EP0230017B1 - Zylinderkopf - Google Patents

Zylinderkopf Download PDF

Info

Publication number
EP0230017B1
EP0230017B1 EP86117696A EP86117696A EP0230017B1 EP 0230017 B1 EP0230017 B1 EP 0230017B1 EP 86117696 A EP86117696 A EP 86117696A EP 86117696 A EP86117696 A EP 86117696A EP 0230017 B1 EP0230017 B1 EP 0230017B1
Authority
EP
European Patent Office
Prior art keywords
cylinder head
cylinder
cooling
duct
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86117696A
Other languages
English (en)
French (fr)
Other versions
EP0230017A3 (en
EP0230017A2 (de
Inventor
Lothar Bauer
Ernst-Siegfried Hartmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kloeckner Humboldt Deutz AG
Original Assignee
Kloeckner Humboldt Deutz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kloeckner Humboldt Deutz AG filed Critical Kloeckner Humboldt Deutz AG
Priority to AT86117696T priority Critical patent/ATE66722T1/de
Publication of EP0230017A2 publication Critical patent/EP0230017A2/de
Publication of EP0230017A3 publication Critical patent/EP0230017A3/de
Application granted granted Critical
Publication of EP0230017B1 publication Critical patent/EP0230017B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/42Shape or arrangement of intake or exhaust channels in cylinder heads
    • F02F1/4285Shape or arrangement of intake or exhaust channels in cylinder heads of both intake and exhaust channel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/24Cylinder heads
    • F02F1/26Cylinder heads having cooling means
    • F02F1/28Cylinder heads having cooling means for air cooling
    • F02F1/30Finned cylinder heads
    • F02F1/32Finned cylinder heads the cylinder heads being of overhead valve type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B2275/00Other engines, components or details, not provided for in other groups of this subclass
    • F02B2275/14Direct injection into combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02FCYLINDERS, PISTONS OR CASINGS, FOR COMBUSTION ENGINES; ARRANGEMENTS OF SEALINGS IN COMBUSTION ENGINES
    • F02F1/00Cylinders; Cylinder heads 
    • F02F1/02Cylinders; Cylinder heads  having cooling means
    • F02F1/10Cylinders; Cylinder heads  having cooling means for liquid cooling
    • F02F2001/104Cylinders; Cylinder heads  having cooling means for liquid cooling using an open deck, i.e. the water jacket is open at the block top face

Definitions

  • the invention relates to an air-cooled cylinder head of an internal combustion engine according to the preamble of patent claim 1.
  • a cylinder head known from DE-A 14 76 429 has a cylinder head base which is formed on the cooling chamber side parallel to the combustion chamber side floor surface acted upon by the gas forces.
  • Such a design of the cylinder head base with a constant thickness means that the gas pressure forces, which are constantly changing over the combustion chamber diameter, are not countered by an individually measured counterforce. It is therefore not possible to exert sufficient influence on the deformations of the cylinder head base caused by the gadget forces.
  • the heat loss through the cylinder head base is the same at all points due to its constant thickness. This means that no influence can be exerted on a differently required heat flow from the combustion chamber into the cylinder head.
  • CH-A 29 04 26 describes an air-cooled cylinder head that extends over two cylinders.
  • This cylinder head has a projecting sealing ring for each combustion chamber or cylinder tube, the sealing rings in the area of the adjoining cylinder tubes reaching up to one another except for a narrow, enclosed base of the cylinder head.
  • the invention has for its object to make the air-cooled cylinder head on an internal combustion engine so stiff that a secure seal to the crankcase is guaranteed and at the same time effective cooling of the thermally highly stressed zones of the cylinder head is ensured, while the design also with a view to a low Manufacturing effort is to be optimized.
  • the cylinder heads of a cylinder bank which are combined to form a block cylinder head, are rigid and thus ensure a secure seal to the crankcase. Because the block cylinder head is made of gray cast iron, a further advantage with regard to the rigidity of the cylinder head is achieved compared to light metal cylinder heads previously used only in air cooling with similar mechanical and thermal properties. In addition, an air-cooled block cylinder head made of gray cast iron can be produced and processed more cheaply in terms of production and costs than a corresponding light metal cylinder head.
  • the recesses between the individual cylinders in the combustion chamber-side cylinder head floor contribute to a further improvement in the cooling of the cylinder head and at the same time reduce mechanical stresses in this area, since the recesses reduce or prevent the heat flow between the adjacent cylinder sections.
  • the cylinder head base of each cylinder head is formed on the cold room side as an airfoil profile (convex).
  • an airfoil profile convex
  • the cylinder head base of each cylinder head includes a bead-shaped, annular edge on the cooling chamber side.
  • This bead-shaped edge is arranged in the combustion chamber border area, that is to say in the area with which the individual cylinder head rests on the crankcase or the cylinder tube.
  • a very low-deformation combustion chamber floor geometry is thus achieved in this area, which is important for tightness.
  • each cylinder head base is decoupled from the gas exchange channels leading to a longitudinal side wall of the block cylinder head.
  • the recess is flowed through through holes or channels running radially from the outside to the cylinder head center with cooling air, and at the same time it is decoupled from the crankcase in a liquid-tight and gas-tight manner.
  • the holes in the cylinder head that are required for the version through which cooling air flows are eliminated.
  • the common feature of both versions is that intensive cooling of the combustion chamber edge is made possible by these designs.
  • the cylinder head base with ribs on the cooling chamber side, which ribs run into the bead-shaped edge.
  • this increases the effective heat transfer area between the metal and the cooling air and, on the other hand, the cooling air flowing through the cylinder head is directed in a targeted manner to zones to be cooled in particular, such as the exhaust valve and the injector pipe.
  • a cylinder head screw arranged between the gas exchange channels is supported with its head surface on a cylinder head screw pipe which is only in connection with the inlet channel or is formed by the latter.
  • the cylinder head screw pipe is formed in the shape of a crescent moon through the inlet duct wall. This measure keeps the strong thermal fluctuations and the resulting thermal expansions, which are caused by the exhaust port, away from the cylinder head mounting.
  • the exhaust port is completely suspended from the adjacent cylinder head walls and is thus completely surrounded by the cooling air flow flowing through the cylinder head.
  • a cooling air guide rib is arranged in the web area below the cylinder head cover plate, which redirects the cooling air flow flowing through the cylinder head in the direction of the cylinder head base. This measure further intensifies the cooling of the thermally endangered cylinder head base.
  • the cooling air is led out of the cylinder head on the longitudinal side wall of the block cylinder head, to which the gas exchange channels lead.
  • the cooling air is directed around the exhaust gas duct and the adjoining exhaust manifold through screens in the cylinder head side wall or in the seal, which is arranged between the cylinder head side wall and the exhaust or intake manifold, or through screen-like openings in the exhaust duct and thus this area is particularly cooled and simultaneously the Flow resistance regulated in the cylinder head.
  • a liquid line leading over the entire length of the block cylinder head is arranged on the exhaust side of the cylinder head at the level of the valve spring supports, this line being connected to the inlet channels in such a way that the cooling air flowing through the cylinder head transversely to the liquid line through openings in the area between the Aulumblekanäle and the liquid line is guided along the outlet channel wall to the outlet channel connection flanges.
  • This arrangement of the liquid line which is also advantageously used as a lubricant line for lubricating the valve train arranged in the cylinder head, enables additional heat dissipation from the thermally highly stressed zones, essentially the exhaust ports and exhaust valve guides.
  • An air-cooled cylinder head which is designed as a cast iron block cylinder head 1 for cylinders lying next to one another, has an inlet channel 3 which interacts with an exhaust valve for each cylinder.
  • Exhaust duct 2 and intake duct 3 end in connecting flanges 4 and 5, which are arranged on a common longitudinal side wall 6 of the cylinder head. Cooling air flows through the cylinder head transversely to the longitudinal direction, the cooling air entering on the longitudinal side wall 7 opposite the longitudinal side wall 6 provided with the gas exchange channels 2, 3 or their connecting flanges 4, 5.
  • the cooling air entering the cylinder head is directed by cooling fins to all areas of the cylinder head.
  • the zones of the cylinder head which are subject to high thermal loads are largely insulated or suspended from adjacent parts of the cylinder head wall.
  • the exhaust duct 2 is accordingly only connected to the cylinder head base 8 and the exhaust valve bore 9 with the cylinder head and is otherwise isolated in the cylinder head.
  • the crankcase 10 which is designed as an "open deck crankcase”
  • the cylinder head is clamped via cylinder head screws 11.
  • the cylinder head screws 11 are arranged in zones of the cylinder head which are subject to low thermal stress, in particular none of the cylinder head screw pipes 12 is connected to the exhaust gas duct 2.
  • the cylinder head screw 11a arranged between the inlet channel 3 and the outlet channel 2 is supported exclusively on a crescent-shaped cylinder head screw pipe 12a formed by the inlet channel wall 13.
  • Push rod openings 14 and 15 are arranged on the air inlet-side longitudinal side wall 7 of the cylinder head.
  • An injection nozzle not shown, is arranged centrally in the cylinder head and the corresponding passage opening 16 is inclined at an obtuse angle to the cylinder head base plate 8.
  • a concave design of the cylinder head base 8 can be seen on the cold room side.
  • the bottom of the cylinder head runs out into a bead-shaped edge 17.
  • This bead-shaped edge 17 extends over the entire circumference of each cylinder bore 18 and is arranged in the region outside of the cylinder cooling jacket space 19.
  • a recess 29 is machined into the cylinder head base 8 above the cylinder cooling jacket space 19.
  • This recess 29 is connected to the cylinder cooling jacket space 19 via openings 22 in the cylinder head gasket 21.
  • the cooling liquid which can be any other coolant, for example water or oil, flows into the recess 29 and intensively cools the cylinder head base 8 of the cylinder head.
  • a cooling air guide rib 24 is arranged in the web area below the cylinder head cover plate 23, which deflects the cooling air entering from the longitudinal side wall 7 in the direction of the cylinder head base 8.
  • the recess 29 is separated from the cylinder cooling jacket space 19 by a gas head and liquid-tight cylinder head gasket 21 in the region of the recess 29.
  • the recess 29 is air-cooled instead of liquid-cooled. The cooling air enters or exits the recess 29 through bores 25 on both sides of the cylinder head.
  • a wing profile shape (convex) is shown as a further possible embodiment of the cylinder head base 8. Furthermore, a liquid line 27 leading over the entire length of the cylinder head is arranged at the level of the valve spring supports 28.
  • This liquid distribution line 27, which is primarily charged with oil, which is used at the same time for lubricating the valve train, insofar as it is arranged in the cylinder head, is additionally connected to the inlet channel walls. Passages for the cooling air impinging transversely on the liquid line 27 and the adjacent walls only result in the area of the exhaust gas channels 2, so that the cooling air is effectively guided around the exhaust gas channels 2 and cools them intensively.
  • the recess 29 is flushed with cooling air via channels 30.
  • the channels 30 are arranged on both sides of the end faces of the recess 29 and are guided out of the cylinder head on the two longitudinal side walls 6, 7 thereof.
  • the recesses 29 are flowed through by cooling liquid.
  • the cylinder head gasket not shown, is provided with openings 22 (FIG. 2) in the region of the recesses 29, so that the cooling liquid passes from the cylinder cooling jacket space 19 into the recesses 29.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Valve Device For Special Equipments (AREA)
  • Vehicle Body Suspensions (AREA)
  • Compressor (AREA)

Description

  • Die Erfindung betrifft einen luftgekühlten Zylinderkopf einer Brennkraftmaschine gemäß Oberbegriff des Patentanspruchs 1.
  • Ein aus der DE-A 14 76 429 bekannter Zylinderkopf weist einen Zylinderkopfboden auf, der kühlraumseitig parallel zu der von den Gaskräften beaufschlagten brennraumseitigen Bodenfläche ausgebildet ist. Durch eine derartige Ausbildung des Zylinderkopfbodens mit konstanter Dicke wird den sich über den Brennraumdurchmesser stetig ändernden Gasdruckkräften keine individuell bemessene Gegenkraft entgegengesetzt. Somit kann auf die von den Gadruckkräften verursachten Verformungen des Zylinderkopfbodens kein ausreichender Einfluß genommen werden. Weiterhin ist der Wärmeverlust durch den Zylinderkopfboden an allen Stellen wegen seiner konstanten Dicke gleich. Somit kann auch kein Einfluß auf einen unterschiedlich geforderten Wärmeabfluß vom Brennraum in den Zylinderkopf genommen werden.
  • Die CH-A 29 04 26 beschreibt einen luftgekühlten Zylinderkopf, der über zwei Zylinder reicht. Dieser Zylinderkopf weist zu jedem Brennraum beziehungsweise Zylinderrohr je einen vorspringenden Dichtring auf, wobei die Dichtringe im Bereich der aneinandergrenzenden Zylinderrohre bis auf einen schmalen, eingeschlossenen Zylinderkopfgrundabschnitt aneinanderreichen.
  • Der Erfindung liegt die Aufgabe zugrunde, den luftgekühlten Zylinderkopf auf einer Brennkraftmaschine derart steif zu gestalten, daß eine sichere Abdichtung zum Kurbelgehäuse gewährleistet ist und gleichzeitig eine wirkungsvolle Kühlung der thermisch hochbelasteten Zonen des Zylinderkopfes sichergestellt ist, wobei gleichzeitig die Gestaltung auch im Hinblick auf einen geringen Fertigungsaufwand zu optimieren ist.
  • Diese Aufgabe wird bei einer gattungsgemäßen Einrichtung durch die kennzeichnenden Merkmale des Patentanspruchs 1 gelöst.
  • Die zu einem Blockzylinderkopf zusammengefaßten Zylinderköpfe einer Zylinderreihe sind steif und gewährleisten somit eine sichere Abdichtung zum Kurbelgehäuse. Dadurch, daß der Blockzylinderkopf aus Grauguß gefertigt ist, wird gegenüber bisher bei Luftkühlung ausschließlich verwendeten Leichtmetallzylinderköpfen bei ähnlichen mechanischen und thermischen Eigenschaften ein weiterer Vorteil bezüglich der Steifigkeit des Zylinderkopfes erzielt. Hinzu kommt, daß ein aus Grauguß gefertigter luftgekühlter Blockzylinderkopf herstellungs- und kostenmäßig günstiger produziert und bearbeitet werden kann, als ein entsprechender Leichtmetallzylinderkopf. Die Ausnehmungen zwischen den einzelnen Zylindern in dem brennraumseitigen Zylinderkopfboden tragen zu einer weiteren Verbesserung der Kühlung des Zylinderkopfes bei und bauen zugleich mechanische Spannungen in diesem Bereich ab, da die Ausnehmungen den Wärmefluß zwischen den benachbarten Zylinderabschnitten reduzieren bzw. verhindern.
  • Nach Anspruch 2 ist der Zylinderkopfboden jedes Zylinderkopfes kühlraumseitig als Tragflügelprofil (konvex) ausgebildet. Eine derartige Ausbildung ist besonders bei einem Blockzylinderkopf vorteilhaft, da dadurch der Form- und Gießaufwand bei der Herstellung des Zylinderkopfrohlings reduziert wird.
  • Nach einer Weiterbildung gemäß Anspruch 3 umfaßt den Zylinderkopfboden jedes Zylinderkopfes kühlraumseitig ein wulstförmiger, ringförmiger Rand. Dieser wulstförmige Rand ist im Brennraumeinfassungsbereich, also in dem Bereich, mit dem der einzelne Zylinderkopf auf dem Kurbelgehäuse bzw. dem Zylinderrohr aufliegt, angeordnet. Somit wird in diesem für die Dichtheit wichtigen Bereich eine sehr verformungsarme Brennraumbodengeometrie erreicht.
  • Nach Patentanspruch 4 ist der wulstförmige Rand jedes Zylinderkopfbodens von den zu einer Längs-Seitenwand des Blockzylinderkopfes führenden Gaswechselkanälen abgekoppelt. Dadurch wird eine gute thermische Isolation von den thermisch sehr unterschiedlich beanspruchten Ein- und Auslaßkanälen erreicht.
  • Nach einer Ausbildung gemäß Anspruch 5 ist die Ausnehmung durch radial von außen zum Zylinderkopfzentrum hin verlaufende Bohrungen oder Kanäle mit Kühlluft durchströmt und sie ist gleichzeitig flüssigkeits- und gasdicht gegenüber dem Kurbelgehäuse abgekoppelt. Nach Patentanspruch 6 ist es auch vorteilhaft, den Ringraum über Zu- und Abflüße bildende Durchbrüche in der Zylinderkopfdichtung mit dem flüssigkeitsgekühlten Zylinderkühlmantelraum zu verbinden. In diesem Ausführungsfall entfallen die bei der von Kühlluft durchströmten Version erforderlichen Bohrungen im Zylinderkopf. Beiden Ausführungen gemeinsam ist der Vorteil, daß durch diese Ausbildungen eine intensive Kühlung des Brennraumrandes ermöglicht ist.
  • Zur Verbesserung der Wärmeabfuhr ist es nach Patentanspruch 7 vorteilhaft, den Zylinderkopfboden kühlraumseitig mit Rippen zu versehen, die in den wulstförmigen Rand auslaufen. Dadurch wird einerseits die wirksame Wärmeübergangsfläche zwischen Metall und Kühlluft vergrößert und andererseits die den Zylinderkopf durchströmende Kühlluft gezielt auf besonders zu kühlende Zonen wie beispielsweise Auslaßventil und Einspritzdüsenpfeife gelenkt.
  • Nach einer vorteilhaften Weiterbildung der Erfindung gemäß Patentanspruch 8 stützt sich eine zwischen den Gaswechseikanälen angeordnete Zylinderkopfschraube mit ihrer Kopffläche auf einer Zylinderkopfschraubenpfeife ab, die nur mit dem Einlaßkanal in Verbindung steht bzw. von diesem gebildet ist. Dazu wird die Zylinderkopfschraubenpfeife halbmondförmig durch die Einlaßkanalwand gebildet. Durch diese Maßnahme werden die starken thermischen Schwankungen und dadurch resultierenden Wärmedehnungen, die von dem Auslaßkanal hervorgerufen werden, von der Zylinderkopfbefestigung ferngehalten.
  • Um den Auslaßkanal weiter thermisch von den umliegenden Zonen jedes Zylinderkopfes zu isolieren, ist der Auslaßkanal vollständig von den benachbarten Zylinderkopfwandungen abgehangen und ist somit von dem durch den Zylinderkopf strömenden Kühlluftstrom vollständig umspült. Als weitere Maßnahme zur Verbesserung der Kühlung des Zylinderkopfbodens ist im Stegbereich unterhalb der Zylinderkopfdeckplatte eine Kühlluftleitrippe angeordnet, die den den Zylinderkopf durchströmenden Kühlluftstrom in Richtung auf den Zylinderkopfboden umleitet. Durch diese Maßnahme wird die Kühlung des thermisch gefährdeten Zylinderkopfbodens weiter intensiviert.
  • Aus dem Zylinderkopf hinausgeführt wird die Kühlluft an der Längs-Seitenwand des Blockzylinderkopfes, zu der die Gaswechselkanäle hinführen. Durch Blenden in der Zylinderkopfseitenwand oder in der Dichtung, die zwischen Zylinderkopfseitenwand und Abgas- bzw. Ansaugkrümmer angeordnet ist oder durch blendenartige Öffnungen der Abgaskanalflansche wird die Kühlluft gezielt um den Abgaskanal und den sich daran anschließenden Abgaskrümmer herumgeführt und somit dieser Bereich besonders gekühlt und gleichzeitig der Strömungswiderstand im Zylinderkopf reguliert.
  • Nach Patenanspruch 12 ist auf der Abluftseite des Zylinderkopfes in Höhe der Ventilfedernauflagen eine über die gesamte Länge des Blockzylinderkopfes führende Flüssigkeitsleitung angeordnet, wobei diese Leitung mit den Einlaßkanälen derart verbunden ist, daß die den Zylinderkopf quer zu der Flüssigkeitsleitung durchströmende Kühlluft durch Öffnungen im Bereich zwischen den Aulaßkanälen und der Flüssigkeitsleitung entlang der Auslaßkanalwandung zu den Auslaßkanalanschlußflanschen geleitet wird. Durch diese Anordnung der Flüssigkeitsleitung, die zudem vorteilhaft als Schmierstoffleitung zur Schmierung des im Zylinderkopf angeordneten Ventiltriebes genutzt wird, wird eine zusätzliche Wärmeabfuhr von den thermisch hoch beanspruchten Zonen, im wesentlichen den Auslaßkanälen und Auslaßventilführungen, ermöglicht.
  • In der Zeichnung sind Ausführungsbeispiele der Erfindung dargestellt. Es zeigt:
  • Fig. 1
    einen etwa mittigen Schnitt durch einen Zylinderkopf parallel zu der Brennraumbodenplatte des Zylinderkopfes,
    Fig. 2
    einen Querschnitt durch einen Zylinderkopf gemäß Schnitt I,
    Fig. 3
    eine Ansicht gemäß Schnitt II,
    Fig. 4
    einen verkleinerten Teilschnitt gemäß I,
    Fig. 5
    einen Querschnitt durch eine weitere Ausführungsvariante des Zylinderkopfes,
    Fig. 6
    einen Querschnitt durch einen Zylinderkopf im Bereich zwischen zwei Zylindern und
    Fig. 7
    eine brennraumseitige Ansicht des Zylinderkopfes gemäß den Figuren 5 und 6.
  • Ein luftgekühlter Zylinderkopf, der als Graugußblockzylinderkopf 1 für nebeneinanderliegende Zylinder ausgebildet ist, weist für jeden Zylinder einen mit einem Auslaßventil zusammenwirkenden Einlaßkanal 3 auf. Abgaskanal 2 und Einlaßkanal 3 enden in Anschlußflansche 4 und 5, die auf einer gemeinsamen Längs-Seitenwand 6 des Zylinderkopfes angeordnet sind. Der Zylinderkopf wird quer zur Längsrichtung von Kühlluft durchströmt, wobei die Kühlluft auf der zu der mit den Gaswechselkanälen 2, 3 bzw. deren Anschlußflanschen 4, 5 versehenen Längs-Seitenwand 6 gegenüberliegenden Längs-Seitenwand 7 eintritt. Die in den Zylinderkopf eintretende Kühlluft wird von Kühlrippen gezielt zu allen Bereichen des Zylinderkopfes geführt. Dabei sind die thermisch hochbelasteten Zonen des Zylinderkopfes weitgehend von angrenzenden Zylinderkopfwandteilen isoliert bzw. abgehangen. Der Abgaskanal 2 ist dementsprechend nur an den Zylinderkopfboden 8 und der Auslaßventilbohrung 9 mit dem Zylinderkopf verbunden und steht ansonsten isoliert in dem Zylinderkopf. Mit dem Kurbelgehäuse 10, daß als "Open-Deck-Kurbelgehäuse" ausgeführt ist, ist der Zylinderkopf über Zylinderkopfschrauben 11 verspannt. Die Zylinderkopfschrauben 11 sind in thermisch gering beanspruchten Zonen des Zylinderkopfes angeordnet, insbesondere steht keine der Zylinderkopfschraubenpfeifen 12 mit dem Abgaskanal 2 in Verbindung. Die zwischen dem Einlaßkanal 3 und Auslaßkanal 2 angeordnete Zylinderkopfschraube 11a stützt sich ausschließlich auf einer von der Einlaßkanalwandung 13 gebildeten halbmondförmigen Zylinderkopfschraubenpfeife 12a ab. Stößelstangendurchbrüche 14 und 15 sind auf der lufteintrittsseitigen Längs-Seitenwand 7 des Zylinderkopfes angeordnet. Eine nicht dargestellte Einspritzdüse ist zentral in dem Zylinderkopf angeordnet und die entsprechende Durchtrittsöffnung 16 ist in einem stumpfen Winkel zu der Zylinderkopfbodenplatte 8 geneigt.
  • In der Ansicht nach Fig. 2 ist kühlraumseitig eine konkave Ausbildung des Zylinderkopfbodens 8 zu erkennen. Dabei läuft der Zylinderkopfboden in einen wulstförmigen Rand 17 aus. Dieser wulstförmige Rand 17 erstreckt sich über den gesamten Umfang jeder Zylinderbohrung 18 und ist im Bereich außerhab des Zylinderkühlmantelraums 19 angeordnet.
  • Oberhalb des Zylinderkühlmantelraumes 19 ist in den Zylinderkopfboden 8 eine Ausnehmung 29 eingearbeitet. Diese Ausnehmung 29 steht über Durchbrüche 22 in der Zylinderkopfdichtung 21 mit dem Zylinderkühlmantelraum 19 in Verbindung. Somit strömt die Kühlflüssigkeit, die im übrigen ein beliebiges Kühlmittel, beispielsweise Wasser oder Öl sein kann, in die Ausnehmung 29 und kühlt intensiv den Zylinderkopfboden 8 des Zylinderkopfes.
  • Weiterhin ist im Stegbereich unterhalb der Zylinderkopfdeckplatte 23 eine Kühlluftleitrippe 24 angeordnet, die die von der Längs-Seitenwand 7 eintretende Kühlluft in Richtung auf den Zylinderkopfboden 8 umlenkt.
  • In Fig. 4 ist eine anders gekühlte Variante der Ausnehmung 29 dargestellt. Die Ausnehmung 29 ist in diesem Ausführungsbeispiel durch eine in dem Bereich der Ausnehmung 29 gas- und flüssigkeitsdichte Zyinderkopfdichtung 21 von dem Zylinderkühlmantelraum 19 getrennt. Anstelle flüssigkeitsgekühlt ist bei diesem Ausführungsbeispiel die Ausnehmung 29 luftgekühlt. Dabei tritt die Kühlluft über Bohrungen 25 beidseits des Zylinderkopfes in die Ausnehmung 29 ein bzw. aus.
  • Aus der Fig. 3 ist ersichtlich, daß der Abgaskanal 2 bis auf die notwendigen Verbindungen mit dem Zylinderkopfboden 8 und dem Bereich der Auslaßventilführungsbohrung 9 vollständig von den übrigen Wandungen des Zylinderkopfes abgehangen ist. Weiterhin sind auf dem Zylinderkopfboden 8 Kühlrippen 26 angeordnet, die in den wulstförmigen Rand 17 auslaufen.
  • In Fig. 5 ist als weitere mögliche Ausgestaltung des Zylinderkopfbodens 8 eine Tragflügelprofilform (konvex) dargestellt. Weiterhin ist eine über die gesamte Länge des Zylinderkopfes führende Flüssigkeitsleitung 27 in Höhe der Ventilfedernauflagen 28 angeordnet. Diese Flüssigkeitsverteilleitung 27, die vornehmlich mit Öl beschickt wird, das gleichzeitig zur Schmierung des Ventiltriebs, soweit er im Zyinderkopf angeordnet ist, verwendet wird, ist zusätzlich mit den Einlaßkanalwandungen verbunden. Durchlässe für die quer auf die Flüssigkeitsleitung 27 und die angrenzenden Wandungen auftreffende Kühlluft ergeben sich nur im Bereich der Abgaskanäle 2, so daß die Kühlluft wirkungsvoll um die Abgaskanäle 2 herumgeführt wird und diese intensiv kühlt.
  • In der Ausbildung nach Fig. 6 wird die Ausnehmung 29 über Kanäle 30 mit Kühlluft durchspült. Die Kanäle 30 sind beidseitig der Stirnseiten der Ausnehmung 29 angeordnet und sind an den beiden Längs-Seitenwänden 6, 7 des Zyinderkopfes aus diesem herausgeführt.
  • In der Ausbildung nach Fig. 7 werden die Ausnehmungen 29 von Kühlflüssigkeit durchströmt. In diesem Ausführungsbeispiel ist die nicht dargestellte Zylinderkopdichtung im Bereich der Ausnehmungen 29 mit Durchbrüchen 22 (Fig.2) versehen, so daß die Kühlflüssigkeit von dem Zylinderkühlmantelraum 19 in die Ausnehmungen 29 gelangt.

Claims (12)

  1. Luftgekühlter Zylinderkopf einer Brennkraftmaschine mit mindestens zwei Gaswechselventilen je Zylinder, wobei der Zylinderkopfboden (8) kühlraumseitig mit einer im wesentlichen kontinuierlich ändernden Wanddicke ausgebildet ist,
    dadurch gekennzeichnet, daß die zu einem Blockzylinderkopf (1) zusammengefaßten Zylinderköpfe einer Zylinderreihe aus Grauguß gefertigt sind, und das der Zylinderkopfboden (8) auf der Brennraumseite zwischen den einzelnen Zylindern in dem von einem Zylinderkühlmantelraum (19) überdeckten Zylinderkopfbereich mit je einer Ausnehmung (29) versehen ist.
  2. Luftgekühlter Zylinderkopf einer Brennkraftmaschine nach Anspruch 1,
    dadurch gekennzeichnet, daß der Zylinderkopfboden (8) des Zylinderkopfes kühlraumseitig als Tragflügelprofil (konvex) ausgebildet ist.
  3. Luftgekühlter Zylinderkopf nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, daß ein wulstförmige Rand (17) im Brennraumeinfassungsbereich ringförmig den Zylinderkopfboden (8) umfaßt.
  4. Luftgekühlter Zylinderkopf nach Anspruch 3,
    dadurch gekennzeichnet, daß der wulstförmige Rand (17) nicht mit den zu einer Längs-Seitenwand (6) des Zylinderkopfes (1) führenden Gaswechselkanälen (2, 3) verbunden ist.
  5. Luftgekühlter Zylinderkopf nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß die Ausnehmung (29) über mindestens eine radial von außen zum Zylinderkopfzentrum hin verlaufende Bohrung oder Kanal (25) von Kühlluft durchströmt ist.
  6. Luftgekühlter Zylinderkopf nach einem der Ansprüche 1 bis 4,
    dadurch gekennzeichnet, daß die Ausnehmung (29) über zu- und Abflüße bildende Bohrungen oder Durchbrüche (22) in der Zylinderkühlkopfdichtung (21) mit einem flüssigkeitsgekühlten Zylindermantelraum (19) verbunden ist.
  7. Luftgekühlter Zylinderkopf, nach einem der Ansprüche 1 bis 6,
    dadurch gekennzeichnet, daß auf den Zylinderkopfboden (8) Kühlrippen (26) aufgesetzt sind, die in den wulstförmigen Rand (17) auslaufen.
  8. Luftgekühlter Zylinderkopf nach einem der Ansprüche 1 bis 7,
    dadurch gekennzeichnet, daß eine zwischen den Gaswechselkanälen (2, 3) angeordnete Zylinderkopfschraubenpfeife (12 a) halbmondförmig durch eine Einlaßkanalwandung (13) gebildet ist.
  9. Luftgekühlter Zylinderkopf nach einem der Ansprüche 1 bis 8,
    dadurch gekennzeichnet, daß der Auslaßkanal (2) vollständig von benachbarten Zylinderkopfwandungen abgehangen ist und allseitig von einem Kühlluftstrom umspült ist.
  10. Luftgekühlter Zylinderkopf nach einem der Ansprüche 1 bis 9,
    dadurch gekennzeichnet, daß im Zylinderkopfstegbereich eine Kühlluftleitrippe (24) unterhalb der Zylinderkopfdeckplatte (23) angeordnet ist, wobei die Kühlluftleitrippe (24) unter einem derartigen Winkel an der Zylinderkopfdeckplatte (23) angebunden ist, daß die auftreffende Kühlluft in Richtung auf den Zylinderkopfboden (8) gelenkt wird.
  11. Luftgekühlter Zylinderkopf, nach einem der Ansprüche 1 bis 10,
    dadurch gekennzeichnet, daß die den Zylinderkopf durchströmende Luft den Zyinderkopf im Bereich des an einer Längs-Seitenwand (6) angeordneten Abgaskanalanschlußflansches (4) verläßt und allseitig um den Abgaskanalanschlußflansch (4) herumströmt.
  12. Luftgekühlter Zylinderkopf nach einem der Ansprüche 1 bis 11,
    dadurch gekennzeichnet, daß auf der abluftseitigen Längs- und Seitenwand (6) in Höhe der Ventilfedernauflagen (28) eine über die Gesamtlänge des Zylinderkopfes (1) führende Flüssigkeitsleitung (27) angeordnet ist, wobei diese mit den Einlaßkanälen (3) derart verbunden ist, daß die den Zylinderkopf quer zu der Flüssigkeitsleitung (27) durchströmende Kühlluft durch Öffnungen im Bereich zwischen dem Auslaßkanal (2) und der Flüssigkeitsleitung (27) entlang der Auslaßkanalwandung zu dem Auslaßkanalanschlußflansch (4) geleitet wird.
EP86117696A 1985-12-20 1986-12-18 Zylinderkopf Expired - Lifetime EP0230017B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT86117696T ATE66722T1 (de) 1985-12-20 1986-12-18 Zylinderkopf.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853545333 DE3545333A1 (de) 1985-12-20 1985-12-20 Zylinderkopf
DE3545333 1985-12-20

Publications (3)

Publication Number Publication Date
EP0230017A2 EP0230017A2 (de) 1987-07-29
EP0230017A3 EP0230017A3 (en) 1988-10-05
EP0230017B1 true EP0230017B1 (de) 1991-08-28

Family

ID=6289105

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86117696A Expired - Lifetime EP0230017B1 (de) 1985-12-20 1986-12-18 Zylinderkopf

Country Status (6)

Country Link
US (1) US4781158A (de)
EP (1) EP0230017B1 (de)
JP (1) JPS62157264A (de)
AT (1) ATE66722T1 (de)
DE (2) DE3545333A1 (de)
ES (1) ES2023810B3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344110A1 (de) * 2003-09-24 2005-04-28 Daimler Chrysler Ag Zylinderkopf einer Brennkraftmaschine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5303943A (en) * 1988-12-30 1994-04-19 Batty Jr James M Head gasket assemnly and method for sealing an internal combustion engine
JP2531563Y2 (ja) * 1990-10-09 1997-04-02 株式会社クボタ 吸い込み式冷却ファン付き頭上弁エンジンの冷却装置
US5638779A (en) * 1995-08-16 1997-06-17 Northrop Grumman Corporation High-efficiency, low-pollution engine
DE19737492C1 (de) * 1997-08-28 1998-10-29 Daimler Benz Ag Flüssigkeitsgekühlter Zylinderkopf einer mehrzylindrigen Brennkraftmaschine
DE102005040637A1 (de) * 2005-08-27 2007-03-01 Deutz Ag Brennkraftmaschine
US7677218B2 (en) * 2007-07-31 2010-03-16 Caterpillar Inc. Cylinder head including a stress slot with filler
JP6759160B2 (ja) * 2017-06-30 2020-09-23 株式会社クボタ 水冷エンジン

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB341256A (en) * 1930-01-09 1931-01-15 Ici Ltd Air-cooled internal-combustion engines
CH290426A (de) * 1950-07-22 1953-04-30 Gmbh Porsche Konstruktionen Zylinderkopf für luftgekühlte Brennkraftmaschinen.
FR1085154A (fr) * 1952-10-16 1955-01-28 Ricardo & Co Engineers Perfectionnements aux culasses de cylindres à refroidissement par air
DE963564C (de) * 1954-01-31 1957-05-09 Bayerische Motoren Werke Ag Einrichtung zur Kuehlung des Zylinderkopfes bei luftgekuehlten Brennkraftmaschinen
CH424374A (de) * 1961-01-18 1966-11-15 Tatra Np Luftgekühlter Zylinderkopf mit zusätzlicher Flüssigkeitskühlung
US3117565A (en) * 1961-01-18 1964-01-14 Tatra Np Cylinder head for internal combustion engines
DE1476429A1 (de) * 1963-12-10 1969-02-13 Cunewalde Motoren Zylinderkopf fuer luftgekuehlte Brennkraftmaschinen
DE1294103B (de) * 1964-04-16 1969-04-30 Fiat Spa Einrichtung zum Verhindern einer Verunreinigung der zum Belueften und/oder Heizen des Insassenraumes von Kraftfahrzeugen mit luftgekuehlten Brennkraftmaschinen bestimmter Luft durch aus der Brennkraftmaschine austretende Verbrennungsgase
FR1412253A (fr) * 1964-10-22 1965-09-24 Maschf Augsburg Nuernberg Ag Couvercle de cylindre pour moteurs à combustion interne à injection
DE1576707A1 (de) * 1967-04-22 1970-05-06 Daimler Benz Ag Zylinderkopf einer luftgekuehlten Brennkraftmaschine
DE1938297A1 (de) * 1968-08-08 1971-02-11 Honda Motor Co Ltd Einrichtung zur Luftkuehlung von Verbrennungsmotoren in Kraftfahrzeugen
DE1961804C3 (de) * 1969-12-10 1973-01-11 Kloeckner Humboldt Deutz Ag Zylinderkopfbefestigung fuer Hubkolbenbrennkraftmaschinen
DE2227120C2 (de) * 1972-06-03 1982-07-29 Daimler-Benz Ag, 7000 Stuttgart Luftgekühlte Hubkolben-Brennkraftmaschine
US4346676A (en) * 1979-08-06 1982-08-31 Brunswick Corporation Two-cycle V-engine with integrally cast exhaust manifold
DE3044487A1 (de) * 1980-11-26 1982-06-24 Klöckner-Humboldt-Deutz AG, 5000 Köln Zylinderkopf mit einer als einsatz ausgebildeten vorkammer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10344110A1 (de) * 2003-09-24 2005-04-28 Daimler Chrysler Ag Zylinderkopf einer Brennkraftmaschine

Also Published As

Publication number Publication date
DE3545333A1 (de) 1987-07-02
EP0230017A3 (en) 1988-10-05
ATE66722T1 (de) 1991-09-15
DE3681147D1 (de) 1991-10-02
US4781158A (en) 1988-11-01
ES2023810B3 (es) 1992-02-16
JPS62157264A (ja) 1987-07-13
EP0230017A2 (de) 1987-07-29
DE3545333C2 (de) 1988-06-01

Similar Documents

Publication Publication Date Title
DE10350394B4 (de) Zylinderkopf für eine flüssigkeitsgekühlte Mehrzylinder-Brennkraftmaschine
EP1126152B1 (de) Zylinderkopf und Brennkraftmaschine
EP0088157B1 (de) Zylinderkopf für eine wassergekühlte Brennkraftmaschine
US4377990A (en) Cylinder read for water-cooled internal combustion engines manufacturable by the die-casting method
DE112007000918B4 (de) Zylinderkopf für einen Motor sowie Motor
EP0230017B1 (de) Zylinderkopf
JPS63192935A (ja) ディーゼル機関
DE10227690A1 (de) Gekühlter Zylinderkopf für eine Kolbenbrennkraftmaschine
DE60116053T2 (de) Brennkraftmaschine
EP0099032B2 (de) Zylinderkopf für flüssigkeitsgekühlte Mehrzylinder-Brennkraftmaschinen
JPH04231655A (ja) エンジン冷却装置
US2753853A (en) Air cooled cylinder heads for internal combustion engines
EP0062143A2 (de) Zylinderkopf für luftverdichtende, selbstzündende Einspritz-Brennkraftmaschinen
DE102010009061B4 (de) Anordnung einer Kühlvorrichtung in einer Verbrennungskraftmaschine
DE3934883A1 (de) Brennkraftmaschine mit einer einblasevorrichtung in einen gaswechselkanal, insbesondere zum lufteinblasen in einen abgaskanal
EP1062411B1 (de) Wassergekühlte abgasleitung
DE4344356C2 (de) Zylinderkopf für eine Brennkraftmaschine mit Sekundärluftzufuhr
AT501229B1 (de) Zylinderkopf
DE102007012907A1 (de) Zylinderkopf für eine flüssigkeitsgekühlte Brennkraftmaschine
DE3101881A1 (de) Zylinderkopf fuer brennkraftmaschinen
DE3615018C1 (en) Valve stem guide for an exhaust valve
EP0206125B1 (de) Zylinderkopf für flüssigkeitsgekühlte Brennkraftmaschinen
DE102006004205B3 (de) Ein- oder Mehrzylinder-Brennkraftmaschine mit geteiltem Gußgehäuse
DE3701083C1 (en) Engine housing of an internal combustion engine with banks of cylinders arranged in a V shape
WO2020216465A1 (de) Brennkraftmaschine mit abgasrückführung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RHK1 Main classification (correction)

Ipc: F02F 1/32

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE ES FR GB IT

17P Request for examination filed

Effective date: 19880824

17Q First examination report despatched

Effective date: 19890703

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE ES FR GB IT

REF Corresponds to:

Ref document number: 66722

Country of ref document: AT

Date of ref document: 19910915

Kind code of ref document: T

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3681147

Country of ref document: DE

Date of ref document: 19911002

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19911107

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19911112

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19911216

Year of fee payment: 6

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: KLOECKNER-HUMBOLDT-DEUTZ AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2023810

Country of ref document: ES

Kind code of ref document: B3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19921218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 19921219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19991117

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20000107

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20001218

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20010201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20001218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20011002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051218