EP0259619B1 - Schmierölpumpe - Google Patents

Schmierölpumpe Download PDF

Info

Publication number
EP0259619B1
EP0259619B1 EP87111451A EP87111451A EP0259619B1 EP 0259619 B1 EP0259619 B1 EP 0259619B1 EP 87111451 A EP87111451 A EP 87111451A EP 87111451 A EP87111451 A EP 87111451A EP 0259619 B1 EP0259619 B1 EP 0259619B1
Authority
EP
European Patent Office
Prior art keywords
pressure
lubricating oil
channel
outlet
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87111451A
Other languages
English (en)
French (fr)
Other versions
EP0259619A1 (de
Inventor
Siegfried Hertell
Dieter Otto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Barmag AG
Original Assignee
Barmag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag AG filed Critical Barmag AG
Priority to US07/118,660 priority Critical patent/US4850814A/en
Publication of EP0259619A1 publication Critical patent/EP0259619A1/de
Application granted granted Critical
Publication of EP0259619B1 publication Critical patent/EP0259619B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/24Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by using valves controlling pressure or flow rate, e.g. discharge valves or unloading valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/02Pressure lubrication using lubricating pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01MLUBRICATING OF MACHINES OR ENGINES IN GENERAL; LUBRICATING INTERNAL COMBUSTION ENGINES; CRANKCASE VENTILATING
    • F01M1/00Pressure lubrication
    • F01M1/16Controlling lubricant pressure or quantity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/22Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00 by means of valves

Definitions

  • the invention relates to an internal combustion engine according to the preamble of claims 1 and 2.
  • Such an internal combustion engine is used in particular for use in motor vehicles.
  • This internal combustion engine is the subject of WO-A 86/06797.
  • Such internal combustion engines are distinguished on the one hand by the fact that they are operated with very different and constantly changing operating parameters, starting from idling up to maximum load operation at the highest speeds.
  • the lubricating oil system must therefore meet the maximum load conditions, but, on the other hand, should not consume unnecessarily much energy in the lower load ranges.
  • the known internal combustion engine has a lubricating oil system which, on the one hand, supplies a sufficient quantity of lubricating oil in all operating states, and on the other hand avoids unnecessary, lossy delivery.
  • a cell pump is used. That means:
  • the cell pump has so many revolving and mutually closed cells that there are always several - at least three - cells with a decreasing volume in the outlet zone. There are a number of outlets corresponding to the number of cells. Some or all of these outlets open into the lubricating oil channel. However, those outlets that are assigned to a cell with a large volume are blocked by a check valve. Only the smallest or the smallest outlet openings assigned to the lubricating oil channel can open directly into the lubricating oil channel without a check valve. A restriction is arranged in the inlet of the pump.
  • An internal gear pump is particularly suitable as such a pump.
  • the throttle of the inlet is bypassed by a bypass duct, a pressure-controlled throttle valve being located in the bypass duct, which is controlled by the outlet pressure of the lubricating oil pump and which opens the bypass when the pressure in the outlet duct drops.
  • the throttle is set in such a way that the amount of lubricating oil that is conveyed by the lubricating oil pump only depends on the speed up to a certain speed.
  • This threshold speed can be specified by dimensioning the throttle.
  • the lubricating oil system can be used by anyone, e.g. Adjust increased additional demand due to wear by determining the pressure drop and using it to open a bypass. By opening the bypass, the entire delivery capacity or an additional portion of the delivery capacity of the lubricating oil pump can be accessed.
  • the object of the invention is to design the internal combustion engine, which is the subject of WO-A 86/06797, in such a way that not only is sufficient lubrication ensured, especially in the cold state, but also that the lubricating oil and the internal combustion engine are rapidly heated to their operating temperature he follows.
  • the solution according to claim 1 provides that the quantity of lubricating oil delivered at maximum pressure (minimum throughput) is not limited to the lowest quantity required for sufficient lubrication, but rather in terms of quantity is in a range that at least approximately meets the requirements in normal operation.
  • the very compact embodiment of the invention according to claim 2, which is therefore suitable for integration into the lubricating oil pump, provides that the intake oil flow is guided via two throttles which are parallel to one another and which are controlled by one and the same pressure-controlled throttle valve.
  • the overlap of the lines in the pressure-controlled throttle valve is such that at maximum pressure the one line string, which is throttled variably by the throttle valve, is closed, while the second line string, which is provided with a fixed throttle or orifice, is completely open.
  • the throttling is designed in such a way that the fixed throttle has a passage cross-section in this wiring harness, which ensures the minimum throughput at a pressure difference of 1 bar.
  • the overlap is designed so that at operating pressure the second line is closed with the fixed throttle, so that lubricating oil is only drawn in via the pressure-controlled, variable throttle point of the pressure control valve.
  • the pressure-controlled throttle valve is designed in such a way that the entire lubricating oil requirement can be covered by this second wiring harness when the second wiring harness is opened as far as possible.
  • a lubricating oil system the delivery of which is adapted to the lubricating oil requirement without loss via the pressure control and which, as a special requirement, also ensures an oil delivery which leads to the rapid heating of the cold engine.
  • the invention is based on the fact that when the engine is cold and the lubricating oil is cold, the lubricating oil requirement of the engine is very low. This creates in Lube oil system a high oil pressure, which according to the known teachings, cf. DE-A 3 506 629 should lead to the fact that the oil production by the lubricating oil pump would be greatly reduced and adapted to the low lubricating oil requirement. According to the invention, an amount of oil which is greater than the demand is conveyed at high oil pressure.
  • the throttling in the inlet can be brought about by a throttle or an orifice.
  • a throttle or an orifice For the difference between throttle and orifice, reference is made to Cheek, "Fundamentals of Oil Hydraulics", 4th edition, 1979, pages 47 ff.
  • the throttle or orifice in the inlet of the lubricating oil pump is designed or controllable in such a way that, at the highest lubricating oil pressure in the pump outlet, a throughput is achieved which is at least 30% of the normal oil consumption, and that the minimum throughput at the maximum pressure of the lubricating oil system and an oil temperature which is lower than the operating oil temperature (approx. 90 ° C.) is a multiple of the minimum consumption of the engine at the same oil temperature, preferably at least twice, at most 20 times.
  • the normal oil consumption here is the oil consumption of the internal combustion engine that occurs at the operating temperature of the engine or lubricating oil.
  • This normal oil consumption of the internal combustion engine corresponds to the normal delivery of the lubricating oil pump.
  • the normal delivery is regulated by the pressure-controlled throttle valve when the oil and engine are at their operating temperature and the lubricating oil pump is driven at a speed at which it delivers regardless of the speed.
  • the minimum consumption is defined here as the oil consumption of the engine, which occurs when the lubricating oil and the engine are cold (20 ° C) and in the lubricating oil system there is the highest permitted pressure at which excess oil quantities are drained into the oil sump via the pressure relief valve.
  • the minimum throughput according to this invention is of course dependent on the size of the motor and should be between 8 and 20 l / min.
  • the minimum throughput also depends on the desired heating time.
  • the minimum throughput is preferably between 70 and 100% of normal oil consumption.
  • the minimum throughput depends not only on the opening cross-section and the other design of the throttle or orifice, but also on the properties, in particular the viscosity of the oil and thus also on the temperature of the oil.
  • the pressure-controlled valve which can be loaded with two different back pressures, can be switched to different back pressure by an electromagnetic valve.
  • the electromagnetic valve detects predetermined operating states, e.g. the lubricating oil temperature, the temperature of certain machine parts, etc.
  • the pressure-controlled valve can be loaded in particular with the tank pressure or outside pressure.
  • the pressure of the lubricating oil system and, on the other hand, a spring and the tank pressure or atmospheric pressure act on the control piston of the pressure-controlled valve.
  • the pressure-controlled valve can be connected to the pressure in the intake duct, a negative pressure. This means that the lubricating oil pressure outweighs the spring force including back pressure and opens the pressure-controlled valve until a correspondingly higher lubricating oil pressure has set in.
  • the additional consumer can e.g. are supplied via a pressure relief valve that opens at the higher pressure now set.
  • the peculiarity of this invention is that the lessons to be learned from DE-A 3 444 859 and 3 506 629 are adapted to a lubricating oil system.
  • the outer wheel 1 is freely rotatably mounted in the housing 31.
  • the outer wheel 1 has an internal toothing 2.
  • the cylindrical housing 31 is closed on both sides by the covers 32 and 33.
  • the shaft 34 is rotatably mounted in the cover 32 and driven by the internal combustion engine.
  • the inner wheel 3 is rotatably mounted on the shaft 34.
  • the inner wheel 3 has an external toothing 4 which engages with the internal toothing 2 of the outer wheel 1.
  • the interior of the pump which lies outside the engagement area, is filled with sickle 57.
  • the sickle hugs the circles of the gears to a large extent.
  • the inlet channel 35 is located in the cover 33.
  • the pump forms - as shown in FIG. 1 - on the outlet side between the intermeshing teeth of the outer wheel 1 and the inner wheel 3 four cells which are closed in the circumferential direction and the axial direction and which have been completely or partly filled with 01 via the inlet channel 35.
  • Four outlet kidneys 48.1, 48.2, 48.3, 48.4 are introduced into the cover 32. 2 to 4, only one of these outlet kidneys can be seen. This outlet kidney is designated there by 48.
  • Each of the outlet kidneys is connected to an outlet channel 49 drilled in the cover 33.
  • the outlet channel is also directed radially outwards, as shown in FIGS. 2 to 4. Therefore, each outer channel 49 opens on the outside of the cover 33 as close as possible to the housing 31.
  • An outlet housing 50 is placed on the cover 33 in a pressure-tight manner.
  • the outlet housing 50 forms an outlet chamber which is connected to the outlet kidneys 48.1 to 48.4 via a pressure channel 49 and a bore 52.
  • the bores 52.1, 52.2 and 52.3 are each closed by a check valve.
  • the check valve is formed by an m-shaped plate which is screwed against the wall 53 of the outlet housing 50.
  • the tongues protruding from the common crossbeam 55 of the check valve 54 cover the bores 52. Therefore, these tongues act as check valves.
  • Each check valve only releases the connection from the respective pressure cell formed between the teeth via the respective outlet kidney 48, pressure channel 49 and bore 52 if the pressure of the outlet cell is at least equal to the outlet pressure in the outlet chamber 51.
  • the last and smallest pressure cell can be connected directly to the outlet chamber via kidney 48.4 and corresponding channels 49, 52.
  • the outlet chamber 51 has an outlet which leads into the common lubricating oil channel 29.
  • This operating state is maintained at low speeds of the motor vehicle engine.
  • the lubricating oil flow is therefore proportional to the demand according to the speed.
  • the lubricating oil pump automatically adapts to an increased demand.
  • the lubricating oil pump therefore meets the increasing need for lubricating oil throughout the life of the motor vehicle engine.
  • the lubricating oil pump works economically even with a new engine with a relatively low need for lubricating oil, since this lubricating oil pump avoids that an unnecessary delivery portion must be returned to the sump with losses.
  • the inlet 35 communicates with the sump 36 via a pressure-controlled throttle valve 39.
  • the inlet 35 of the lubricating oil pump is connected to the oil sump of the engine (tank 36) by means of the parallel connection through two channels, namely bypass channel 38 and suction channel 67.
  • the constant throttle 37 is located in the intake duct 67.
  • the bypass duct 38 also has a throttle resistance, which is symbolically designated here with throttle 63.
  • the pressure-controlled throttle valve 39 has a piston 40 which is movable in a housing against the force of a spring 42.
  • the piston 40 has two piston collars 68 and 69, which are arranged at a distance from one another on a piston rod.
  • the piston collar 69 delimits the pressure-free spring chamber 27 of the spring 42.
  • the other piston collar 68 in the control chamber 43 is acted upon by the outlet pressure of the lubricating oil pump via the control line 44.
  • valve housing has the inlet 45, which is connected to the bypass channel, and the outlet 46, which is connected to the tank 36.
  • Inlet 45 and outlet 46 are one arranged opposite one another that they are opened simultaneously by the control edge of the end faces when the control collar 68 is displaced under the force of the spring 42 against the outlet pressure of the lubricating oil pump.
  • the axial extent of the outlet 46 is greater than the axial extent of the inlet 45. This will be discussed later.
  • the intake duct 67 is connected to the tank via the throttle valve 39 through inlet 71 and outlet 72.
  • Inlet 71 and outlet 72 are on the same normal plane. They are opened and closed by the end face or control edge 70 of the piston collar 69 facing away from the spring.
  • the function of the throttle valve 39 as a function of the outlet pressure is described below for the embodiment according to FIG. 2, in particular with reference to FIGS. 3A and 3B.
  • the piston collar 68 with its control edge 41 releases the flow of the bypass channel 38 from the inlet 45 to the outlet 46.
  • Lubricating oil can now be sucked in from the sump 36 without throttling through the throttle valve via bypass duct 38 from the pump.
  • the intake duct 67 with inlet 71 and outlet 72 is completely blocked by the control collar 69, as can be seen in FIG. 3A.
  • This position of the throttle valve ensures the greatest normal throughput or covers the greatest normal consumption of the engine.
  • Fig. 3A This is the control range of the throttle valve, in which, by regulating the outlet pressure, the delivery of the pump to the changing consumption during normal operation of the engine, i.e. at the permissible operating temperature of the oil.
  • control collar 69 with its control edge 70 increasingly opens inlet 71 and outlet 72 of intake duct 67.
  • inlet 45 and outlet 46 of bypass duct 38 are completely closed ( Fig. 2). In this position, inlet 71 and outlet 72 of the intake duct 67 are completely open.
  • the outlet 46 is made axially longer in the direction of the control chamber 43 than the inlet 45. Therefore, inlet 45 remains closed by the control collar 68, while outlet 46 together with the control edge 47 acts as an outlet throttle.
  • the outlet pressure of the lubricating oil pump in outlet chamber 51 is regulated to a constant maximum value via this outlet throttle. This maximum value depends on the size of the spring force. This state is shown in Fig. 3B.
  • the lubricating oil that escapes from the outlet chamber 51 via the control line 44, the control chamber 43, the outlet 46 into the oil sump 36 is throttled down at the throttle point between the control edge 47 and outlet 46 from the maximum pressure of the outlet chamber 51 to the pressure in the oil sump 36. This throttling occurs due to energy loss, which is largely converted into heat, namely heating the oil.
  • the passage 71, 72 for the intake duct 67 is opened. Therefore, the partial flows carried in parallel add up in such a way that the sum of the oil flow in the inlet 35 is at least equal to 30% of the maximum possible amount of oil, provided the oil is of the same quality.
  • the passages 71, 72 for the intake duct 67 are opened completely, so that the greatest possible oil flow Q37 flows there, which is approximately as large as the oil flow flowing in normal operation.
  • the lubricating oil pump also meets other requirements of special operating conditions. For example, occur that the lubricating oil heats up excessively or that engine parts have to be cooled by lubricating oil due to special performance requirements.
  • the pressure channel 56 branches into two systems on the outlet side of the lubricating oil pump.
  • lubricating oil is supplied to a multiplicity of bearings and lubrication points 73 via a multiplicity of lines 29.
  • a drain leads from each lubrication point into the sump.
  • the lubricating oil line 29 is secured by the pressure-controlled throttle valve 39, which acts as a pressure relief valve.
  • the setting of the spring 42 ensures that the pressure does not exceed a harmful limit.
  • a maximum pressure of 6 bar can be set.
  • a second oil channel 74 leads via a pressure relief valve 75 to a special consumer 76, for which lubricating oil is only required in special situations.
  • This special consumer 76 can e.g. is a piston cooling nozzle that is only operated when piston cooling is required or when sufficient lubricating oil is available.
  • the pressure relief valve 75 is set so that it opens at a lower pressure than the control edge 47 opposite the outlet 46 in the throttle valve 39. Therefore, the special consumer 76 is only supplied with lubricating oil if a sufficiently high supply of lubricating oil is available for the lubricating oil line 29.
  • a switching valve 77 can be switched into the pressure channel 74, which is switched electromagnetically.
  • This valve is actuated via signal line 60 and amplifier 61 by a temperature sensor 62.
  • the temperature sensor can e.g. - as indicated - the oil temperature or the temperature of a machine part, e.g. Pistons to be detected. It is also possible to use a different measuring instrument, e.g. Speed counter to use.
  • the message line can also be used to record other extraordinary operating conditions. In any event, the valve 77 serves the purpose of meeting an extraordinary need.
  • the specified setting of the pressure relief valve 75 and the throttle valve 39 ensures, however, that in any case the lubricating oil supply to the lubrication points 73 is initially ensured without leaving the control range of the throttle valve 39.
  • the inlet 35 of the pump is connected to the sump 36 via a throttle 37.
  • a bypass 38 which is connected in parallel to the throttle duct 37, there is a pressure-controlled throttle valve 39.
  • the piston 40 of the valve controls with its control edge 41 the openings 45, 46 of the bypass duct 38 to the sump 36.
  • the piston is on one side loaded with a spring 42.
  • the piston in control chamber 43 is acted upon by the outlet pressure via control line 44.
  • the constant throttle 37 in the intake duct is now designed so that the throughput according to the invention is achieved even when the bypass duct 38 is closed by the throttle valve 39.
  • the constant choke has a sufficiently large cross section.
  • an additional pressure control of the pressure-controlled throttle valve 39 is provided.
  • This pressure control is used by the solenoid valve 59.
  • the solenoid valve 59 is used via the signal line 60, amplifier 61 and a measuring instrument, e.g. Temperature sensor 62, an operating state of the lubricating oil circuit, e.g. the temperature.
  • the solenoid valve 59 has two switching states.
  • the valve 59 connects the spring chamber 27 of the pressure control valve 39 to the intake duct 35, it being emphasized that there is a negative pressure here as a result of the throttling between the tank 36 and the intake duct 35.
  • the solenoid valve 59 connects the spring chamber 27 to the tank 36 via channel 28 the front control edge 47 in the control chamber 43 prevailing lubricating oil system pressure and shift the control piston 40 - in FIG. 4 - to the left.
  • the throttling at control edge 41 is partially eliminated, so that a larger oil flow is available in the intake duct 35 and the higher lubricating oil requirement of the system can be covered.
  • a pressure relief valve 30 is now additionally provided in the connecting line 29 to an additional consumer to be connected. This pressure relief valve 30 is set so that it opens at the higher system pressure, so that the additional consumers are supplied with the additional oil supplied can. This system is particularly applicable for lubricating oil cooling of engine parts.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Description

  • Die Erfindung betrifft einen Verbrennungsmotor nach dem Oberbegriff der Ansprüche 1 und 2. Ein derartiger Verbrennungsmotor dient insbesondere zur Verwendung in Kraftfahrzeugen.
  • Dieser Verbrennungsmotor ist Gegenstand der WO-A 86/06797.
  • Derartige Verbrennungsmotoren zeichnen sich zum einen dadurch aus, daß sie mit sehr unterschiedlichen und stets wechselnden Betriebsparametern betrieben werden, angefangen vom Leerlauf bis zum Höchstlastbetrieb bei höchsten Drehzahlen. Das Schmierölsystem muß daher zwar den Höchstlastbedingungen genügen, soll aber andererseits in den niedrigeren Lastbereichen nicht unnötig viel Energie verbrauchen.
  • Der bekannte Verbrennungsmotor besitzt ein Schmierölsystem, das einerseits eine ausreichende Schmierölmenge in allen Betriebszuständen liefert, andererseits eine unnötige, verlustbehaftete Förderung vermeidet.
  • Hierzu werden bei dem Verbrennungsmotor zwei Maßnahmen miteinander kombiniert:
  • Zum einen wird eine Zellenpumpe eingesetzt. Das bedeutet:
  • Die Zellenpumpe weist so viele umlaufende und gegeneinander verschlossene Zellen auf, daß stets mehrere - mindestens drei - Zellen mit sich verkleinerndem Volumen in der Auslaßzone sind. Es ist eine der Anzahl von Zellen entsprechende Anzahl von Auslässen vorhanden. Einige oder alle dieser Auslässe münden in den Schmierölkanal. Diejenigen Auslässe, die einer Zelle mit großem Volumen zugeordnet sind, werden jedoch durch Rückschlagventil gesperrt. Lediglich die kleinste oder die kleinsten, dem Schmierölkanal zugeordneten Auslaßöffnungen können direkt und ohne Rückschlagventil in den Schmierölkanal münden. In dem Einlaß der Pumpe ist eine Drosselung angeordnet.
  • Als derartige Pumpe eignet sich vor allem eine Innenzahnradpumpe. Insofern wird auf die DE-OS 3 444 859 verwiesen.
  • Weiterhin wird bei dem bekannten Verbrennungsmotor die Drossel des Zulaufs durch einen Bypasskanal umgangen, wobei in dem Bypasskanal ein druckgesteuertes Drosselventil liegt, das durch den Auslaßdruck der Schmierölpumpe gesteuert wird und das den Bypass aufsteuert, wenn der Druck in dem Auslaßkanal abfällt.
  • Bei diesem Schmierölsystem wird die Drossel so eingestellt, daß die Schmierölmenge, die durch die Schmierölpumpe gefördert wird, nur bis zu einer bestimmten Drehzahl von der Drehzahl abhängt. Dadurch wird der Tatsache Rechnung getragen, daß der Schmierölverbrauch des Motors in den unteren Drehzahlbereichen drehzahlabhängig ist. Andererseits wird berücksichtigt, daß die Abhängigkeit des Schmierölverbrauchs von der Drehzahl nur bis zu einer gewissen Drehzahl besteht. Diese Schwelldrehzahl läßt sich durch Dimensionierung der Drossel vorgeben.
  • Andererseits kann sich das Schmierölsystem jedem, z.B. durch Verschleiß gesteigerten Mehrbedarf anpassen, indem der Druckabfall ermittelt und zum Öffnen eines Bypass genutzt wird. Durch das Öffnen des Bypaß kann die gesamte Förderkapazität oder ein zusätzlicher Anteil der Förderkapazität der Schmierölpumpe erschlossen werden.
  • Die Erfindung hat die Aufgabe, den Verbrennungsmotor, der Gegenstand der WO-A 86/06797 ist, so auszugestalten, daß insbesondere im kalten Zustand nicht nur eine ausreichende Schmierung gewährleistet ist, sondern daß auch eine schnelle Erwärmung des Schmieröls und des Verbrennungsmotors auf seine Betriebstemperatur erfolgt.
  • Zwar ist durch die US-A 2 550 967 ein Schmierölsystem für einen Verbrennungsmotor bekannt, bei welchem der Durchsatz der Pumpe druckabhängig dem Verbrauch des Verbrennungsmotors angepaßt wird, wobei andererseits im kalten Zustand die Druckabhängigkeit ausgeschaltet und der Einlaßdurchsatz so ausgelegt wird, daß er ein Mehrfaches des geringsten Verbrauches des Verbrennungsmotors zwangsläufig beträgt.
  • Für die Ausführung des Verbrennungsmotors, die Gegenstand der WO-A 86/06797 ist, sieht die Lösung nach Anspruch 1 vor, daß die bei Maximaldruck geförderte Schmierölmenge (Minimaldurchsatz) nicht auf die niedrigste, für die ausreichende Schmierung erforderliche Menge begrenzt ist, sondern mengenmäßig in einem Bereich liegt, der dem Bedarf im Normalbetrieb zumindest annähernd entspricht.
  • Die sehr kompakte Ausführung der Erfindung nach Anspruch 2, die sich deswegen zur Integration in die Schmierölpumpe eignet, sieht vor, daß der Ansaug-Ölstrom über zwei Drosseln geführt wird, die parallel zueinander liegen und die durch ein und dasselbe druckgesteuerte Drosselventil gesteuert werden. Die Überdeckung der Leitungen in dem druckgesteuerten Drosselventil erfolgt derart, daß bei Maximaldruck der eine Leitungsstrang, der durch das Drosselventil variabel steuerbar gedrosselt wird, verschlossen ist, während der zweite Leitungsstrang, der mit einer festen Drossel bzw. Blende versehen ist, vollständig geöffnet ist. Die Auslegung der Drosselung erfolgt so, daß in diesem Leitungsstrang die feste Drossel einen Durchlaßquerschnitt hat, der bei einer Druckdifferenz von 1 bar den Mindestdurchsatz gewährleistet. Andererseits ist die Überdeckung so ausgelegt, daß bei Betriebsdruck der zweite Leitungsstrang mit der festen Drossel geschlossen ist, so daß Schmieröl nur über die druckgesteuerte, variable Drosselstelle des Drucksteuerventils angesaugt wird. Dabei ist das druckgesteuerte Drosselventil so ausgelegt, daß bei weitester Öffnung des zweiten Leitungsstranges der gesamte Schmierölbedarf durch diesen zweiten Leitungsstrang gedeckt werden kann.
  • Gemeinsam ist den Ausführungen des Verbrennungsmotors nach dieser Erfindung also ein Schmierölsystem, dessen Förderung über die Druckregelung dem Schmierölbedarf verlustfrei angepaßt ist und das als Sonderbedarf auch eine ÖIförderung gewährleistet, die zur schnellen Erwärmung des kalten Motors führt.
  • Die Erfindung geht davon aus, daß bei kaltem Motor und kaltem Schmieröl der Schmierölbedarf des Motors sehr gering ist. Dadurch entsteht im Schmierölsystem ein hoher Öldruck, der nach den bekannten Lehren, vgl. DE-A 3 506 629 dazu führen müßte, daß die Ölförderung durch die Schmierölpumpe sehr stark herabgesetzt und dem geringen Schmierölbedarf angepaßt würde. Nach der Erfindung wird bei hohem Öldruck eine Ölmenge gefördert, die größer ist als der Bedarf.
  • Die hierdurch im Kaltbetrieb bereitgestellte überschüssige Ölmenge wird nun über das Druckbegrenzungsventil des Schmierölkreislaufes wieder in den Tank zurückgeführt. Dazu muß in dem Druckbegrenzungsventil eine starke Drosselung erfolgen. Diese Drosselung hat eine entsprechende Erwärmung des Öls zur Folge.
  • Die Drosselung im Zulauf kann bewirkt werden durch eine Drossel oder eine Blende. Zum Unterschied zwischen Drossel und Blende wird auf Backe, "Grundlagen der Ölhydraulik", 4. Aufl., 1979, Seiten 47 ff, verwiesen.
  • Im folgenden wird lediglich der Begriff "Drossel" gebraucht, wobei hierunter stets eine Drossel oder eine Blende im technischen Sinne verstanden werden soll.
  • Erfindungsgemäß ist die Drossel oder Blende im Zulauf der Schmierölpumpe so ausgelegt bzw. steuerbar, daß bei höchstem Schmieröldruck im Pumpenauslaß noch ein Durchsatz erzielt wird, der mindestens 30% des Normalölverbrauchs beträgt, und daß der Mindestdurchsatz bei Maximaldruck des Schmierölsystems und einer Öltemperatur, die niedriger als die Betriebs-Öltemperatur (ca. 90°C) ist, ein Vielfaches des Mindestverbrauchs des Motors bei derselben Öltemperatur beträgt, vorzugsweise mindestens das Zweifache, maximal das Zwanzigfache.
  • Als Normalölverbrauch wird hier der Ölverbrauch des Verbrennungsmotors bezeichnet, der bei der Betriebstemperatur des Motors bzw. Schmieröls eintritt. Dieser Normalölverbrauch des Verbrennungsmotors entspricht der Normalförderung der Schmierölpumpe. Die Normalförderung wird durch das druckgesteuerte Drosselventil eingeregelt, wenn Öl und Motor ihre Betriebstemperatur haben und die Schmierölpumpe mit einer Drehzahl angetrieben wird, in der sie drehzahlunabhängig fördert. Als Mindestverbrauch ist hier der Olverbrauch des Motors definiert, der entsteht, wenn das Schmieröl und der Motor kalt sind (20 °C) und in dem Schmierölsystem der höchste zugelassene Druck besteht, bei dem überschüssige Ölmengen über das Druckbegrenzungsventil in den Ölsumpf abgelassen werden.
  • Der Mindestdurchsatz nach dieser Erfindung ist selbstverständlich von der Motorgröße abhängig und sollte zwischen 8 und 20 I/min betragen. Der Mindestdurchsatz ist aber auch abhängig von der gewünschten Erwärmungszeit. Vorzugsweise liegt der Mindestdurchsatz zwischen 70 und 100% des Normal-Ölverbrauchs. Je nach Auslegung der Drossel bzw. Blende hängt der Mindestdurchsatz nicht nur von dem Öffnungsquerschnitt und der sonstigen Ausgestaltung der Drossel bzw. Blende ab, sondern auch von den Eigenschaften, insbesondere der Viskosität des Öls und damit auch von der Temperatur des Öls.
  • Bei der Auslegung der Drossel bzw. Blende ist ferner davon auszugehen, daß an dieser Drossel bzw. Blende maximal eine Druckdifferenz von 1 bar besteht.
  • Nach einer Ausgestaltung der Erfindung kann aber auch weiterer Sonderbedarf an Schmieröl gedeckt werden, beispielsweise wenn ein zusätzlicher Verbraucher an das Schmierölsystem angeschlossen werden soll.
  • Es ist hierzu vorgesehen, daß das druckgesteuerte Ventil, das mit zwei unterschiedlichem Gegendrücken belastbar ist, durch ein elektromagnetisches Ventil auf unterschiedliche Gegendruck umschaltbar ist. Das elektromagnetische Ventil erfaßt vorgegebene Betriebszustände, wie z.B. die Schmieröltemperatur, die Temperatur bestimmter Maschinenteile o.ä.
  • Im Normalbetrieb kann das druckgesteuerte Ventil insbesondere mit dem Tankdruck oder Außendruck belastet sein. In diesem Falle wirkt an dem Steuerkolben des druckgesteuerten Ventils einerseits der Druck des Schmierölsystems und andererseits eine Feder und der Tankdruck bzw. Atmosphärendruck. In der anderen Schaltstellung des elektromagnetischen Ventils kann das druckgesteuerte Ventil mit dem Druck im Ansaugkanal, einem Unterdruck, verbunden sein. Das bedeutet, daß der Schmieröldruck die Federkraft einschließlich Gegendruck überwiegt und das druckgesteuerte Ventil so lange öffnet, bis sich ein entsprechend höherer Schmieröldruck eingestellt hat. Nunmehr kann der zusätzliche Verbraucher z.B. über ein Überdruckventil, das bei dem nunmehr eingestellten, höheren Druck öffnet, versorgt werden.
  • Die Besonderheit dieser Erfindung besteht darin, daß die Lehren, die aus der DE-A 3 444 859 und 3 506 629 zu ziehen sind, auf ein Schmierölsystem angepaßt werden.
  • Im folgenden werden Ausführungsbeispiele der Erfindung anhand der Zeichnung beschrieben.
  • Es zeigen:
    • Fig. 1 den Radialschnitt einer Schmierölpumpe;
    • Fig. 2, 4 den Radialschnitt der Schmierölpumpe mit dem Steuerteil je eines Schmierölkreislaufes;
    • Fig. 3A, 3B Schaltstellungen des druckgesteuerten Drosselventils nach Fig. 2;
    • Fig. 5 ein Förderdiagramm der Pumpe nach Fig. 2.
  • Es sei bemerkt, daß der Axialschnitt der Schmierölpumpen nach den Figuren 2 und 4 identisch ist. Die Figuren 2 bis 4 unterscheiden sich im wesentlichen nur in der hydraulischen Schaltung des Schmierölsystems des Verbrennungsmotors. Daher gilt die Beschreibung der Schmierölpumpe gleichermaßen für die Figuren 2 und 4.
  • Zur Schmierölpumpe:
  • In dem Gehäuse 31 ist das Außenrad 1 frei drehbar gelagert.
  • Das Außenrad 1 besitzt eine Innenverzahnung 2. Das zylindrische Gehäuse 31 wird beidseitig durch die Deckel 32 und 33 abgeschlossen. In dem Deckel 32 ist die Welle 34 drehbar gelagert und durch den Verbrennungsmotor angetrieben. Auf der Welle 34 ist drehfest gelagert das Innenrad 3. Das Innenrad 3 besitzt eine Außenverzahnung 4, die mit der Innenverzahnung 2 des Außenrades 1 in Eingriff ist. Zur Verbesserung des Wirkungsgrades ist der Innenraum der Pumpe, der außerhalb des Eingriffsbereiches liegt, durch Sichel 57 ausgefüllt. Die Sichel schmiegt sich den Kopfkreisen der Zahnräder weitgehend an. In dem Deckel 33 befindet sich der Einlaßkanal 35.
  • Zur Auslaßseite der Pumpe:
  • Die Pumpe bildet - wie Fig. 1 zeigt - auf der Auslaßseite zwischen den miteinander kämmenden Zähnen des Außenrades 1 und Innenrades 3 vier in Umfangsrichtung und Axialrichtung abgeschlossene Zellen, die über Einlaßkanal 35 mit 01 ganz oder teilweise gefüllt worden sind. In den Deckel 32 sind vier Auslaßnieren 48.1, 48.2, 48.3, 48.4 eingebracht. Im Schnitt nach Fig. 2 bis 4 ist nur eine dieser Auslaßnieren zu sehen. Diese Auslaßniere ist dort mit 48 bezeichnet. Jede der Auslaßnieren steht mit einem in den Deckel 33 gebohrten Auslaßkanal 49 in Verbindung. Der Auslaßkanal ist jeweils auch radial nach außen gerichtet, wie Fig. 2 bis 4 zeigt. Daher mündet jeder Außenkanal 49 auf der Außenseite des Deckels 33 möglichst nah am Gehäuse 31. Auf den Deckel 33 ist ein Auslaßgehäuse 50 druckdicht aufgesetzt. Das Auslaßgehäuse 50 bildet eine Auslaßkammer, die mit den Auslaßnieren 48.1 bis 48.4 jeweils über einen Druckkanal 49 und eine Bohrung 52 in Verbindung steht. Die Bohrungen 52.1, 52.2 und 52.3 (vgl. Fig. 1) sind jeweils durch ein Rückschlagventil verschlossen. Das Rückschlagventil wird gebildet durch ein m-förmiges Blech, das gegen die Wand 53 des Auslaßgehäuses 50 geschraubt ist. Die von dem gemeinsamen Querbalken 55 des Rückschlagventils 54 abstehenden Zungen verdecken die Bohrungen 52. Daher wirken diese Zungen als Rückschlagventile. Jedes Rückschlagventil gibt die Verbindung von der jeweiligen, zwischen den Zähnen gebildeten Druckzelle über die jeweilige Auslaßniere 48, Druckkanal 49 und Bohrung 52 nur frei, wenn der Druck der Auslaßzelle dem Auslaßdruck in der Auslaßkammer 51 zumindest gleich ist. Die letzte und kleinste Druckzelle kann über Niere 48.4 und entsprechende Kanäle 49, 52 direkt mit der Auslaßkammer in Verbindung stehen.
  • Die Auslaßkammer 51 hat einen Auslaß, der in den gemeinsamen Schmierölkanal 29 führt.
  • Zur Funktion der Schmierölpumpe:
  • Wenn der Einlaß 35 ungedroselt ist, werden sämtliche Zahnlücken maximal gefüllt und auf der Auslaßseite wieder ausgedrückt. Der Grad der Füllung hängt davon ab, wie weit der Zulauf 35 gedrosselt ist. Hierauf wird später noch eingegangen. Bei niedrigen Drehzahlen erfolgt jedenfalls eine vollständige Füllung.
  • Dieser Betriebszustand bleibt bei niedrigen Drehzahlen des Kraftfahrzeugmotors erhalten. Daher ist der Schmierölstrom dem Bedarf entsprechend der Drehzahl proportional.
  • Wenn bei steigender Drehzahl lediglich noch ein gedrosselter Ölstrom auf die Einlaßseite gelangt, werden die Zahnlücken auf der Einlaßseite lediglich noch teilgefüllt. Im übrigen herrscht in den Zahnlücken ein Vakuum. Das hat zur Folge, daß der Druck in den Zahnzellen auf der Auslaßseite zunächst niedriger als der Druck in der Auslaßkammer 51 ist. Daher bleiben die jeweiligen Zungen des Rückschlagventils 54 geschlossen. Mit fortschreitender Verkleinerung der Zellen auf der Auslaßseite steigt der Druck in den Zellen jedoch an. Es öffnet jeweils nur die Zunge des Rückschlagventils, für die der Druck der Zelle größer oder gleichem Druck in der Auslaßkammer 51 ist. Das hat zur Folge, daß die Pumpe nunmehr lediglich noch eine drehzahlunabhängige, konstante Ölmenge liefert. Es ist daher auch bei steigender Drehzahl nicht erforderlich, eine überschießende Ölmenge unter entsprechenden Leistungsverlusten abzuführen, wie dies bei herkömmlichen Systemen der Fall ist. Wenn andererseits der Schmierölbedarf steigt, z.B. infolge Verschleiß, so wird der Schwelldruck in der Steuerdruckkammer 43 erst bei höherer Drehzahl erreicht.
  • Da - wie später beschrieben - die Drosselung in der Zulaufleitung in Abhängigkeit von dem Druck in der Steuerdruckkammer 43 gesteuert wird, paßt sich die Schmierölpumpe automatisch einem gesteigerten Bedarf an. Die Schmierölpumpe wird daher während der gesamten Lebensdauer des Kraftfahrzeugmotors dem sich steigernden Schmierölbedarf gerecht. Andererseits arbeitet die Schmierölpumpe auch bei neuem Motor mit relativ geringem Schmierölbedarf wirtschaftlich, da bei dieser Schmierölpumpe vermieden wird, daß ein nicht benötigter Förderanteil verlustbehaftet wieder in den Sumpf zurückgeführt werden muß.
  • Zur hydraulischen Schaltung des Schmierölkreislaufes nach Fig. 2:
  • Der Einlaß 35 steht mit dem Sumpf 36 über ein druckgesteuertes Drosselventil 39 in Verbindung. Hierzu ist der Einlaß 35 der Schmierölpumpe mittels der Parallelschaltung durch zwei Kanäle, und zwar Bypasskanal 38 und Ansaugkanal 67, mit dem ÖIsumpf des Motors (Tank 36) verbunden. In dem Ansaugkanal 67 liegt die konstante Drossel 37. Der Bypasskanal 38 besitzt ebenfalls einen Drosselwiderstand, der hier symbolisch mit Drossel 63 bezeichnet ist. Das druckgesteuerte Drosselventil 39 weist einen Kolben 40 auf, der in einem Gehäuse gegen die Kraft einer Feder 42 beweglich ist. Der Kolben 40 besitzt zwei Kolbenbünde 68 und 69, die mit Abstand zueinander an einer Kolbenstange angeordnet sind. Der Kolbenbund 69 begrenzt den drucklos geschalteten Federraum 27 der Feder 42. Auf der gegenüberliegenden Seite wird der andere Kolbenbund 68 im Steuerraum 43 mit dem Auslaßdruck der Schmierölpumpe über Steuerleitung 44 beaufschlagt.
  • Die andere, von dem Steuerraum 43 abgewandte Stirnseite 41 des Kolbens bildet die Steuerkante für den Bypasskanal 38. Hierzu besitzt das Ventilgehäuse den Einlaß 45, der mit dem Bypasskanal verbunden ist, und den Auslaß 46, der mit dem Tank 36 verbunden ist. Einlaß 45 und Auslaß 46 sind so einander gegenüberliegend angeordnet, daß sie gleichzeitig durch die Steuerkante der Stirnseiten geöffnet werden, wenn der Steuerbund 68 unter der Kraft der Feder 42 gegen den Auslaßdruck der Schmierölpumpe verschoben wird. Andererseits ist die axiale Erstreckung des Auslasses 46 jedoch größer als die axiale Erstreckung des Einlasses 45. Hierauf wird noch eingegangen.
  • Der Ansaugkanal 67 ist über das Drosselventil 39 durch Einlaß 71 und Auslaß 72 mit dem Tank verbunden. Einlaß 71 und Auslaß 72 liegen auf derselben Normalebene. Sie werden durch die von der Feder abgewandte Stirnseite bzw. Steuerkante 70 des Kolbenbundes 69 auf- und zugesteuert.
  • Die Funktion des Drosselventils 39 in seiner Abhängigkeit vom Auslaßdruck wird nachfolgend für die Ausführung nach Fig. 2 insbesondere anhand der Figuren 3A und 3B beschrieben. Solange kein oder nur ein geringer Auslaßdruck in der Steuerleitung 44 und dem Steuerraum 43 herrscht, gibt der Kolbenbund 68 mit seiner Steuerkante 41 den Durchfluß des Bypasskanals 38 vom Eingang 45 zum Auslaß 46 frei. Es kann nunmehr Schmieröl aus dem Sumpf 36 ohne Drosselung durch das Drosselventil über Bypasskanal 38 von der Pumpe angesaugt werden. In dieser Stellung ist der Ansaugkanal 67 mit Einlaß 71 und Auslaß 72 durch den Steuerbund 69 vollständig versperrt, wie dies in Fig. 3A erkennbar ist. Diese Stellung des Drosselventils gewährleistet den größten Normaldurchsatz bzw. deckt den größten Normalverbrauch des Motors.
  • Wenn der Druck im Steuerraum 43 ansteigt und die Federkraft überwindet, so werden durch Steuerkante 41 Einlaß 45 und Auslaß 46 mehr und mehr verschlossen. Dieser Zustand ist in Fig. 3A dargestellt. Hier liegt der Regelbereich des Drosselventils, in dem durch Regelung des Auslaßdrucks die Förderung der Pumpe dem wechselnden Verbrauch im Normalbetrieb des Motors, d.h. bei der zulässigen Betriebstemperatur des Öls, angepaßt wird.
  • Wenn der Druck weiter ansteigt, so wird der Regelbereich des Ventils verlassen. Bevor Steuerkante 41 Einlaß 45 und Auslaß 46 vollständig verschließt, öffnet jedoch der Steuerbund 69 mit seiner Steuerkante 70 zunehmend Eingang 71 und Ausgang 72 des Ansaugkanals 67. Bei weiter zunehmendem Auslaßdruck in der Steuerleitung 44 werden Einlaß 45 und Auslaß 46 des Bypasskanals 38 gänzlich verschlossen (Fig. 2). In dieser Stellung sind Einlaß 71 und Auslaß 72 des Ansaugkanals 67 vollständig geöffnet.
  • Nunmehr fließt der Schmierölstrom über die feste Drossel 37 vom Sumpf 36 zum Einlaß 35 der Pumpe. Steigt der Auslaßdruck noch weiter an, so wirkt das Drosselventil als Druckbegrenzungsventil. Die Feder 42 wird so weit zusammengedrückt, daß die vordere Steuerkante 47 die Steuerleitung 44 über den Auslaß 46 zum Sumpf öffnet. Hierbei bleibt Ansaugkanal 67 mit Eingang 71 und Ausgang 72 jedoch vollständig geöffnet.
  • Hierzu ist der Auslaß 46 axial in Richtung auf den Steuerraum 43 länger als der Einlaß 45 ausgeführt. Daher bleibt Einlaß 45 durch den Steuerbund 68 geschlossen, während Auslaß 46 gemeinsam mit der Steuerkante 47 als Auslaßdrossel wirkt. Über diese Auslaßdrossel wird der Auslaßdruck der Schmierölpumpe in Auslaßkammer 51 auf einen konstanten Maximalwert ausgeregelt. Dieser Maximalwert ist von der Größe der Federkraft abhängig. Dieser Zustand ist in Fig. 3B dargestellt. Dabei wird das Schmieröl, das aus Auslaßkammer 51 über Steuerleitung 44, Steuerkammer 43, Auslaß 46 in den Ölsumpf 36 entweicht, an der Drosselstelle zwischen Steuerkante 47 und Auslaß 46 von dem maximalen Druck der Auslaßkammer 51 auf den Druck im Ölsumpf 36 herabgedrosselt. Diese Drosselung erfolgt durch Energieverlust, der zu einem großen Teil in Wärme, und zwar in eine Erwärmung des Öls umgesetzt wird.
  • Nun ist zum einen die Drossel 37 des Ansaugkanals und zum anderen die Geometrie des Drucksteuerventils insbesondere mit der Anordnung der Steuerbünde 68, 69, der Zuordnung der Steuerkanten 47, 72 und der Zuordnung der Einlaß- und Auslaßöffnungen 45 - 46 bzw. 71 - 72 so ausgelegt, daß in jedem Falle ein ausreichend großer Durchflußquerschnitt erhalten bleibt, um bei der theoretisch möglichen, größten Saughöhe von 1 bar eine Ölmenge ansaugen zu können, die mindestens gleich 30% derjenigen Ölmenge ist, die bei dem größtmöglichen Durchflußquerschnitt - gleiche Viskosität und sonstige Beschaffenheit des Öls vorausgesetzt - fließen würde.
  • Anhand von Fig. 5 sind diese Zusammenhänge dargestellt: Bei sehr niedrigem Druck öffnet die Steuerkante 41 die Durchlässe 45, 46 des Bypasskanals. Daher wird durch das Drucksteuerventil 39 die größtmögliche Ölmenge Q angesaugt. Bei steigendem Druck wird diese Olmenge vermindert. Hier liegt der Betriebsbereich des Drucksteuerventils und des gesamten Schmierölsystems, wenn Motor und Öl ihre Betriebstemperatur haben. Diese Betriebstemperatur liegt für das Öl bei ca. 80 bis 90 °C.
  • Steigt der Druck weiter an, so fällt die Durchflußmenge an der Steuerkante 41 für den Bypasskanal 38 weiter ab. Es wird jedoch durch die Steuerkante 70 des Kolbenbundes 69 der Durchlaß 71, 72 für den Ansaugkanal 67 geöffnet. Daher addieren sich die parallel geführten Teilströme, und zwar in der Weise, daß die Summe des Ölstroms im Einlaß 35 zumindest gleich 30% der maximal möglichen Ölmenge ist, gleiche Beschaffenheit des Öls vorausgesetzt. Bei weiter ansteigendem Druck werden die Durchlässe 71, 72 für den Ansaugkanal 67 vollständig geöffnet, so daß dort nun ein größtmöglicher Ölstrom Q37 fließt, der annähernd so groß ist wie der im Normalbetrieb fließende Ölstrom.
  • Dadurch, daß eine verhältnismäßig große Mindestölmenge angesaugt wird, werden insbesondere im Kaltbetrieb des Verbrennungsmotors dadurch Vorteile erzielt, daß sich der Motor und das Öl sehr schnell aufheizen. Es wird nämlich die verhältnismäßig große Ölmenge über die vordere Steuerkante 47 zum Sumpf hin abgeführt. Dabei wird der Druck in dem Öl vom Höchstdruck - z.B. 6 bar - auf 1 bar herabgedrosselt. Die hierzu erforderliche Energie wird in Wärme, insbesondere im 01 verbleibende Wärme umgesetzt.
  • Darüber hinaus wird die Schmierölpumpe auch weiteren Bedarfsanforderungen besonderer Betriebszustände gerecht. So kann es z.B. vorkommen, daß sich das Schmieröl außerordentlich erwärmt oder daß Motorteile durch Schmieröl infolge besonderer Leistungsanforderungen gekühlt werden müssen. Hierzu verzweigt sich der Druckkanal 56 auf der Auslaßseite der Schmierölpumpe in zwei Systeme. Zum einen wird Schmieröl über eine Vielzahl von Leitungen 29 einer Vielzahl von Lager-und Schmierstellen 73 zugeführt. Von jeder Schmierstelle führt eine Ableitung in den Sumpf. Die Schmierölleitung 29 wird durch das druckgeregelte Drosselventil 39, das insoweit als Druckbegrenzungsventil wirkt, gesichert. Durch die Einstellung der Feder 42 wird sichergestellt, daß der Druck eine Schädlichkeitsgrenze nicht übersteigt. Es kann z.B. ein Maximaldruck von 6 bar eingestellt werden. Ein zweiter Ölkanal 74 führt über ein Druckbegrenzungsventil 75 zu einem Sonderverbraucher 76, für den Schmieröl nur in besonderen Situationen erforderlich ist. Bei diesem Sonder verbraucher 76 kann es sich z.B. um eine Düse für die Kolbenkühlung handeln, die lediglich in Betrieb gesetzt wird, wenn eine Kolbenkühlung erforderlich ist oder wenn ausreichend Schmiröl zur Verfügung steht. Das Druckbegrenzungsventil 75 ist so eingestellt, daß es bei einem niedrigeren Druck öffnet als Steuerkante 47 gegenüber Auslaß 46 im Drosselventil 39. Daher wird der Sonderverbraucher 76 nur mit Schmieröl beschickt, wenn ein ausreichend hohes Schmierölangebot für die Schmierölleitung 29 zur Verfügung steht. Zusätzlich kann in den Druckkanal 74 ein Schaltventil 77 eingeschaltet werden, das elektromagnetisch geschaltet wird. Dieses Ventil wird über Meldeleitung 60 und Verstärker 61 durch einen Temperaturfühler 62 betätigt. Durch den Temperaturfühler kann z.B. - wie angedeutet - die Öltemperatur oder die Temperatur eines Maschinenteils, z.B. Kolbens, erfaßt werden. Ebenso ist es möglich, statt des Temperaturfühlers 62 ein anderes Meßinstrument, z.B. Drehzahlzähler zu verwenden. Ebenso kann die Meldeleitung genutzt werden, um andere außerordentliche Betriebszustände zu erfassen. In jedem Falle dient das Ventil 77 dem Zweck, einen außerordentlichen Bedarf zu decken.
  • Durch die angegebene Einstellung des Druckbegrenzungsventils 75 und des Drosselventils 39 wird dabei jedoch sichergestellt, daß in jedem Falle zunächst die Schmierölversorgung der Schmierstellen 73 gewährleistet bleibt, ohne daß der Regelbereich des Drosselventils 39 verlassen wird.
  • Bei dem Ausführungsbeispiel nach Fig. 4 steht der Einlaß 35 der Pumpe mit dem Sumpf 36 über eine Drossel 37 in Verbindung. In einem Bypass 38, der parallel zu dem Drosselkanal 37 geschaltet ist, befindet sich ein druckgesteuertes Drosselventil 39. Der Kolben 40 des Ventils steuert mit seiner Steuerkante 41 die Öffnungen 45, 46 des Bypasskanals 38 zum Sumpf 36. Der Kolben ist auf der einen Seite mit einer Feder 42 belastet. Auf der gegenüberliegenden Seite wird der Kolben im Steuerraum 43 mit dem Auslaßdruck über Steuerleitung 44 beaufschlagt.
  • Solange kein oder nur ein geringer Auslaßdruck in der Steuerleitung 44 und dem Steuerraum 43 herrscht, gibt der Kolben mit seiner Steuerkante den Durchfluß vom Eingang 45 zum Auslaß 46 frei. Es kann nunmehr Schmieröl aus dem Sumpf 36 in unbegrenzter Menge zur Pumpe sowohl über die Drossel 37 als auch Bypasskanal 38 fließen. Wenn der Druck im Steuerraum 43 ansteigt und die Federkraft überwindet, so wird am Drucksteuerventil 39 der Einlaß 45 gegenüber dem Auslaß 46 verschlossen. Nunmehr fließt lediglich noch ein gedrosselter Schmierölstrom über die Drossel 37 vom Sumpf 36 zum Einlaß 35 der Pumpe. Steigt der Auslaßdruck noch weiter an, so wirkt das Drosselventil als Druckbegrenzungsventil. Die Feder 42 wird so weit zusammengedrückt, daß die vordere Steuerkante 47 die Druckleitung 44 gegenüber dem Auslaß 46 zum Sumpf öffnet. Ergänzend wird auf die Beschreibung zu Fig. 2 und Fig. 3A, B verwiesen.
  • Die konstante Drossel 37 in dem Ansaugkanal ist nun so ausgelegt, daß der erfindungsgemäße Durchsatz auch dann erzielt wird, wenn der Bypasskanal 38 durch das Drosselventil 39 geschlossen ist. Hierzu besitzt die konstante Drossel einen ausreichend großen Querschnitt. Bezüglich der Höhe dieses Mindestdurchsatzes wird auf die obigen Ausführungen verwiesen.
  • Weiterhin ist bei der Ausführung nach Fig. 4 eine zusätzliche Drucksteuerung des druckgesteuerten Drosselventils 39 vorgesehen. Dieser Drucksteuerung dient das Magnetventil 59. Durch das Magnetventil 59 wird über Meldeleitung 60, Verstärker 61 und ein Meßinstrument, z.B. Temperaturfühler 62, ein Betriebszustand des Schmierölkreislaufs, also z.B. die Temperatur, erfaßt. Das Elektro-Magnetventil 59 hat zwei Schaltzustände.
  • Im Ruhezustand verbindet das Ventil 59 den Federraum 27 des Drucksteuerventils 39 mit dem Ansaugkanal 35, wobei hervorzuheben ist, daß hier infolge der Drosselungen zwischen Tank 36 und Ansaugkanal 35 ein Unterdruck besteht. In der anderen elektromagnetisch bewirkten Schaltstellung verbindet das Magnetventil 59 den Federraum 27 mit dem Tank 36 über Kanal 28. Diese Umschaltung des Ventils 59 auf den Tankdruck, der höher ist als der Ansaugdruck, bewirkt, daß Federkraft und Tankdruck den bisher über Steuerleitung 44 auf die vordere Steuerkante 47 im Steuerraum 43 wirkenden Schmieröl-Systemdruck überwiegen und den Steuerkolben 40 - in Fig. 4 - nach links verschieben. Dadurch wird die Drosselung an Steuerkante 41 teilweise aufgehoben, so daß im Ansaugkanal 35 ein größerer Ölstrom zur Verfügung steht und der höhere Schmierölbedarf des Systems gedeckt werden kann. Infolge der stärkeren Belastung auf der Federseite des Steuerkolbens 40 stellt sich im Schmieröl-System ein höherer Druck ein. Es ist nun zusätzlich ein Druckbegrenzungsventil 30 in der Anschlußleitung 29 zu einem zusätzlich zuzuschaltenden Verbraucher vorgesehen. Dieses Druckbegrenzungsventil 30 ist so eingestellt, daß es bei dem höheren Systemdruck öffnet, so daß mit dem zusätzlich geförderten Schmieröl der zusätzliche Verbraucher versorgt werden kann. Dieses System ist insbesondere zur Schmieröl-Kühlung von Motorteilen anwendbar.
  • BEZUGSZEICHENAUFSTELLUNG
    • 1 Außenrad
    • 2 Innenverzahnung
    • 3 Innenrad
    • 4 Außenverzahnung
    • 5 Kopfkreis Außenrad
    • 6 Fußkreis Außenrad
    • 7 Wälzkreis Außenrad
    • 8 Wälzkreis Innenrad
    • 9 Kopfkreis Innenrad
    • 10 Fußkreis Innenrad, Grundkreis
    • 11 Eingriffslinie
    • 12 Wälzpunkt
    • 13 Schnittpunkt der Kopfkreise
    • 14 Zahnhöhe
    • 15 Verzahnungsmodul, großer Teilabschnitt 16 kleiner Teilabschnitt
    • 17 Mittelpunkt, Außenrad
    • 18 Kreis der Krümmungsmittelpunkte
    • 19 Krümmungsmittelpunkt
    • 20 Krümmungsradius der Eingriffslinie
    • 21 Wälzkreisradius Außenrad
    • 22 Wälzkreisradius Innenrad
    • 23 Drehrichtung, Steg
    • 24 Pfeilrichtung
    • 25 Mittelpunkt Innenrad
    • 26 Radius Eingriffslinie
    • 27 Federraum
    • 28 Kanal
    • 29 Leitung, Schmierölkanal
    • 30 Druckbegrenzungsventil
    • 31 Gehäuse
    • 32 Deckel
    • 33 Deckel
    • 34 Welle
    • 35 Einlaß, Ansaugkanal, Zulauf
    • 36 Tank, Ölsumpf
    • 37 Drossel
    • 38 Bypasskanal
    • 39 druckgesteuertes Drosselventil
    • 40 Kolben
    • 41 Steuerkante
    • 42 Feder
    • 43 Steuerraum
    • 44 Steuerleitung
    • 45 Einlaß
    • 46 Auslaß
    • 47 vordere Steuerkante
    • 48 Auslaßniere
    • 49 Auslaßkanal
    • 50 Auslaßgehäuse
    • 51 Auslaßkammer
    • 52 Bohrung
    • 53 Wand
    • 54 Rückschlagventil
    • 55 Querbalken
    • 56 Druckkanal
    • 57 Sichel
    • 58 Kurzschlußkanal
    • 59 Ventil, Magnetventil
    • 60 Meldeleitung
    • 61 Verstärker
    • 62 Temperaturfühler
    • 63 Drossel
    • 67 Ansaugkanal
    • 68 Kolbenbund
    • 69 Kolbenbund
    • 70 Kolbenbund
    • 71 Einlaß
    • 72 Auslaß
    • 73 Verbraucher, Lagerstelle, Schmierstelle
    • 74 Ölkanal
    • 75 Druckbegrenzungsventil
    • 76 Sonderverbraucher, Kolbenkühlung, Düsen
    • 77 Schaltventil

Claims (9)

1. Verbrennungsmotor mit Schmierölpumpe und Schmierölkanal (56), bei welchem die Schmierölpumpe eine Innenzahnradpumpe mit mehreren Auslaßzellen ist, wobei zumindest die Auslaßzellen mit größerem Volumen gegenüber dem Schmierölkanal (56) durch jeweils ein Rückschlagventil (54) verschlossen sind und wobei im Ansaugkanal (35) der Schmierölpumpe eine konstante Drossel (37) sitzt, die von einem Bypasskanal (38) mit druckgesteuertem Drosselventil (39) umgangen wird, wenn der Druck im Auslaßkanal unterhalb eines Schwellwerts liegt, dadurch gekennzeichnet, daß der kleinste Öffnungsquerschnitt der konstanten Drossel (37) so ausgelegt ist, daß der Mindestdurchsatz mehr als 30% des durch das druckgesteuerte Ventil (39) steuerbaren Maximaldurchsatzes und mindestens das Zweifache, vorzugsweise das Acht- bis Zwanzigfache des geringsten Verbrauchs des Verbrennungsmotors beträgt, und daß der Schmierölkanal (56) über ein vom Auslaßdruck gesteuertes Druckbegrenzungsventil (Steuerraum (43) mit Öffnung (46) und Steuerkante (47)) mit dem Tank (36) verbunden ist.
2. Verbrennungsmotor mit Schmierölpumpe und Schmierölkanal (56), bei welchem die Schmierölpumpe eine Innenzahnradpumpe mit mehreren Auslaßzellen ist, wobei zumindest die Auslaßzellen mit größerem Volumen gegenüber dem Schmierölkanal (56) durch jeweils ein Rückschlagventil (54) verschlossen sind, und wobei der Einlaß (35) der Schmierölpumpe durch die Parallelschaltung eines Ansaugkanals (67) und eines Bypasskanals (38) mit dem Tank (36) verbunden und durch ein druckgesteuertes Drosselventil (39) steuerbar ist, dadurch gekennzeichnet, daß der Ansaugkanal (67) und derBypasskanal (38) synchron durch das druckgesteuerte Drosselventil (39) gesteuert werden, daß das Drosselventil (39) so ausgelegt ist, daß bei Maximaldruck im Schmierölkanal (56) der Bypasskanal (38) geschlossen und nur der Ansaugkanal (67) zur Förderung des Mindestdurchsatzes geöffnet ist, und daß bei Betriebsdruck im Schmierölkanal (65) der Ansaugkanal geschlossen und der Bypasskanal (38) mit druckabhängig veränderbarem Drosselquerschnitt der Öffnungen (71, 72) des Drosselventils (39) steuerbar ist, daß der kleinste Öffnungsquerschnitt des Ansaugkanals (67) so ausgelegt ist, daß der Mindestdurchsatz mehr als 30% des durch das druckgesteuerte Ventil (39) steuerbaren Maximaldurchsatzes und mindestens das Zweifache, vorzugsweise das Acht- bis Zwanzigfache des geringsten Verbrauchs des Verbrennungsmotors beträgt, und daß der Schmierölkanal (56) über ein vom Auslaßdruck gesteuertes Druckbegrenzungsventil (Steuerraum (43) mit Öffnung (46) und Steuerkante (47)) mit dem Tank (36) verbunden ist.
3. Verbrennungsmotor nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das druckgesteuerte Drosselventil (39) einen Kolben (40) besitzt, der auf einer Seite (Federraum) mit einer Feder und mit dem Tankdruck oder dem Druck des Einlasses (35) und auf der anderen Seite (Steuerraum 43) mit dem Druck des Schmierölkanals (56) belastet ist.
4. Verbrennungsmotor nach Anspruch 3, dadurch gekennzeichnet, daß das Drosselventil (39) als Druckbegrenzungsventil ausgebildet ist, indem der Steuerraum (43) über eine Auslaßöffnung (46) mit dem Tank (36) derart verbunden ist, daß die Auslaßöffnung (46) durch die den Steuerraum begrenzende Steuerkante (47) des Kolbens (40) bei Uberschreiten des durch die Feder (42) vorgegebenen Drucks zum Tank hin öffenbar ist.
5. Verbrennungsmotor nach einem der Ansprüche 3 oder 4, dadurch gekennzeichnet, daß der Federraum (27) des druckgesteuerten Drosselventils (39) mittels eines elektromagnetisch betätigten Ventils (59) wahlweise mit dem Tankdruck oder mit dem Druck im Einlaß (35) der Schmierölpumpe belastet ist.
6. Verbrennungsmotor nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Schmierölkanal bei Überschreiten eines vorgegebenen Drucks über ein weiteres Druckbegrenzungsventil (75, 30) mit einem zusätzlichen Verbraucher (76) verbunden ist.
7. Verbrennungsmotor nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Mindestdurchsatz mehr als 8 I/min beträgt.
8. Verbrennungsmotor nach Anspruch 7, dadurch gekennzeichnet, daß der Mindestdurchsatz mindestens 80% des Ölverbrauchs des Motors beträgt, der bei Normal-Betriebsbedingungen (Öltemperatur und Druck) von dem druckgesteuerten Drosselventil eingestellt wird.
9. Verbrennungsmotor nach einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, daß der Mindestdurchsatz der Schmierölpumpe bei höchstem Druck des Schmierölsystems mindestens das Zweifache, vorzugsweise das Acht- bis Zwanzigfache des geringsten Verbrauchs des Verbrennungsmotors beträgt.
EP87111451A 1986-08-13 1987-08-07 Schmierölpumpe Expired - Lifetime EP0259619B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US07/118,660 US4850814A (en) 1987-01-09 1987-11-09 Hydraulic gear pump

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19863627414 DE3627414A1 (de) 1986-08-13 1986-08-13 Verbrennungsmotor
DE3627414 1986-08-13

Publications (2)

Publication Number Publication Date
EP0259619A1 EP0259619A1 (de) 1988-03-16
EP0259619B1 true EP0259619B1 (de) 1990-10-17

Family

ID=6307281

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87111451A Expired - Lifetime EP0259619B1 (de) 1986-08-13 1987-08-07 Schmierölpumpe

Country Status (2)

Country Link
EP (1) EP0259619B1 (de)
DE (2) DE3627414A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020405B4 (de) 2008-05-21 2018-08-23 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Dynamisches Motorölansaugsystem, dynamische Motorölansaugrohranordnung und Verbrennungsmotor

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3933978A1 (de) * 1989-10-11 1991-05-02 Eisenmann Siegfried A Sauggeregelte zahnringpumpe
DE4129854A1 (de) * 1991-09-07 1993-03-11 Teves Gmbh Alfred Zahnradpumpe mit einer nichtlinear von der drehzahl abhaengenden foerdermenge
DE4241002C2 (de) * 1991-12-19 2001-05-10 Luk Automobiltech Gmbh & Co Kg Hydraulische Rotationszellenpumpe
DE4209143C1 (de) * 1992-03-20 1993-04-15 Siegfried A. Dipl.-Ing. 7960 Aulendorf De Eisenmann
DE19631910B4 (de) * 1996-07-31 2005-02-03 Andreas Voulgaris Hydraulische Maschine der Zahnring-Bauart

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1537013A (en) * 1921-02-02 1925-05-05 Howard C Marmon Oiling system
US2550967A (en) * 1945-06-04 1951-05-01 Caterpillar Tractor Co Motor lubrication
GB836321A (en) * 1957-07-02 1960-06-01 Daimler Benz Ag New or improved automatic control means for a forced lubricating oil system of a fuel injection pump for an internal combustion engine
CH385632A (de) * 1960-10-19 1964-12-15 Schweizerische Lokomotiv Axialkolbenpumpe mit Steuereinrichtung zum Verändern der Fördermenge
DE2920685A1 (de) * 1979-05-22 1980-12-04 Bosch Gmbh Robert Drucklufterzeugungsanlage
DE3210759A1 (de) * 1981-09-17 1983-10-06 Walter Schopf Pumpenkombination mit mengenreguliereinrichtung
DE3506629A1 (de) * 1984-03-01 1985-10-03 Barmag Barmer Maschinenfabrik Ag, 5630 Remscheid Hydrauliksysteme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009020405B4 (de) 2008-05-21 2018-08-23 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Dynamisches Motorölansaugsystem, dynamische Motorölansaugrohranordnung und Verbrennungsmotor

Also Published As

Publication number Publication date
EP0259619A1 (de) 1988-03-16
DE3627414A1 (de) 1988-02-18
DE3765607D1 (de) 1990-11-22

Similar Documents

Publication Publication Date Title
DE3333647C2 (de) Schmiermittelpumpe für die Druckerzeugung bei einem druckumlaufgeschmierten Verbrennungsmotor
DE69113195T2 (de) Fluidpumpe für Doppelfördermenge.
DE10237801C5 (de) Vorrichtung zur Druckregelung von Hydraulikpumpen
EP0724068B1 (de) Ölversorgungssystem
DE10028416A1 (de) Steuerung für eine variable Pumpe für einen Hydraulikventilatorantrieb
DE112008000377B4 (de) Hydraulisches System
EP3516273B1 (de) Hydraulikmittelaufbereitung mit ölversorgung durch duales pumpensystem
DE3824398C2 (de) Schmierölpumpe
DE4224973C2 (de) Fluidversorgungssystem mit Druckbegrenzung
EP1463888B1 (de) Vorrichtung zur druckregelung von hydraulikpumpen
EP0225338B1 (de) Regelpumpe
EP1903238B1 (de) Hydraulisches System
EP0259619B1 (de) Schmierölpumpe
EP0642430A1 (de) Von einem verbrennungsmotor angetriebene hydraulikpumpe.
DE102018219122A1 (de) Kühlungs-Priorisierungsventil für ein Hydrauliksystem eines Kraftfahrzeug-Getriebes
DE60305812T2 (de) Hydraulische Pumpe mit doppeltem Auslass und System mit derselben
DE3906477C2 (de)
DE102020125021A1 (de) Reihenkolbenpumpe
DE102017118525A1 (de) Hydraulisches steuersystem für ein getriebe
EP0499794B1 (de) Hydropumpe
WO2008031390A1 (de) Hydraulisches system zur zufuhr eines hydraulikfluids zu einem verbraucher
EP0208692B1 (de) Kolbenpumpe
AT526441B1 (de) Ölversorgungsvorrichtung
DE69014555T2 (de) Fluidpumpe für Doppelfördermenge.
DE102018002025A1 (de) Getriebeschmierungsventil für ein Hydrauliksystem eines Kraftfahrzeuggetriebes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19880213

17Q First examination report despatched

Effective date: 19890213

ITF It: translation for a ep patent filed

Owner name: DE DOMINICIS & MAYER S.R.L.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3765607

Country of ref document: DE

Date of ref document: 19901122

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ITTA It: last paid annual fee
26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000807

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20000811

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010807

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20010807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20030901

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050807