EP0273165A2 - Verfahren zur Herstellung einer Koronaelektrode sowie nach diesem Verfahren hergestellte Koronaelektrode - Google Patents

Verfahren zur Herstellung einer Koronaelektrode sowie nach diesem Verfahren hergestellte Koronaelektrode Download PDF

Info

Publication number
EP0273165A2
EP0273165A2 EP87116693A EP87116693A EP0273165A2 EP 0273165 A2 EP0273165 A2 EP 0273165A2 EP 87116693 A EP87116693 A EP 87116693A EP 87116693 A EP87116693 A EP 87116693A EP 0273165 A2 EP0273165 A2 EP 0273165A2
Authority
EP
European Patent Office
Prior art keywords
core
coating
corona electrode
dielectric
boron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP87116693A
Other languages
English (en)
French (fr)
Other versions
EP0273165A3 (en
EP0273165B1 (de
Inventor
Klaus Kalwar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19868632118 external-priority patent/DE8632118U1/de
Priority claimed from DE19863640966 external-priority patent/DE3640966A1/de
Application filed by Individual filed Critical Individual
Publication of EP0273165A2 publication Critical patent/EP0273165A2/de
Publication of EP0273165A3 publication Critical patent/EP0273165A3/de
Application granted granted Critical
Publication of EP0273165B1 publication Critical patent/EP0273165B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01TSPARK GAPS; OVERVOLTAGE ARRESTERS USING SPARK GAPS; SPARKING PLUGS; CORONA DEVICES; GENERATING IONS TO BE INTRODUCED INTO NON-ENCLOSED GASES
    • H01T19/00Devices providing for corona discharge

Definitions

  • the present invention relates to a method for producing a corona electrode, a dielectric coating being applied to an at least partially electrically conductive core.
  • the invention further relates to a corona electrode produced by this method.
  • adhesion to material surfaces can be improved by exposure to a corona discharge or that this can be created in the case of non-polar materials in the first place.
  • an electrical energy source in the form of a high-frequency generator operating with alternating voltage and a corona electrode fed by it, which is provided with a dielectric, are required which creates the desired corona discharge when the generator is in operation.
  • the dielectric which is important for a uniform crown formation, is a weak point.
  • the corona discharge used in the surface treatment puts a strain on the dielectric in continuous operation due to the production process. It has been shown that, depending on the type of dielectric, wear occurs at different times, but in any case occurs undesirably quickly.
  • the dielectric Because of the possible porosity of the dielectric on the one hand and due to the requirement for a short-circuit-proof design of the dielectric on the other hand, the dielectric has hitherto been made with a relatively large thickness, as a result of which the efficiency of the corona electrodes deteriorates considerably. The associated consequence is an unfavorable electrical corona active power conversion per unit area, combined with low, achievable adhesion values of the treated material.
  • the present invention has for its object to develop a method for producing a corona electrode, according to which it is possible to manufacture corona electrodes with low susceptibility to wear and high efficiency.
  • This object is achieved in that a coating of predominantly non-oxidic material is applied to the core.
  • corona ignition voltage is considerably lower, which also explains the better efficiency achieved.
  • An expedient development of the method according to the invention consists in that a moldable and highly thermally conductive core material is used which has almost the same coefficient of thermal expansion as the material used for the coating.
  • a corona electrode produced by the process according to the invention is characterized in that the dielectric consists predominantly of non-oxide ceramic with a minimum density of 95% of the theoretical density.
  • the dielectric can be kept relatively thin overall, but at the same time a non-porous and dense coating of the core is possible, so that even in the case of very thin layers and in the event of point stress with a high-frequency high voltage, breakdown-proof insulation is possible for several hours.
  • the dielectric properties of the coating do not change significantly when the temperature and frequency change.
  • the reference numeral 1 designates a high-voltage generator which, during operation, can output a high-frequency high voltage to a corona electrode shown in FIGS. 2 to 5 via its connections 2 and 3.
  • the corona electrode shown in FIG. 2 is provided overall with the reference number 4.
  • This corona electrode 4 consists of a core 5 and a dielectric 6 in the form of a coating of the core 5.
  • the core 5 preferably consists of a moldable core material which is highly thermally conductive and has almost the same thermal expansion coefficient as the material of the coating.
  • the core 5 preferably consists of graphite.
  • the dielectric 6 consists predominantly of non-oxide material, preferably of a ceramic material such as boron nitride, silicon nitride or aluminum nitride, and a mixture of the aforementioned materials is also conceivable. However, a mixture of ceramic materials made of non-oxidic and oxidic components is also conceivable.
  • the core 5 is preferably coated with a minimum density of 95% of the theoretical density.
  • the core 5 can be coated both in the PVD process (physical vapor disposition) and in the CVD process (chemical vapor disposition).
  • Coating of the core 5 by the plasma spraying method is also possible.
  • boron nitride is used for the coating, it is advantageous to use boron nitride in hexagonal, anisotropic form.
  • the dielectric 6 of the corona electrode 4 consists overall of a relatively thin layer made of the materials mentioned above.
  • Fig. 2 clearly shows that the corona electrode 4 on the Point for the electrical contact cable is not provided with a dielectric 6, so that there is the possibility of being able to join a plurality of corona electrodes 4 designed in this way in a short-circuit-proof manner.
  • Fig. 3 makes it clear that a thin coating of the electrode core 5 with the dielectric 6 already mentioned makes it possible to design the discharge webs 11 extremely sharp-edged and thus increasing efficiency.
  • the corona discharge 10 takes place here against a metal plate 12 which is connected to ground.
  • the core 5 of the corona electrode 4 is provided with a cooling bore 13 running in the direction of its longitudinal axis, the reveal of which is in turn coated with a dielectric 6.
  • the corona electrode 4 shown in FIG. 4 has a hollow core 5 which is completely and externally partially coated with a dielectric 6 in its interior.
  • This corona electrode 4 can be vented in the same direction in which the corona discharge 10 occurs.
  • the venting direction is indicated by arrow A in FIG. 4.
  • FIG. 5 shows a corona electrode 4, in which an internal electrode gap, angled through 90 °, is coated with a thin dielectric 6.
  • a metal wire 15 is exposed to a corona discharge 10.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Lasers (AREA)
  • Inorganic Insulating Materials (AREA)
  • Electroluminescent Light Sources (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

1. Verfahren zur Herstellung einer Koronaelektrode sowie nach diesem Verfahren hergestellte Koronaelektrode, 2. Eine insgesamt mit dem Bezugszeichen (4) versehene Koronaelektrode besteht aus einem Kern (5) sowie einem Dielektrikum (6). Der Kern (5) kann beispielsweise aus formbarem Graphit hergestellt sein. Das Dielektrikum (6) ist in Form einer dünnen Beschichtung aus nichtoxydischer Keramik, beispielsweise aus Siliziumnitrid, Bornitrid, Aluminiumnitrid od.dgl. auf den Kern (5) aufgebracht. Dies ermöglicht einerseits weitestgehende Freiheiten bei der Formgestaltung der Koronaelektrode (4) und sichert andererseits eine hohen Verschleißfestigkeit sowie einen hohen Wirkungsgrad.

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Koronaelektrode, wobei auf einen zu­mindest teilweise elektrisch leitfähigen Kern eine dielek­trische Beschichtung aufgebracht wird.
  • Die Erfindung betrifft weiterhin eine nach diesem Ver­fahren hergestellte Koronaelektrode.
  • Es ist bekannt, daß die Adhäsion an Materialoberflächen durch Beaufschlagung mit einer Koronaentladung verbes­sert werden kann bzw. diese bei unpolaren Materialien überhaupt erst geschaffen werden kann.
  • Um eine derartige Oberflächenbehandlung mittels Korona­entladung durchführen zu können, bedarf es einerseits einer elektrischen Energiequelle in Form eines mit Wechselspannung arbeitenden, hochfrequenten Hochspan­nungsgenerators und einer davon gespeisten Koronaelek­trode, die mit einem Dielektrikum versehen ist und an der die gewünschte Koronaentladung bei Betrieb des Gene­rators entsteht.
  • Bei der Durchführung derartiger Oberflächenbehandlungen ist nach dem bislang bekannten Stand der Technik das Dielektrikum, welches für eine gleichmäßige Kronaausbil­dung von Bedeutung ist, eine Schwachstelle.
  • Die bei der Oberflächenbehandlung angewandte Koronaent­ladung belastet das Dielektrikum im Dauerbetrieb, bedingt durch die Produktionsverfahren. Es hat sich gezeigt, daß je nach Dielektrikumsart ein zeitlich unterschiedlicher Verschleiß eintritt, der sich in jedem Falle aber uner­wünscht rasch einstellt.
  • Als Ursachen hierfür sind folgende Faktoren anzusehen:
  • Aufgrund möglicher Porosität des Dielektrikums einerseits und aufgrund der Forderung nach kurzchlußsichere Ausbil­dung des Dielektrikums andererseits hat man bislang das Dielektrikum mit relativ großer Dicke ausgeführt, wo­durch sich der Wirkungsgrad der Koronaelektroden erheb­lich verschlechtert. Die damit verbundene Folge ist eine ungünstige, elektrische Korona-Wirkleistungsumsetzung pro Flächeneinheit, verbunden mit geringen, erzielbaren Adhäsionswerten des behandelten Materials.
  • Dieses Manko ist nun nur mit großen Generatorleistungen und großen Gerätedimensionen auszugleichen, dies wiederum führt zu größeren Wärmeentwicklungen an den Koronaelek­ troden und entsprechendem Verschleiß.
  • Insgesamt verursachen der Verschleiß wie auch der schlechte Wirkungsgrad bei der Oberflächenbehandlung durch Koronaentladung beträchtliche Kosten und Qualitäts­einbrüche bei dem behandelten Material.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung einer Koronaelektrode zu entwickeln, nach dem es möglich ist, Koronaelektroden mit geringer Verschließanfälligkeit und hohem Wirkungsgrad zu fertigen.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß auf den Kern eine Beschichtung aus überwiegend nichtoxy­dischem Material aufgebracht wird.
  • Durch das Aufbringen einer derartigen Beschichtung wird es möglich, daß Dielektrikum insgesamt dünn zu halten, gleichzeitig ergibt sich aber eine unporöse und dichte Beschichtung des Kernes, so daß selbst bei sehr dünnen Schichten und Punkt-Dauerbelastung mit einer hochfre­quenten Hochspannung über mehrere Stunden eine durch­schlagsichere Isolation möglich ist, wie einschlägige Versuche gezeigt haben. Die dielektrischen Eigenschaften der Beschichtung ändern sich bei Veränderung von Tempe­ratur und Frequenz nicht wesentlich.
  • Bei nach dem Verfahren hergestellten Koronaelektroden wurde ferner beobachtet, daß die sogenannte Koronazünd­ spannung erheblich geringer ist, womit auch der erreich­te, bessere Wirkungsgrad erklärbar ist.
  • Eine zweckmäßige Weiterbildung des erfindungsgemäßen Verfahrens besteht darin, daß ein formbares und gut wär­meleitfähiges Kernmaterial verwendet wird, welches nahe­zu den gleichen Temperaturausdehnungskoeffizienten wie das für die Beschichtung verwandte Material besitzt.
  • Eine nach dem erfindungsgemäßen Verfahren hergestellte Koronaelektrode ist dadurch gkennzeichnet, daß das Di­elektrikum überwiegend aus nicht oxydischer Keramik mit einer Mindestdichte von 95 % der theoretischen Dichte besteht.
  • Das Dielektrikum kann insgesamt relativ dünn gehalten werden, gleichzeitig ist aber eine unporöse und dichte Beschichtung des Kernes möglich, so daß selbst bei sehr dünnen Schichten und bei Punkt-Dauerbelastung mit einer hochfrequenten Hochspannung über mehrere Stunden eine durchschlagsichere Isolation möglich ist. Die dielektri­schen Eigenschaften der Beschichtung ändern sich bei Ver­änderung von Temperatur und Frequenz nicht wesentlich.
  • Es wurde bei Versuchen auch beobachtet, daß die sogenann­te Korona-Zündspannung erheblich geringer ist. womit auch der erreichte, bessere Wirkungsgrad erklärbar ist.
  • Weitere Merkmale der Erfindung sind Gegenstand weiterer Unteransprüche.
  • Anhand der beigefügten Zeichnungen wird der Erfindungs­gedanke noch einmal ausführlich erläutert.
  • Im einzelnen zeigen:
    • Fig. 1 einen Hochspannungsgenerator für den Betrieb einer Koronaelektrode
    • Fig. 2 einen Schnitt durch eine Koronaelektrode
    • Fig. 3 ein weiteres Ausführungsbeispiel einer Koronaelektrode in perspektivischer Dar­stellung
    • Fig. 4 einen Schnitt durch eine Koronaelektrode nach einem weiteren Ausführungsbeispiel
    • Fig. 5 ein Ausführungsbeispiel einer weiteren Koronaelektrode.
  • In Fig. 1 ist mit dem Bezugszeichen 1 ein Hochspannungs­generator bezeichnet, der bei Betrieb über seine Anschlüs­se 2 und 3 eine hochfrequente Hochspannung an eine in den Fig. 2 bis 5 dargestellte Koronaelektrode abgeben kann.
  • Die in Fig. 2 dargestellte Koronaelektrode ist insgesamt mit dem Bezugszeichen 4 versehen.
  • Diese Koronaelektrode 4 besteht aus einem Kern 5 sowie einem Dielektrikum 6 in Form einer Beschichtung des Kernes 5.
  • Der Kern 5 besteht vorzugsweise aus einem formbaren Kern­material, welches gut wärmeleitfähig ist und den nahezu gleichen Temperaturdehnungskoeffizienten wie das Mate­rial der Beschichtung aufweist. Vorzugsweise besteht der Kern 5 aus Graphit.
  • Das Dielektrikum 6 besteht überwiegend aus nichtoxydi­schem Material, bevorzugt aus einem keramischen Material wie Bornitrid, Siliziumnitrid oder Aluminiumnitrid, eben­so ist ein Gemisch der vorgenannten Materialien denkbar. Es ist allerdings auch ein Gemisch aus keramischen Mate­rialien aus nichtoxydischen und oxydischen Anteilen denk­bar.
  • Die Beschichtung des Kernes 5 erfolgt vorzugsweise mit einer Mindestdichte von 95 % der theoretischen Dichte.
  • Der Kern 5 kann sowohl im PVD-Verfahren (Physical-Vapour-­Disposition) wie auch im CVD-Verfahren (Chemical-Vapour-­Disposition) beschichtet werden.
  • Ebenso ist es denkbar, die Beschichtung des Kernes 5 im Sinterverfahren oder durch chemisches Reaktionssintern durchzuführen.
  • Es kommt auch eine Beschichtung des Kernes 5 nach dem Plasmar-Spritzverfahren in Frage.
  • Sofern für die Beschichtung ausschließlich Bornitrid ver­wendet wird, ist es vorteilhaft, Bornitrid in hexagona­ler, anisotropischer Form zu verwenden.
  • Die Verwendung eines Kernmaterials, welches einerseits gut wärmeleitfähig ist und andererseits nahezu zu dem gleichen Temperaturausdehnungskoeffizient wie das für die Beschichtung verwendete Material besitzt, bietet den Vor­teil, daß keine Dilaminationen in den Materialgrenz­schichten erfolgen. Somit wird eine elektrisch durch­schlagsichere Koronaelektrode geschaffen.
  • Die Verwendung von Mischkeramik zur Beschichtung ermög­licht die Herstellung preiswerter Koronaelektroden in hoher Qualität.
  • Das Dielektrikum 6 der Koronaelektrode 4 besteht insge­samt aus einer relativ dünnen Schichte aus den oben er­wähnten Materialien.
  • Bei anliegender Hochspannung an den Anschlüssen 7 der Koronaelektrode 4 sowie 8 einer als Walze ausgebildeten Gegenelektrode 9 entsteht zwischen der Koronaelektrode 4 und der Gegenelektrode 9 eine elektrische Koronaent­ladung 10.
  • Fig. 2 zeigt deutlich, daß die Koronaelektrode 4 an der Stelle für die elektrische Kontaktkabel nicht mit einem Dielektrikum 6 versehen ist, so daß die Möglichkeit be­steht, mehrere, derart ausgestalteter Koronaelektroden 4 kurzschlußsicher zusammenfügen zu können.
  • Fig. 3 macht deutlich, daß durch eine dünne Beschichtung des Elektrodenkernes 5 mit dem schon erwähnten Dielektri­kum 6 die Möglichkeit besteht, die Entladungsstege 11 äußerst scharfkantig und somit wirkungsgraderhöhend aus­bilden zu können. Die Koronaentladung 10 erfolgt hier gegen eine an Masse liegende Metallplatte 12.
  • Beim Ausführungsbeispiel gemäß Fig. 3 ist der Kern 5 der Koronaelektrode 4 mit einer in Richtung seiner Längsachse verlaufenden Kühlbohrung 13 versehen, deren Leibung wie­derum mit einem Dielektrikum 6 beschichtet ist.
  • Die in Fig. 4 dargestellte Koronaelektrode 4 weist einen Hohlkern 5 auf, der in seinem Inneren vollständig und äußerlich teilweis mit einem Dielektrikum 6 beschichtet ist.
  • Eine Entlüftung dieser Koronaelektrode 4 ist in der gleichen Richtung möglich, in der sich die Koronaentla­dung 10 einstellt. Die Entlüftungsrichtung ist durch den Pfeil A in Fig. 4 gekennzeichnet.
  • Eine nur teilweise Aufbringung des Dielektrikums 6 im äußeren Bereich der Koronaelektrode ermöglicht es, im nichtbeschichteten Bereich beispielsweise ein Gewinde 14 an der Koronaelektrode 4 anzubringen.
  • In Fig. 5 ist eine Koronaelektrode 4 dargestellt, bei der ein innenliegender Elektrodenspalt, um 90° abgewinkelt, mit einem wiederum dünne Dielektrikum 6 beschichtet ist. In diesem Elektrodenspalt kann z.B. ein Metalldraht 15 einer Koronaentladung 10 ausgesetzt werden.

Claims (18)

1. Verfahren zur Herstellung einer Koronaelektrode, wo­bei auf einen zumindest teilweise elektrisch leitfä­higen Kern eine dielektrische Beschichtung aufge­bracht wird, dadurch gekennzeichnet, daß auf den Kern (5) eine Beschichtung aus überwie­gend nichtoxydischem Material aufgebracht wird.
2. Verfahren nach Anspruch 1, gekennzeichnet durch die Verwendung eines formbaren und gut wärmeleitfähigen Kernmateriales, welches den nahezug gleichen Tempe­raturausdehnungskoeffizienten wie das für die Be­schichtung verwendete Material besitzt.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekenn­zeichnet, daß die Beschichtung mit einer Mindestdich­te von 95 % der theoretischen Dichte auf den Kern (5) aufgebracht wird.
4. Verfahren nach einem oder mehreren der vorhergehenden Ansprüche, gekennzeichnet durch die Beschichtung des Kernes (5) im CVD-Verfahren (Chemical-Vapour-Dispo­sition).
5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, gekennzeichnet durch die Beschichtung des Kernes (5) im PVD-Verfahren (Physical-Vapour-Dispo­sition).
6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, gekennzeichnet durch die Beschichtung des Kernes (5) durch Sintern oder chemisches Reaktions­sintern.
7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 3, gekennzeichnet durch die Beschichtung des Ker­nes (5) nach dem Plasmar-Spritzverfahren.
8. Verfahren nach einem oder mehreren der Ansprüche 1 bis 7, gekennzeichnet durch die Verwendung von kera­mischen Materialien wie Bornitrid, Siliziumnitrid oder Aluminiumnitrid zur Beschichtung des Kernes (5).
9. Verfahren nach einem oder mehreren der Patentansprü­che 1 bis 7, gekennzeichnet durch die Verwendung von keramischen Materialmischungen aus Bornitrid, Sili­ziumnitrid oder Aluminiumnitrid zur Beschichtung des Kernes (5).
10. Verfahren nach einem oder mehreren der Patentansprü­che 1 bis 7, gekennzeichnet durch die Verwendung von keramischen Materialmischungen aus nichtoxydischen und oxydischen Anteil zur Beschichtung des Kernes (5).
11. Verfahren nach einem oder mehreren der Ansprüche 8 bis 10, gekennzeichnet durch die Verwendung von Bornitrid in hexagonaler, anisotropischer Form zur Beschichtung des Kernes (5).
12. Nach dem Verfahren gemäß Anspruch 1 hergestellte Koronaelektrode mit einem zumindest teilweise elek­trisch leitfähigen Kern und einer dielektrischen Be­schichtung des Kernes, dadurch gekennzeichnet, daß das Dielektrikum (6) überwiegend aus nichtoxydischer Keramik mit einer Mindestdichte von 95 % zur theo­retischen Dichte besteht.
13. Koronaelektrode nach Anspruch 12, dadurch gekenn­zeichnet, daß das Dielektrikum (6) aus Bornitrid, Siliziumnitrid oder Aluminiumnitrid od. dgl. besteht.
14. Koronaelektrode nach Anspruch 12, dadurch gekenn­zeichnet, daß das Dielektrikum (6) aus einer Mate­rialmischung aus Bornitrid, Siliziumnitrid oder Alu­miniumnitrid od. dgl. besteht.
15. Koronaelektrode nach Anspruch 12, dadurch gekenn­zeichnet, daß das Dielektrikum (6) aus keramischen Materialmischungen aus nichtoxydischen und oxydischen Anteilen besteht.
16. Koronaelektrode nach einem oder mehreren der Ansprü­che 12 bis 15, dadurch gekennzeichnet, daß bei voll­ständiger oder teilweiser Verwendung von Bornitrid zur Bildung des Dielektrikum (6) Bornitrid in hexa­gonaler, anisotropischer Form verwendet ist.
17. Koronaelektrode nach einem oder mehreren der Ansprü­che 12 bis 15, dadurch gekennzeichnet, daß der Kern (5) aus formbarem Graphit besteht.
18. Koronaelektrode nach Anspruch 17, dadurch gekenn­zeichnet, daß der aus Graphit bestehende Kern (5) ein Preßteil ist.
EP87116693A 1986-11-29 1987-11-12 Verfahren zur Herstellung einer Koronaelektrode sowie nach diesem Verfahren hergestellte Koronaelektrode Expired - Lifetime EP0273165B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19868632118 DE8632118U1 (de) 1986-11-29 1986-11-29
DE3640966 1986-11-29
DE8632118U 1986-11-29
DE19863640966 DE3640966A1 (de) 1986-11-29 1986-11-29 Verfahren zur herstellung einer koronaelektrode

Publications (3)

Publication Number Publication Date
EP0273165A2 true EP0273165A2 (de) 1988-07-06
EP0273165A3 EP0273165A3 (en) 1988-07-20
EP0273165B1 EP0273165B1 (de) 1992-10-07

Family

ID=25849894

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87116693A Expired - Lifetime EP0273165B1 (de) 1986-11-29 1987-11-12 Verfahren zur Herstellung einer Koronaelektrode sowie nach diesem Verfahren hergestellte Koronaelektrode

Country Status (4)

Country Link
US (1) US4841409A (de)
EP (1) EP0273165B1 (de)
DE (1) DE3782152D1 (de)
ES (1) ES2035015T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10979260B2 (en) 2018-06-18 2021-04-13 Rakesh Aggarwal High spectral efficiency zero bandwidth modulation process without side bands

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5447763A (en) * 1990-08-17 1995-09-05 Ion Systems, Inc. Silicon ion emitter electrodes
US5257073A (en) * 1992-07-01 1993-10-26 Xerox Corporation Corona generating device
US5401368A (en) * 1993-04-23 1995-03-28 Praxair S.T. Technology, Inc. Fluid-cooled hollow copper electrodes and their use in corona or ozone applications
US6309610B1 (en) 1998-05-27 2001-10-30 Science Applications International Corporation Non-thermal plasma apparatus utilizing dielectrically-coated electrodes for treating effluent gas
WO2010081153A2 (en) 2009-01-12 2010-07-15 Federal-Mogul Ignition Company Igniter system for igniting fuel
CN102109116B (zh) * 2010-12-27 2016-06-22 秦彪 Led光模组和led芯片
WO2013063092A1 (en) * 2011-10-24 2013-05-02 Federal-Mogul Ignition Company Spark plug electrode and spark plug manufacturing method
EP2866318A1 (de) * 2013-10-24 2015-04-29 OCE-Technologies B.V. Elektrode zur Behandlung eines Substrat mit dielektrischer Barriereentladung
US10879677B2 (en) * 2018-01-04 2020-12-29 Tenneco Inc. Shaped collet for electrical stress grading in corona ignition systems

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110614A (en) * 1976-12-17 1978-08-29 Xerox Corporation Corona device
JPS5425493A (en) * 1977-07-26 1979-02-26 Sharp Corp Manufacture of transparent conductive film
US4145386A (en) * 1977-06-29 1979-03-20 Union Carbide Corporation Method for the surface treatment of thermoplastic materials
US4227234A (en) * 1978-07-03 1980-10-07 Xerox Corporation Corona charging element
JPS58215743A (ja) * 1982-06-09 1983-12-15 Hitachi Ltd 接触型記録媒体
JPS59176054A (ja) * 1983-03-25 1984-10-05 Matsushita Electric Ind Co Ltd インクジェット記録装置
JPS61132966A (ja) * 1984-12-01 1986-06-20 Kobe Steel Ltd 電子写真用アルミナ被覆コロナワイヤ

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2843646A (en) * 1953-06-09 1958-07-15 Union Carbide Corp Laminated metal ceramic
US3163753A (en) * 1961-09-12 1964-12-29 Du Pont Process and apparatus for electrostatically applying separating and forwarding forces to a moving stream of discrete elements of dielectric material
JPS5333852A (en) * 1976-08-31 1978-03-30 Sato Zoki Co Ltd Straw treating device in combine
JPS56165165A (en) * 1980-05-02 1981-12-18 Canon Inc Charger
US4564759A (en) * 1983-09-26 1986-01-14 Ensign-Bickford Industries, Inc. Corona discharge device
US4696778A (en) * 1986-01-31 1987-09-29 Gte Laboratories Incorporated Process for sintering silicon nitride articles

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4110614A (en) * 1976-12-17 1978-08-29 Xerox Corporation Corona device
US4145386A (en) * 1977-06-29 1979-03-20 Union Carbide Corporation Method for the surface treatment of thermoplastic materials
JPS5425493A (en) * 1977-07-26 1979-02-26 Sharp Corp Manufacture of transparent conductive film
US4227234A (en) * 1978-07-03 1980-10-07 Xerox Corporation Corona charging element
JPS58215743A (ja) * 1982-06-09 1983-12-15 Hitachi Ltd 接触型記録媒体
JPS59176054A (ja) * 1983-03-25 1984-10-05 Matsushita Electric Ind Co Ltd インクジェット記録装置
JPS61132966A (ja) * 1984-12-01 1986-06-20 Kobe Steel Ltd 電子写真用アルミナ被覆コロナワイヤ

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Patent Abstracts of Japan, Band 10, Nr. 327 (P-513), 07.11.86, & JP-A-61 132 966 (KOBE STEEL) *
Patent Abstracts of Japan, Band 3, Nr. 47 (E-105), 20.04.79, & JP-A-54 025 493 (SHARP) *
Patent Abstracts of Japan, Band 8, Nr. 68 (P-264), 30.03.84 & JP-A-58 215 743 (HITACHI) *
Patent Abstracts of Japan, Band 9, Nr. 34 (M-357), 14.02.85, & JP-A-59 176 054 (MATSUSHITA) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10979260B2 (en) 2018-06-18 2021-04-13 Rakesh Aggarwal High spectral efficiency zero bandwidth modulation process without side bands
US11063798B2 (en) 2018-06-18 2021-07-13 Rakesh Aggarwal High spectral efficiency zero bandwidth modulation process without side bands

Also Published As

Publication number Publication date
DE3782152D1 (de) 1992-11-12
ES2035015T3 (es) 1993-04-16
US4841409A (en) 1989-06-20
EP0273165A3 (en) 1988-07-20
EP0273165B1 (de) 1992-10-07

Similar Documents

Publication Publication Date Title
DE3703498A1 (de) Verfahren zum beschichten nicht-metallischer elemente
DE2333473B2 (de) Verfahren zur Herstellung eines Kohlenstoffaser-Flächengebildes
EP0273165A2 (de) Verfahren zur Herstellung einer Koronaelektrode sowie nach diesem Verfahren hergestellte Koronaelektrode
DE3050661C2 (de) Anordnung zur Verbindung zweier Leiterstabenden
EP1051371B1 (de) Gesinterter stiftheizer
EP2252732A1 (de) Strangförmiger materialverbund mit cnt-garnen und verfahren zu dessen herstellung
DE2011215C3 (de) Elektrische Heizvorrichtung
DE2508902A1 (de) Einrichtung zur thermischen behandlung langgestreckter gegenstaende
DE2817317A1 (de) Stromuebertragungsbuerste
CH693851A5 (de) Ozonisator und Verfahren zur Herstellung eines solchen.
DE3640966A1 (de) Verfahren zur herstellung einer koronaelektrode
DE2817371A1 (de) Stromuebertragungsbuerste
DE1646679B2 (de) Verfahren zur Herstellung von aluminiumhaltigen Schutzüberzügen auf Kohlenstofferzeugnissen
EP1305858A1 (de) Zündkerze für einen verbrennungsmotor und verfahren zur herstellung einer zündkerze
DE2557310A1 (de) Kollektor fuer einen elektromotor
DE1218072B (de) Sekundaerelektronenvervielfacher und Verfahren zur Herstellung des Vervielfachers
WO1998014964A1 (de) Mehrfachparallelleiter für wicklungen elektrischer maschinen und geräte
EP0839402B1 (de) Wicklungselement für eine elektrische maschine
DE1903986A1 (de) Verfahren zum Herstellen von elektrischen Heizelementen
DE939943C (de) Verfahren zur Herstellung elektrischer Kondensatoren
EP3695473B1 (de) Zündkerzen-widerstandselement mit erhöhtem zrsio4-phasenanteil
DE2427474B2 (de) Metallisches Bauteil für elektrische Maschinen o.dgl. Geräte, insbesondere Transformatoren, und Verfahren zu seiner Herstellung
DE102022203294A1 (de) Verfahren zur Herstellung einer Heizeinrichtung und Heizeinrichtung
DE102019104062B3 (de) Thermoelektrisches Element und Verfahren zur Herstellung
WO1999052818A1 (de) Vorrichtung zur erzeugung von ozon aus sauerstoffhaltigen gasen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19890107

17Q First examination report despatched

Effective date: 19900625

ITF It: translation for a ep patent filed

Owner name: STUDIO INGG. FISCHETTI & WEBER

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3782152

Country of ref document: DE

Date of ref document: 19921112

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2035015

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19931111

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931125

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19941112

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19941112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19971107

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 19981113

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990830

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051112