fest/flüssig erhaben sich folgende Konzentrationen:

Figure imgb0003
After the solid / liquid separation, the following concentrations arise:
Figure imgb0003

Die Entkarbonisierung erfolgte in diesem Fall bei 600°C über eine Zeitraum von 10 min. Es resultierte ein vollständig dekarbonisiertes Edelmetallkonzentrat, das bei der anschließenden Cyanidlaugung das gleiche günstige Laugeverhalten zeigte.In this case, the decarbonization was carried out at 600 ° C. over a period of 10 minutes. The result was a completely decarbonized noble metal concentrate which showed the same favorable leaching behavior in the subsequent cyanide leaching.

Beispiel 3Example 3

ein pyrithaltiges Arsenopyrit-Flotationskonzentrat mit:

  • 15,64% As
  • 30,24% Fe
  • 19,80% Si02
  • 4,4% C
  • 320 g Au/t + 24 g Ag/t
    entsprechend einer mineralogischen Zusammensetzung von etwa 34% FeAsS, 40% FeS2, 20% Si02 und 4,4% C wurde in einer Schwingmühle mit überwiegend stoßender Beanspruchung mit einem Energieaufwand von 180 kWh/t mechanochemische vorbehaldelt. Der Grad der Strukturumwandlungen bzw. der erzeugten Gitterstörungen, ausgedrückt durch das Verhältnis der mittleren Röntgenbeugungs-
a pyrite-containing arsenopyrite flotation concentrate with:
  • 15.64% As
  • 30.24% Fe
  • 19.80% Si0 2
  • 4.4% C
  • 320 g Au / t + 24 g Ag / t
    Corresponding to a mineralogical composition of approximately 34% FeAsS, 40% FeS 2 , 20% Si0 2 and 4.4% C, the vibratory mill with predominantly impact stress was subject to mechanochemical energy consumption of 180 kWh / t. The degree of structural transformations or the generated lattice disturbances, expressed by the ratio of the mean X-ray diffraction

intensitäten I/lo, ergab für Arsenopyrit 0,2 und repräsentativ für die Gangart für a-Si02 0,2. Als Reaktor für den Aufschluß diente ein Laborautoklav mit den in den vorstehenden Beispielen angegebenen Volumenverhältnissen. Die Feststoffkonzentration betrug wiederum 150 g/i. Es wurde bei folgenden Reaktionsbedingungen gearbeitet:

  • Temperatur: 110°C
  • Sauerstoffpartialdruck: 15 bar
  • Ein-H2S04-Konzentration: baut sich während der Reaktion auf
  • Reaktionsdauer: 30 min
intensities I / lo, gave 0.2 for arsenopyrite and representative of the gait for a-Si0 2 0.2. A laboratory autoclave with the volume ratios given in the preceding examples served as the reactor for the digestion. The solids concentration was again 150 g / i. The following reaction conditions were used:
  • Temperature: 110 ° C
  • Partial oxygen pressure: 15 bar
  • A-H 2 S0 4 concentration: builds up during the reaction
  • Response time: 30 min

Nach der Trennung fest/flüssig wurde folgendes Ausbringen erzielt:

Figure imgb0004
After the solid / liquid separation, the following output was achieved:
Figure imgb0004

Die Entkarbonisierung des edelmetallreichen Rückstandes erfolgte 15 min im Luftstrom bei 600°C. Es wurde ein Anreicherungsgrad für gold und Silber von 5,05 festgestellt. Die Laugung dieses Edelmetallkonzentrates mit NaCN ermöglichte nach einer Reaktionsdauer von 5 Stunden eine vollständige Extraktion von Gold und Silber.The noble metal-rich residue was decarbonized in an air stream at 600 ° C. for 15 minutes. An enrichment level of 5.05 was found for gold and silver. The leaching of this precious metal concentrate with NaCN enabled a complete extraction of gold and silver after a reaction time of 5 hours.

Beispiel 4Example 4

Das in Beispiel 3 gekennzeichnete und mechano-chemisch durch Schwingmahlung mit überwiegend stoßender Beanspruchung in gleicher Weise vorbehandelte pyrithaltige Arsenopyrit-Flotationskonzentrat wurde im Laborautoklaven bei einem Feststoffgehalt der Suspension von 150 g/I unter folgenden Bedingungen aufgeschlossen:

  • Temperatur: 120°C
  • Sauerstoffpartialdruck: 20 bar
  • Eine-H2S04-Konzentration: baut sich während der Reaktion auf
  • Reaktionsdauer: 15 min
The pyrite-containing arsenopyrite flotation concentrate, which was characterized in Example 3 and mechano-chemically pretreated in the same way by vibratory grinding with predominantly impacting stress, was digested in the laboratory autoclave at a solids content of the suspension of 150 g / l under the following conditions:
  • Temperature: 120 ° C
  • Partial oxygen pressure: 20 bar
  • An H 2 S0 4 concentration: builds up during the reaction
  • Response time: 15 min

Nach der Trennung fest/flüssig ergab sich folgendes Ausbringen:

Figure imgb0005
After the solid / liquid separation, the following yields occurred:
Figure imgb0005

Die Entkarbonisierung erfolgte wiederum bei 600°C. Das bei der Cyanidlaugung bei allen vorhergehenden Beispielen beschriebene ausgezeichnete Reaktionsverhalten wurde bestätigt.Decarbonization was again carried out at 600 ° C. The excellent reaction behavior described for the cyanide leaching in all of the preceding examples was confirmed.

Claims (13)

1. Process for the hydrochemical extraction of gold and silver from pyrite-free ore concentrates, more particularly arsenopyrite concentrates, which leads to both silicate gangue and particularly carbonaceous substances by means of cyanide leaching of the carbon-free residue of the acid digestion and subsequent precipitation of the noble metals, characterised in that after a mechano-chemical treatment with mainly impact stress with an energy input of 50-500 KwH per ton of ore concentrate, the ore concentrate is subjected to an oxidising digestion in one step with sulphuric acid with a reaction time of 15 minutes to 6 hours at temperatures of 50-1500C in the presence of oxygen with a partial pressure of 0.2-20 bar, so that the arsenic and iron fractions are substantially completely changed into solution whilst the gold, silver and carbonaceous substances substantially completely enrich the silicate residue which is decarbonized at temperatures of 400-10000C.
2. Process for the hydrochemical extraction of gold and silver from pyrite-containing ore concentrates, particularly arsenopyrite concentrates, which leads to both silicate gangue and particularly carbonaceous substrates by means of cyanide leaching of the carbon-free residue of the acid digestion and subsequent precipitation of the noble metals, characterised in that after a mechano-chemical treatment with mainly impact stress with an energy input of 50-500 kWH per ton of ore concentrate, the ore concentrate is subjected to an oxidising digestion in one step at temperatures of 50-1500C and a reaction time of 15 minutes to 6 hours in the presence of oxygen with a partial pressure of 0.2-20 bar, so that the arsenic and iron fractions are substantially completely changed into solution whilst the gold, silver and carbonaceous substances substantially completely enrich the silicate residue which is decarbonized at temperatures of 400-1000°C.
3. Process for the hydrochemical extraction of a gold- and silver-rich, iron-, arsenic- and carbon-free silicate concentrate from pyrid-free arsenopyrite concentrates, which leads to both silicate gangue and carbonaceous substances, characterised in that after a mechano-chemical treatment with mainly impact stress with an energy input of 50-500 KwH per ton of ore concentrate, the arsenopyrite concentrate is subjected to an oxidising digestion in one step with sulphuric acid with a reaction time of 15 minutes to 6 hours at temperatures of 50-150°C in the presence of oxygen with a partial pressure of 0.2-20 bar, so that the arsenic and iron fractions are substantially completely changed into solution whilst the gold, silver and carbonaceous substances substantially completely enrich the silicate residue from which the carbon is removed through heating at temperatures of 400-10000C.
4. Process for the hydrochemical extraction of a gold- and silver-rich, iron-, arsenic- and carbon-free silicate concentrate from pyrite-containing arsenopyrite concentrates, which leads to both silicate gangue and particularly carbonaceous substances, characterised in that after a mechano-chemical treatment with mainly impact stress with an energy input of 50-500 KwH per ton of ore concentrate, the arsenopyrite concentrates are subjected to an oxidising digestion in one step with a reaction time of 15 minutes to 6 hours at temperatures of 50-150°C in the presence of oxygen with a partial pressure of 0.2-20 bar wherein the arsenic and iron fractions are practically completely changed into solution whilst the gold, silver and carbonaceous substances substantially completely enrich the silicate residue from which the carbon is removed through heating at temperatures of 400-1000°C.
5. Process according to one of claims 1-4 characterised in that the ore concentrates are mechano- chemically treated to become digestible by vibratory milling with mainly impact stress.
6. Process according to one of claims 1-5 characterised in that the duration of the oxidizing digestion amounts to 15 to 240 minutes.
7. Process according to one of claims 1-6 characterised in that energy of 100-300 kWH per ton or ore concentrate is required for the mechano-chemical treatment with mainly impact stress.
8. Process according to one of claims 1-7 characterised in that the oxidising digestion is carried out at temperatures between 60° and 100°C.
9. Process according to one of claims 1-8 characterised in that the oxidising digestion is carried out with an oxygen low pressure in the region between 0.2-10 bar.
10. Process according to one of claims 1-7 or 9 characterised in that the oxidising digestion takes place at elevated temperatures between 100 and 120°C.
11. Process according to one of claims 1-8 or 10 characterised in that the oxidizing digestion is carried out at low pressure in the region between 10 and 20 bar oxygen partial pressure.
12. Process according to one of claims 1-11 characterised in that the decarbonized silicate, gold and silver-containing residue is subjected to cyanide leaching for a period of 3 - 10 hours.
13. Process according to one of claims 1-12 characterised in that the noble metal containing silicate residue precipitated after the digestion are decarbonized at temperatures between 500 and 600°C.
EP86905719A 1985-09-23 1986-09-18 Process for extracting precious metals from ore concentrates Expired - Lifetime EP0276215B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86905719T ATE54675T1 (en) 1985-09-23 1986-09-18 PROCESS FOR RECOVERING PRECIOUS METALS FROM ORE CONCENTRATES.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853534224 DE3534224A1 (en) 1985-09-23 1985-09-23 METHOD FOR THE WET-CHEMICAL EXTRACTION OF PRECIOUS METALS FROM CARBON-CONTAINING ARSENOPYRITE CONCENTRATES
DE3534224 1985-09-23

Publications (2)

Publication Number Publication Date
EP0276215A1 EP0276215A1 (en) 1988-08-03
EP0276215B1 true EP0276215B1 (en) 1990-07-18

Family

ID=6281920

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86905719A Expired - Lifetime EP0276215B1 (en) 1985-09-23 1986-09-18 Process for extracting precious metals from ore concentrates

Country Status (13)

Country Link
US (1) US4786323A (en)
EP (1) EP0276215B1 (en)
CN (1) CN1008447B (en)
AU (1) AU595236B2 (en)
BR (1) BR8604560A (en)
CA (1) CA1277143C (en)
DE (2) DE3534224A1 (en)
ES (1) ES2001981A6 (en)
GB (2) GB8615067D0 (en)
PH (1) PH23578A (en)
WO (1) WO1987001733A1 (en)
ZA (1) ZA867138B (en)
ZW (1) ZW19186A1 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4923510A (en) * 1988-10-31 1990-05-08 Gopalan Ramadorai Treatment of refractory carbonaceous sulfide ores for gold recovery
DE4005026A1 (en) * 1990-02-19 1991-08-22 Gock Eberhard Removing gold and silver from antimony ores - by reacting with ammonia under oxygen pressure and high temp. to remove noble metals in soln.
US5338338A (en) * 1992-09-22 1994-08-16 Geobiotics, Inc. Method for recovering gold and other precious metals from carbonaceous ores
US5364453A (en) * 1992-09-22 1994-11-15 Geobiotics, Inc. Method for recovering gold and other precious metals from carbonaceous ores
DE4400796A1 (en) * 1994-01-13 1995-07-20 Krupp Polysius Ag Recovery of precious metals from non-oxidised (semi-) refractory ores
US5458866A (en) * 1994-02-14 1995-10-17 Santa Fe Pacific Gold Corporation Process for preferentially oxidizing sulfides in gold-bearing refractory ores
FI108543B (en) * 1999-08-12 2002-02-15 Outokumpu Oy Process for removing impurities in a gold concentrate containing sulfides
EP1583848B1 (en) * 2002-12-31 2011-07-13 Intec Ltd Recovering metals from sulfidic materials
CN100372952C (en) * 2006-08-03 2008-03-05 山东国大黄金股份有限公司 Method of extracting gold tail slag from arsenic containing aurin ore then extracting gold and silver
WO2009037596A2 (en) 2007-09-17 2009-03-26 Barrick Gold Corporation Method to improve recovery of gold from double refractory gold ores
US7922788B2 (en) * 2007-09-18 2011-04-12 Barrick Gold Corporation Process for recovering gold and silver from refractory ores
US8262770B2 (en) 2007-09-18 2012-09-11 Barrick Gold Corporation Process for controlling acid in sulfide pressure oxidation processes
FI3290534T3 (en) 2010-11-22 2023-11-20 Barrick Gold Corp Alkaline and acid pressure oxidation of precious metal-containing materials
CN102560138B (en) * 2012-01-11 2013-07-10 森松(江苏)海油工程装备有限公司 Pretreatment method of refractory gold ore
CN102925716A (en) * 2012-11-26 2013-02-13 云南黄金矿业集团股份有限公司 Pressurization, water immersion and oxidation preprocessing cyaniding gold extraction method for difficult-processing gold concentrates
US10077487B2 (en) * 2013-05-29 2018-09-18 Barrick Gold Corporation Method for arsenic oxidation and removal from process and waste solutions
CN103436711B (en) * 2013-08-22 2014-10-29 中南大学 Method for enriching gold in gold cyanide sludge
CN106801147A (en) * 2017-01-22 2017-06-06 廖殷 Bullion and silver medicine,divination,and similar arts
CN112284959A (en) * 2020-10-15 2021-01-29 长春黄金研究院有限公司 Method for determining influence of gold-robbing substances in gold ore product on gold and silicate-coated gold

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1004001A (en) * 1911-03-03 1911-09-26 S D Hicks & Son Seamless jacketed kettle.

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1818846A (en) * 1929-11-22 1931-08-11 Stelle A Giles Method of recovering gold and silver
GB347680A (en) * 1930-01-27 1931-04-27 Henry William Coupe Annable Process for separating gold and antimony contained in sulphide of antimony ores
FR1058809A (en) * 1951-01-19 1954-03-19 Chemical Construction Corp Improvements in the recovery of the precious metal content of ores containing arsenic and their concentrates
GB746521A (en) * 1953-11-19 1956-03-14 Quebec Metallurg Ind Ltd Improvements in method of treating arsenical sulphide cobalt ores
US2777764A (en) * 1954-07-09 1957-01-15 American Cyanamid Co Process of recovering precious metals from refractory source materials
US3642435A (en) * 1969-11-10 1972-02-15 Cyprus Mines Corp Method of recovering water-soluble nonferrous metal sulfates from sulfur-bearing ores
DE2047609A1 (en) * 1970-09-28 1972-03-30 Gerlach J Crushing and leaching copper sulphide ores and concentrates - - using a ball mill and an oxidizing acid leaching treatment
CA969764A (en) * 1972-05-08 1975-06-24 Charles E. O'neill Aquecus oxidation of non-ferrous sulfide minerals
FR2262698B1 (en) * 1974-02-28 1976-10-08 Penarroya Miniere Metallurg
US4038362A (en) * 1976-11-04 1977-07-26 Newmont Explorations Limited Increasing the recoverability of gold from carbonaceous gold-bearing ores
AT362289B (en) * 1977-10-13 1981-04-27 Simmering Graz Pauker Ag METHOD FOR PRODUCING ACTIVATED MIXTURES FROM PREFERRED POWDER-SHAPED COMPONENTS, WHICH ARE DETERMINED FOR FURTHER PROCESSING BY PRESSING AND FOLLOWING SINTERING
AT362292B (en) * 1977-10-13 1981-04-27 Simmering Graz Pauker Ag METHOD FOR ACTIVATING TREATMENT OF CERAMIC, PREFERRED COARSE CERAMIC RAW MATERIALS
DE2827924B2 (en) * 1977-10-13 1981-05-21 Simmering-Graz-Pauker AG für Maschinen-, Kessel- und Waggonbau, Wien Process for processing floatable minerals and ores
DE2827912A1 (en) * 1977-10-13 1979-04-19 Simmering Graz Pauker Ag METHOD AND DEVICE FOR PRODUCING ACTIVATED MIXTURE MINERAL COMPONENTS
US4259107A (en) * 1979-12-13 1981-03-31 Newmont Exploration Limited Recovery of gold from sedimentary gold-bearing ores
FR2483463A1 (en) * 1980-06-03 1981-12-04 Salsigne Mines Produits Chimiq PROCESS FOR THE RECOVERY OF GOLD AND / OR MONEY AND POSSIBLY BISMUTH CONTAINED IN SULFIDE ORES AND / OR SULFOARSENIURES
SU914647A1 (en) * 1980-08-01 1982-03-23 Univ Erevanskij Method for processing arsenic-containing converter dusts and sublimates
FI62340C (en) * 1980-08-06 1982-12-10 Outokumpu Oy FOERFARANDE FOER SEPARERING AV GULD OCH SILVER FRAON KOMPLEXA SULFIDMALMER OCH -KONCENTRAT
DE3036848C2 (en) * 1980-09-30 1982-08-12 Gewerkschaft Walter, 4300 Essen Process for the extraction of silver from complex intergrown silver ores
CA1154599A (en) * 1980-09-30 1983-10-04 John A. Thomas Hydrometallurgical processing of precious metal-containing materials
DE3132668A1 (en) * 1981-08-14 1983-03-03 Eberhard Priv. Doz. Dr.-Ing. Gock Process for producing alkali-free manganese raw material from cryptomelane
CA1219132A (en) * 1983-01-18 1987-03-17 Morris J.V. Beattie Hydrometallurgical arsenopyrite process
ES8500333A1 (en) * 1983-07-07 1984-10-01 Compania Espanola De Minas De A process for the recovery of valuable metals from the ashes of normal and complex pyrites.
CA1235907A (en) * 1984-09-27 1988-05-03 Donald R. Weir Recovery of gold from refractory auriferous iron- containing sulphidic concentrates
CA1234991A (en) * 1984-09-27 1988-04-12 Donald R. Weir Recovery of gold from auriferous refractory iron- containing sulphidic ore
CA1234291A (en) * 1984-09-27 1988-03-22 Donald R. Weir Recovery of gold from auriferous refractory iron- containing sulphidic material
US4578163A (en) * 1984-12-03 1986-03-25 Homestake Mining Company Gold recovery process

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1004001A (en) * 1911-03-03 1911-09-26 S D Hicks & Son Seamless jacketed kettle.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The Metallurgical Society of AIME, vol. 23, 03.03.1971 N.Y. (USA) R.J. Scheiner et al.: "Processing refractory carbonaceous ores for gold recovery", pp 37-40, see p. 38 *

Also Published As

Publication number Publication date
DE3672838D1 (en) 1990-08-23
GB8622873D0 (en) 1986-10-29
AU595236B2 (en) 1990-03-29
DE3534224A1 (en) 1987-04-02
GB8615067D0 (en) 1986-07-23
ZW19186A1 (en) 1987-10-28
BR8604560A (en) 1987-05-19
CN1008447B (en) 1990-06-20
CN86107005A (en) 1987-09-02
AU6295486A (en) 1987-03-26
PH23578A (en) 1989-09-11
WO1987001733A1 (en) 1987-03-26
EP0276215A1 (en) 1988-08-03
ES2001981A6 (en) 1988-07-01
GB2181421B (en) 1989-11-29
CA1277143C (en) 1990-12-04
GB2181421A (en) 1987-04-23
US4786323A (en) 1988-11-22
ZA867138B (en) 1987-05-27

Similar Documents

Publication Publication Date Title
EP0276215B1 (en) Process for extracting precious metals from ore concentrates
US4738718A (en) Method for the recovery of gold using autoclaving
DE2134129C3 (en) Process for the extraction of nickel and cobalt
DE2357280C2 (en) Process for extracting zinc from sulphides containing zinc and iron
US2726934A (en) Hydrometallurgical method of extracting metal values
DE60015527T2 (en) Process for the extraction of elemental sulfur from leach residues of the sulphide ore treatment by distillation and condensation
DE2604402A1 (en) PROCESS FOR EXTRACTING NON-FERROUS METALS
EP0135950A1 (en) Process for winning copper and optionally silver and gold by leaching oxidic and sulphurized materials using cyanides soluble in water
JPH01156432A (en) Separation method
US4537628A (en) Recovery of precious metals
DE2446484C2 (en) Process for the treatment of metal sulfides with a content of iron and non-ferrous metals, in particular copper, for the purpose of separating out the iron content and for converting the copper
US4610723A (en) Process for leaching sulphide concentrates of the tetrahedrite type containing high concentrations of arsenic and antimony
DE3401961C2 (en)
DE2323186C3 (en) Process for the treatment of finely divided sulphide materials containing precious metals
DE2305518A1 (en) EXTRACTION OF COPPER FROM CONCENTRATES CONTAINING COPPER SULFIDE
DE2210090A1 (en) Process for the extraction of copper and sulfur from copper-iron sulfides
DE1792335C3 (en) Process for the preparation of iron sulphides
DE2323129C3 (en) Process for the treatment of finely divided sulphide materials containing precious metals
DE2050947C (en) Process for the selective separation of non-ferrous metals from pyrite ores containing them
DE2308792C3 (en) Process for the treatment of metal sulphides
DE1558431C (en) Process for the treatment of copper-containing and iron-containing sulphides
DE2154294B2 (en) Recovery of copper, cobalt, nickel and noble metals - from iron scrap in multistage process
DE2023098A1 (en) Process for the selective separation and recovery of tin compounds
DE2150130A1 (en) Molybdenum recovery - from silicate slags esp slags from melting copper concentrates in reverberatory furnaces
DE2625771B1 (en) PROCESS FOR PROCESSING FERROUS RESIDUES FROM THE RESTORED BLADE LAYOUT BY PRESSURE DIGESTION WITH WATER

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR IT SE

17Q First examination report despatched

Effective date: 19891004

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR IT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19900718

REF Corresponds to:

Ref document number: 54675

Country of ref document: AT

Date of ref document: 19900815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3672838

Country of ref document: DE

Date of ref document: 19900823

ITF It: translation for a ep patent filed

Owner name: BUGNION S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920813

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19920815

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920826

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920903

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19930918

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19930919

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19940531

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19941001

EUG Se: european patent has lapsed

Ref document number: 86905719.0

Effective date: 19940410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050918