EP0227699B1 - Furnace device - Google Patents

Furnace device Download PDF

Info

Publication number
EP0227699B1
EP0227699B1 EP86903107A EP86903107A EP0227699B1 EP 0227699 B1 EP0227699 B1 EP 0227699B1 EP 86903107 A EP86903107 A EP 86903107A EP 86903107 A EP86903107 A EP 86903107A EP 0227699 B1 EP0227699 B1 EP 0227699B1
Authority
EP
European Patent Office
Prior art keywords
combustion chamber
furnace system
air
chamber
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP86903107A
Other languages
German (de)
French (fr)
Other versions
EP0227699A1 (en
Inventor
Georg Pletzer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0227699A1 publication Critical patent/EP0227699A1/en
Application granted granted Critical
Publication of EP0227699B1 publication Critical patent/EP0227699B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C15/00Apparatus in which combustion takes place in pulses influenced by acoustic resonance in a gas mass

Definitions

  • the invention relates to a firing device for a system having a preferably water-filled heat exchange container, with at least one combustion chamber for pulsating combustion of flowable fuels, which is provided with an ignition device for the first ignition of the fuel and which passes into an exhaust gas guide device, with a prechamber which has a transition area into the combustion chamber, with a supply line for the fuel, which ends in an inflow nozzle arranged in the prechamber, with a supply line for air, which has a check valve arrangement formed at the entrance to the prechamber, through which the air is drawn by the pulling action, which in the Combustion chamber arises due to the expansion dynamics of the combustion products, is fed discontinuously into the prechamber, and with a swirl element arranged in the transition area, on the combustion chamber side of which the air-fuel mixture is swirled.
  • Such a firing device is shown in AT-B-170 522.
  • This pulsation burner for an air heater not only has a discontinuous air supply via the check valve into the prechamber, but also a discontinuous fuel supply.
  • the gaseous fuel is also sucked in through a nozzle in every vacuum phase.
  • Vortex builders in the prechamber create vortex cushions that reduce the impact of pressure peaks on the check valve.
  • a device that is mainly used as a steam generator is described in FR-A-1 023 114.
  • several combustion chambers are arranged in parallel in a water boiler, with their prechambers equipped with aerodynamic non-return valves in an air supply duct and the ends of the exhaust pipes in one Project gas discharge duct through which the boiler water supply line for preheating is led. Steam escapes from the hottest part of the kettle. Any control option for pulsating combustion is missing, as is a mixture formation zone, so that the quality of combustion is not particularly high.
  • DE-B-1 253 851 describes a firing device provided on a boiler, in which the fuel is fed directly into the combustion chamber via a piston pump, the pump frequency of which can be set. The air is supplied via check valves in several antechambers. By changing the fuel supply frequency, coordination with the resonance frequency of the combustion chamber is to be avoided in order to keep the noise level as low as possible.
  • WO-A-8 402 762 describes an air check valve for a pulsation burner which is provided with a prechamber.
  • An injection nozzle is arranged in the antechamber immediately before a cross-sectional constriction of the antechamber.
  • the mixture formation with the air entering around the injection nozzle therefore begins in the prechamber, but is only continued in the combustion chamber due to the accelerating effect of the narrowed prechamber, the usual operating frequency of the combustion chamber precluding complete, optimal mixing.
  • EP-B-11 457 Another example is shown in EP-B-11 457, according to which an embodiment made of prefabricated components, namely a base part and an exhaust gas chamber, a central part and a boiler in which the combustion chamber is inserted, and an upper part with an air and a gas compression chamber is composed, only gaseous fuel being used.
  • the combustion chamber is designed as an approximately spherical insert from which, at the location of the largest diameter, an exhaust gas connection pipe leads tangentially to an intermediate container, from which a plurality of coiled pipes guide the exhaust gases into the exhaust gas chamber.
  • a pre-chamber serves to form an air-gas mixture which is fed separately and has a flame holder.
  • a check valve arrangement with a plurality of poppet valves is provided, with each poppet valve simultaneously blocking the air and gas supply.
  • a pressure control device is used in the gas supply line, which regulates the pressure in the gas compression chamber as a function of the pressure in the air compression chamber, so that the pressure conditions are essentially constant.
  • the firing device according to US-A-4 449 484 is similarly constructed.
  • a prechamber in which the formation of the air / fuel mixture takes place, is separated from the combustion chamber by an orifice having a smaller cross section. Separate supply lines for air and fuel open into the prechamber and are blocked by a common poppet valve. With such a structure, only gaseous fuel can be used.
  • the entire furnace is designed as a boiler insert.
  • US-A-2 715 390 further describes a firing device, the combustion chamber of which is also inserted into a boiler.
  • a pre-chamber serves to form an air-fuel mixture, and a poppet valve closes the transfer opening from the pre-chamber into the combustion chamber.
  • DE-A-2 120 749 describes a portable spray or mist device in which the exhaust gases from a pulsation burner are used to atomize liquid to be sprayed, for example insecticides, etc., which are drawn in from an assigned tank.
  • the device is intended for the combustion of gasoline and has a mixing chamber located in front of the combustion chamber with a swirl element which mixes the air supplied via a check valve with the gasoline gasified by a carburetor and feeds it together to the combustion chamber.
  • the invention has now set itself the task of adapting a firing device of the type mentioned, which is known to have a high efficiency, especially to room or central heating systems of conventional design.
  • the usual extended operating range of the heating systems is to be retained, and low exhaust gas values which meet modern exhaust gas regulations are to be achieved, although not only gaseous fuels, but also heating oils, but in particular also combustible waste materials, such as used oils from the automotive industry, and the like are combustible should be.
  • it should both be able to replace existing firing equipment, such as oil firing systems, and be installable when new, without changes to the components of the heating system being necessary.
  • this object is now achieved in that the inflow nozzle, via which the fuel can be supplied under pressure, is arranged in the transition area, and in that a variable air passage opening between the antechamber and the combustion chamber is provided, with the aid of which the strength of the The air inflow resistance influencing the check valve arrangement into the combustion chamber can be adjusted.
  • an air inflow resistance is required, which was previously generated by non-return valves or by check valves. If the open valve area is too large, the firing device cannot be started or operated. If the open valve area is too small, not only is the performance low, but also its adjustment range.
  • the inflow resistance is not determined by the air inlet valves, but by the size of the air passage area of the actuating device.
  • the total opening cross section of the air inlet valves can be of any size, since with the help of the adjusting device the air passage area between the prechamber and the combustion chamber can be adjusted so that the air supply is optimized with regard to a stoichiometric mixture composition.
  • the adaptation of the air supply is achieved for every power range, since with every change in the fuel flow, in particular the injection pressure, a change in the inflow resistance can take place by adjusting the size of the air passage area.
  • the adjusting device comprises the inflow nozzle of the fuel supply line and an element which reduces the cross section of the transition area, which together limit an adjustable annular gap for the air passage.
  • a particularly fine adjustment of the air supply to the set amount of fuel is achieved in that the inflow nozzle is designed to be adjustable between a front end position near the cross-section-reducing element and a more distant rear end position.
  • the adjustment can be made mechanically, pneumatically or hydraulically.
  • a preferred adjustment range for the inflow nozzle is between 10 mm and 20 mm in front of the element that reduces the cross section.
  • the cross-section-reducing element is designed in particular as a ring diaphragm, a further adjustment of the air supply can be achieved when the opening width of the ring diaphragm is adjustable, such a cross-section-reducing element being able to be designed as a mechanically adjustable slip plate, and / or when the ring diaphragm is axially adjustable is so that their distance from the combustion chamber floor can be changed.
  • the swirl element Since in the transition area into the combustion chamber for swirling the fuel with the air before it is fed into the combustion zone of the combustion chamber, the swirl element is provided, which contributes to simultaneous and uniform ignition of the mixture in the combustion zone and is jointly responsible for the excellent exhaust gas values mentioned later
  • the swirl element which is arranged at a distance from the combustion chamber base of in particular 10 to 20 mm, is formed by the ring diaphragm.
  • the element which reduces the cross section of the air passage area and in particular is formed by the ring diaphragm can be arranged in the extension of the prechamber.
  • a preferred adjustment range for the inflow nozzle lies between 10 and 20 mm in front of the cross-section-changing element or the swirl element. With one and the same burner, a much larger power range can thus be covered, which is approximately three times the power range for non-adjustable parts with an adjustable inflow nozzle and an adjustable cross-section-reducing element.
  • a screen used as a swirl element also forms part of a flame holder, which promotes the rapid evaporation of liquid fuels.
  • the gases produced during combustion on the one hand shoot into a connecting pipe of the exhaust gas discharge device attached to the combustion chamber and on the other hand also press into the antechamber, whereby they Fuel particles that continue to flow also press into the prechamber. Due to the pressure increase, they seal the check valves, which are essentially already closed by their own spring force.
  • the gases contained in the prechamber which are a mixture of fuel and air mixed with waste gas, are pre-compressed.
  • the layer closest to the combustion chamber mainly contains combustion products with still existing, unburned fuel and a small amount of air.
  • the next layer consists of a fuel-air mist in which the fuel is abundant.
  • the last layer consists of a fuel-air mixture in which there is only a small amount of fuel, i.e.
  • the fuel is entrained by the fresh air that shoots in at high speed and is introduced into the combustion chamber at high speed as a mixture of fuel and air.
  • the incoming fresh gas mixture is slowed down and the pressure is simultaneously increased.
  • the fresh gas mixture is matched by the exhaust gas wave flowing back from the exhaust pipe.
  • the combustion products shoot into the exhaust pipe and back into the prechamber.
  • the suction process described is repeated and the mixture of waste gas, fresh air and fuel is sucked back into the combustion chamber.
  • the fuel is continuously fogged, despite the fact that the fuel mixture is introduced into the combustion chamber in accordance with the working rhythm of the device (for example 50 Hz).
  • the adaptation of the air supply to different performance ranges can be further improved if the rear end position of the inflow nozzle lies between two mouth branches of the air supply line, which open laterally into the roughly cylindrical prechamber, at least one branch branch separated is lockable.
  • V-shaped valve seats which are fitted with a pair of valve flaps, are particularly suitable as air inlet valves. Since the V-shaped valve flaps do not have to determine the air inflow resistance and are therefore oversized, they will only open slightly even with maximum air supply. As a result, they are only subjected to minimal stress and are largely free of closures. They consist, for example, of spring steel sheet, glass or carbon fiber reinforced plastic.
  • the valves In the idle state, the valves have a small gap, which is referred to as a pre-opening and is preferably achieved by a slight convex curvature of the valve seat.
  • a pre-opening at the tip of the valve flaps should be between 0.1 and 0.3 mm.
  • the pre-opening serves to allow air with low resistance to be led through the pre-opened valves by a small blower (starting blower) in order to ventilate the combustion chamber and admit fresh starting air.
  • starting blower starting blower
  • the valves open to a gap of 2 to 4 mm during operation.
  • the overpressure in the combustion chamber keeps them tightly closed, they go into the pre-opening position at the transition from overpressure to underpressure and are opened to the required cross-section by the fresh air drawn in.
  • valve flaps are flat leaflets which are relaxed in the pre-opening position and which are tensioned in both the closed and open positions.
  • the automatically variable opening of the V-valves is an essential part of the infinitely variable control of the combustion device.
  • the injection pressure and thus the amount of fuel is increased, the pressure fluctuations during combustion increase. The result of this is that a larger amount of air is sucked in during the suction time, and the air speed has to increase, which can be handled without any problems due to the oversized V-shaped valve flaps.
  • the infinitely variable controllability of the burner is created by changing the injection pressure, the fuel-air ratio being essentially stoichiometric over the entire control range.
  • valve flaps of the check valves are made of different materials, the check valve of the branch branch near the combustion chamber being able to have valve flaps with low flexural strength in order first to allow air-rich, then fuel-rich and finally air-rich mixture to flow into the combustion chamber, so that results in a stratified charge of the combustion chamber.
  • a design of the cross-section-reducing element as a venturi tube insert has proven particularly useful for this purpose, since if the air supply line is divided into two mouth branches, the mouth branch of the air supply line near the combustion chamber preferably opens at the narrowest point of the venturi tube insert, which is provided with through-openings.
  • a ratio of diameter to length of 1: 1.5 to 1: 2.5, preferably of 1: 2 is advantageous in the combustion chamber.
  • the length of the prechamber should correspond to about 1.5 to 3 times its diameter, which corresponds to about a thirtieth to a fiftieth of the distance of a first silencer of the exhaust gas discharge device from the combustion chamber floor. On the other hand, this distance is 40 to 60 times the diameter of the exhaust pipe between the combustion chamber and the first silencer.
  • the combustion chamber is provided with a double jacket which encloses a compensation gap in order to achieve particularly favorable exhaust gas values.
  • the inner jacket is only connected to the outer jacket on the combustion chamber bottom side, the inner base plate forming a heat shield and the outer one being connected to a carrier plate.
  • the expansion gap not only forms an expansion zone, but also the inner jacket is made to glow, which results in a hot combustion chamber with environmentally friendly exhaust gases, which can be seen in the following measurement tables.
  • the exhaust gas temperature can be chosen as low as desired.
  • the heat exchange area of the exhaust gas discharge device can also have a length which is substantially greater than the length of the exhaust pipe which causes the periodic oscillating movement in the exhaust gas column at the desired frequency. It is therefore preferably provided that a cross-sectional constricting diaphragm is used in the connecting pipe of the exhaust gas discharge device, which delimits the length of the pulsating exhaust gas column. Mufflers, heat exchangers etc. of any type and size can be connected after this cover without influencing the combustion processes.
  • the length of the pulsating exhaust gas column between the combustion chamber floor and the cross-sectional constricting orifice in the exhaust pipe or exhaust pipe preferably corresponds to approximately fifteen times the length of the prechamber.
  • Each muffler immersed in the heat exchange medium is preferably of double-walled design, the gap having a width of approximately 2-3 mm. This prevents condensation.
  • the combustion chamber has a cover plate on the end face opposite the combustion chamber base, on which a vertebral body stands up centrally, the connecting pipe being attached laterally and the vertebral body preferably being S-shaped.
  • This version also increases the mixing of the gases contained in the combustion chamber.
  • at least two connecting pipes are provided, preferably at different distances from the combustion chamber floor, at least one of which can be blocked. The connecting pipes can open into a common intermediate container, the heat exchange surface of the firing device also being able to be regulated by the possibility of shutting off a connecting pipe.
  • one of these connecting pipes ends as a lockable hot gas extraction line in the hottest zone of the combustion chamber, and that it leads outward through the combustion chamber floor opposite to the exhaust gas discharge device. This can be returned to the heat exchanger tank and form an additional enlargement of the heat exchange surface, whereby it is inserted again, for example between two mufflers, into the exhaust pipe.
  • a hot gas extraction line can, however, also be used in another way. It is provided in one embodiment that part of the hot gas extraction line forms a tubular heater.
  • the tubular heater can represent a room air heater, but it could also be guided in helical windings and form cooking areas.
  • combustion chamber is arranged on the inside and the prechamber on the outside of a support plate which can be fastened to the heat exchanger tank, and the firing device forms a ready-to-install insert in the heat exchanger tank.
  • the firing device thus represents a prefabricated unit which, in the case of hot water heating, is inserted into the usual boiler or boiler, and in the case of hot air heating into the furnace, which may otherwise be heated with solid fuels.
  • the heat exchange medium could also be a suitable storage mass, such as concrete or light metal, so that the firing device is part of a storage heater.
  • the double jacket combustion chamber with a gap width of 0.3 mm produced the most favorable exhaust gas values.
  • This combustion chamber was used for further experiments in which a cross-section-reducing and vortex-forming ring diaphragm with a clear width of 28 mm was used at a distance of 12 mm from the combustion chamber.
  • the tests were carried out once with 11 bar oil injection pressure (burner output approx. 14 kW) and on the other hand with 22 bar oil injection pressure (burner output approx. 30 kW). The following measured values were obtained, the low values of the residual 0 2 fraction being particularly noteworthy.
  • FIG. 1 shows a longitudinal section through a first embodiment of a firing device according to the invention
  • FIG. 2 shows a section through the prechamber according to line 11-11 of FIG. 3
  • FIG. 3 shows a partial longitudinal section through the prechamber according to line 111-III 2
  • FIG. 4 shows an illustration according to FIG. 3 of a variant of the prechamber
  • FIG. 5 shows a longitudinal section through a second exemplary embodiment
  • FIG. 6 shows a section along the line VI-VI of FIG. 5
  • FIG. 7 3 shows a second variant of the prechamber
  • FIGS. 8 to 11 schematically illustrate the operational sequence in the phases of intake, compression, combustion and exhaust.
  • a heat exchange container 1 in the exemplary embodiments shown as a boiler 3 of a central heating system 4 filled with water 3, is cylindrical in shape and closed by an upper end plate.
  • the upper end plate serves as a carrier plate 2 for a firing device with a combustion chamber 5 for pulsating combustion, in particular of liquid fuels.
  • the combustion chamber 5 is inserted into an opening in the carrier plate 2 and in the embodiment according to FIGS. 1 to 4 passes over a conical end section 20 into a connecting pipe 8.
  • this is guided through the heat exchange container 1 at multiple angles and opens into a double-walled silencer 9, from which an exhaust pipe 7 guides the combustion gases into the open.
  • the exhaust pipe 7 is provided with a lid flap 38, which avoids a draft and a too rapid cooling of the parked combustion system.
  • a lid flap 38 which avoids a draft and a too rapid cooling of the parked combustion system.
  • two to three silencers 9 are provided one behind the other.
  • In the connecting pipe 8 is a cross-section narrowing diaphragm 37 is inserted, the distance from the combustion chamber 5, the length of the pulsating exhaust gas column can be limited.
  • the combustion chamber 5 is fastened to a closure plate 25 (FIG. 3) and forms a container insert which is fastened to the carrier plate 2 and is inserted into the heat exchange container 1. This also makes it possible to convert existing heating systems in a simple manner.
  • a prechamber 10 is also attached on the outside, which is essentially cylindrical and into which the fuel supply line 12, which can be blocked, for example, by means of a solenoid valve, and laterally the air supply line 11 provided with a check valve arrangement 30 open out.
  • An intake muffler 14, a blower 15 and control devices and other auxiliary devices complement the firing device according to the invention to form a construction and assembly unit.
  • the combustion chamber 5 is double-walled, the outer jacket 21 being fastened to the carrier plate 2 by means of the closure plate 25 and merging into the connecting pipe 8 (FIG. 1), while the inner jacket 22 is left unchanged an air gap 23 of preferably 0.3 mm to the outer jacket 21 from the combustion chamber bottom 19 extends over the conical end portion 20 of the combustion chamber 5 into the connecting pipe 8 (Fig. 1, to 11).
  • the combustion chamber floor 19 is also double-walled and has an inner heat shield 24 and the outside of the closure plate 25.
  • the heat shield 24 and the closure plate 25 thus delimit a bottom-side gap 48, which is preferably 10 mm, so that a "hot" inner chamber is created, which is connected to the outer part exclusively by means of the screws 49.
  • a "hot" inner chamber is created, which is connected to the outer part exclusively by means of the screws 49.
  • the heat shield 24 simultaneously forms an evaporator plate for the evaporation of the fuel mist, which is mixed and swirled in the transition area into the combustion chamber 5 together with the air by the diffuser action of a swirl element 27.
  • the swirl element 27 serves as a cross-section-reducing element in the transition area and can be formed, for example, by an aperture inserted into the antechamber 10 (FIGS. 3, 4, 8-11).
  • the vortex element can also consist of an extension 55 of the prechamber 10, into which an annular screen 56 is additionally inserted as a cross-section-reducing element.
  • a venturi tube insert 35 is arranged in the transition area as a cross-section-reducing element.
  • a spark plug 18 protrudes through the combustion chamber floor 19 (FIG. 3) for the initial ignition of the firing device.
  • the fuel supply line 12 axially entering the prechamber 10 ends in an inflow nozzle 29, through which liquid fuel is continuously sprayed into the combustion chamber 5 under a pressure, preferably between 10 and 25 bar, for example heating oils, waste oils, etc.
  • the inflow nozzle 29 and the element arranged in the transition area and having a reduced passage cross section form an actuating device 26 which delimits an air passage gap 53. Since the swirl element 27 is preferably used as the element with a reduced passage cross section, the inflow nozzle 29 is axially adjustable, as shown in broken lines. The inlet nozzle 29 is in its foremost position just behind the swirl element 27, leaving the air passage gap 53.
  • the dimensioning of the air passage gap 53 by changing the adjusting device 26 is also decisive for the power setting of the firing device, so that an almost stoichiometric one in each position Air-fuel ratio for optimal combustion can be achieved.
  • the air passage gap 53 can now be changed by the aforementioned axial adjustment of the inflow nozzle 29, it can also be done by changing the opening width of the cross-section-reducing element or the swirl element 27 if it is designed as a diaphragm.
  • FIG. 2 shows this schematically, in which the diaphragm is formed by two slides inserted in recesses 54 of the closure plate 25, which have mutually directed recesses and overlap one another, so that the diaphragm opening formed from the two recesses changes when moved.
  • FIG. 7 the adjustment of the diaphragm 56 in the extension 55 of the prechamber 10 parallel to the fuel supply line 12 is indicated schematically for the change in the air passage gap 53.
  • an additional annular gap opens between the diaphragm 56 and the wall of the extension 55 (dashed arrows 58).
  • the measures listed for changing the air passage gap 53 can also be provided in combination. Their correct setting enables combustion with the blue flame color mentioned.
  • the check valves 30 are provided with V-shaped, preferably slightly convexly curved valve seats 31 (FIG. 2), to which flat valve flaps 32 are attached. Due to the oversized total cross-sectional area, the valve flaps 32 have a small opening angle, so that they are exposed to very low bending stresses.
  • the air supply line is divided into two outlet branches 16, 17, each with a check valve 30, each outlet branch 16, 17 being individually lockable by a flap 33, which further increases the controllability of the firing device.
  • the valve flaps 32 of the individual valves 30 preferably have different material properties, so that they have different bending strengths. It will therefore open that valve 30, the valve flaps of which are softer, earlier and the second only when there is a further need for air.
  • the valve near the combustion chamber is provided in the branch branch 16 with softer valve flaps 32, via which the shorter flow path also leads into the combustion chamber 5.
  • the valves 30 laid in the lateral branches are not directly exposed to the high temperatures in the combustion chamber 5, which can be up to 1200 ° C., the continuous fuel supply through the inflow nozzle 29 also contributing to cooling.
  • the mouth branches 16, 17 are further arranged so that in the most retracted position of the inflow nozzle 29 this comes to rest between the two mouth branches 16, 17.
  • a stratified charge of the combustion chamber 5 is also achieved in this way, because during the intake process first a lower-fuel air-fuel mixture (air via the branch branch 16), then a more fuel-rich, and finally a lower-fuel air-fuel mixture (air via the branch branch 17) into the combustion chamber 5 reached.
  • FIG. 6 a further embodiment is shown in which the firing device mounted on the carrier plate 2 is again designed as a container insert.
  • the combustion chamber 5 of this embodiment is pot-shaped and closed on its end opposite the combustion chamber bottom by a cover plate 40, from which an approximately S-shaped vertebral body 41 rises centrally (FIG. 6).
  • two connecting pipes 42, 43 branch off laterally tangentially, which open together into a chamber 39, through which the length and frequency of the pulsating exhaust gas columns are limited.
  • the two connecting pipes 42, 43 branch off opposite one another at different heights from the combustion chamber 5, the connecting pipe closer to the antechamber 10 being lockable by means of a closure 44 which can be actuated from the outside. This also enables control of the firing device.
  • the second connecting pipe 43 can also be blocked.
  • the remaining structure of the firing device corresponds essentially to the firing device already described above according to FIGS. 1 to 4. However, the possibility is also shown here that the prechamber 10 protrudes into the combustion chamber 5, and the cross-section-reducing vortex element 27 at the mouth of the prechamber 10 is formed by the projecting edge. The diffuser effect arises outside the vortex element in the annular space towards the combustion chamber floor 19, which in this embodiment is conical.
  • the exhaust gases cooled by the heat exchange with the heating medium of the room or central heating system do not require a chimney, so that the exhaust gas discharge device 6 can be referred to as an exhaust system.
  • the exhaust gases that pass through one or more silencers 9 can additionally drive a generator via a turbine wheel, which generates the electricity required for the fuel pump, the solenoid valve in the fuel supply line 12 and the air blower required to start the combustion system, so that they is independent of the supply of electrical energy for the auxiliary devices.
  • the electricity generated is stored in an accumulator, for example a motor vehicle battery.
  • connection pipe 50 which ends approximately in the hottest zone of the combustion chamber 5 and, in the opposite direction to the main connection pipe 8 of the exhaust gas discharge device 6, is led through the combustion chamber floor 19 to the outside.
  • This connecting pipe 50 represents a hot gas extraction line which, for example, can form a tubular heating element as an air heating source or, as indicated schematically, as a coiled pipe, for example a hotplate 52.
  • the connecting pipe 50 can be blocked via a valve 51 and leads back into the exhaust pipe 7.
  • This hot gas extraction line can also be used to increase an exhaust gas temperature in the exhaust pipe 7 which may be too low.
  • FIG. 8-11 show schematically individual phases in the combustion process. 8 there is negative pressure in the combustion chamber 5, in the connecting pipe 8 and in the prechamber 10 (denoted by lines 46), so that air is sucked into the constantly flowing fuel.
  • the vortex element 27 swirls the mixture formed in the annular gap between the vortex element 27 and the inflow nozzle 29 as mentioned, which is compressed according to FIG. 9 by the exhaust gas wave flowing back from the connecting pipe 8.
  • An overpressure (designated by crosses 47) builds up, the hot exhaust gases and the high temperature of the swirl element 27, which also serves as a flame holder, causing the automatic ignition, which is shown in FIG. 10.
  • FIG. 11 shows the exhaust phase in which the exhaust gases (arrows 45) are drawn off through the connecting pipe 8 and negative pressure is again generated in the combustion chamber 5 according to FIG. 8. Since fuel is sprayed continuously throughout the entire period, the finest atomization, evaporation and optimal mixing with the combustion air, which brings about the high quality of combustion, becomes clear.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Polarising Elements (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Tunnel Furnaces (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)

Abstract

PCT No. PCT/AT86/00045 Sec. 371 Date Feb. 4, 1987 Sec. 102(e) Date Feb. 4, 1987 PCT Filed Jun. 4, 1986 PCT Pub. No. WO86/07435 PCT Pub. Date Dec. 18, 1986.In a heat exchange container (1) that is preferably water filled and used in a space or central-heating system a furnace system having a combustion chamber (5) for the pulse combustion of free-flowing, in particular, liquid fuels is used, and this is mounted as a container insert on a carrier plate (2) that closes an opening in the container (1). The air supply takes place intermittently through valves (30) and the fuel supply is continuous and under pressure, through an axially adjustable injection nozzle (29) into a prechamber (10) so that the injection pressure and the position of the injection nozzle (29) constitute important adjustment values. Close to the base of the combustion chamber within the prechamber (10) there is a vortexing element that vortexes the fuel-air mixture that is formed, doing so on the combustion chamber side, the opening cross-section of this vortexing element being adjustable. This, too, constitutes an additional control variable. The combustion chamber (5) is preferably configured so as to be contained in a double jacket, in which connection the double jacket includes a very narrow gap that permits thermal transfer, whereas the double combustion chamber base has a broad, thermal insulating gap.

Description

Die Erfindung betrifft eine Feuerungseinrichtung für eine einen vorzugsweise wassergefüllten Wärmetauschbehälter aufweisende Anlage, mit mindestens einer Brennkammer zur pulsierenden Verbrennung fließfähiger Brennstoffe, die mit einer Zündeinrichtung für die erstmalige Zündung des Brennstoffes versehen ist und die in eine Abgasführeinrichtung übergeht, mit einer Vorkammer, die einen Übertrittsbereich in die Brennkammer aufweist, mit einer Zuführleitung für den Brennstoff, die in einer in der Vorkammer angeordneten Einstromdüse endet, mit einer Zuführleitung für Luft, die eine am Eingang in die Vorkammer ausgebildete Rückschlagventilanordnung aufweist, über die die Luft durch die Zugwirkung, die in der Brennkammer aufgrund der Expansionsdynamik der Verbrennungsprodukte entsteht, diskontinuierlich in die Vorkammer zugeführt wird, und mit einem im Übertrittsbereich angeordneten Wirbelelement, an dessen Brennkammerseite das Luft-Brennstoffgemisch durchgewirbelt wird.The invention relates to a firing device for a system having a preferably water-filled heat exchange container, with at least one combustion chamber for pulsating combustion of flowable fuels, which is provided with an ignition device for the first ignition of the fuel and which passes into an exhaust gas guide device, with a prechamber which has a transition area into the combustion chamber, with a supply line for the fuel, which ends in an inflow nozzle arranged in the prechamber, with a supply line for air, which has a check valve arrangement formed at the entrance to the prechamber, through which the air is drawn by the pulling action, which in the Combustion chamber arises due to the expansion dynamics of the combustion products, is fed discontinuously into the prechamber, and with a swirl element arranged in the transition area, on the combustion chamber side of which the air-fuel mixture is swirled.

Eine derartige Feuerungseinrichtung zeigt die AT-B-170 522. Dieser Pulsationsbrenner für ein Luftheizgerät weist nicht nur eine diskontinuierliche Luftzufuhr über das Rückschlagventil in die Vorkammer, sondern auch eine diskontinuierliche Brennstoffzufuhr auf. Der gasförmige Brennstoff wird nämlich ebenfalls in jeder Unterdruckphase durch eine Düse angesaugt. Wirbelbildner in der Vorkammer erzeugen Wirbelpolster, die die Auswirkung von Druckspitzen auf das Rückschlagventil verringern.Such a firing device is shown in AT-B-170 522. This pulsation burner for an air heater not only has a discontinuous air supply via the check valve into the prechamber, but also a discontinuous fuel supply. The gaseous fuel is also sucked in through a nozzle in every vacuum phase. Vortex builders in the prechamber create vortex cushions that reduce the impact of pressure peaks on the check valve.

Eine Einrichtung, die vor allem als Dampferzeuger verwendet wird, beschreibt die FR-A-1 023 114. Dort sind mehrere Brennkammern parallel in einem Wasserkessel angeordnet, wobei einerseits deren mit aerodynamischen Rückstromsperren bestückte Vorkammern in einen Luftzufuhrkanal und andererseits die Enden der Auspuffrohre in einen Gasabführkanal ragen, durch den die Kesselwasserzufuhrleitung für die Vorwärmung geführt ist. An der heißesten Stelle des Wasserkessels tritt Dampf aus. Jegliche Steuerungsmöglichkeit der pulsierenden Verbrennung fehlt ebenso wie eine Gemischbildungszone, sodaß die Verbrennungsgüte nicht besonders hoch ist.A device that is mainly used as a steam generator is described in FR-A-1 023 114. There, several combustion chambers are arranged in parallel in a water boiler, with their prechambers equipped with aerodynamic non-return valves in an air supply duct and the ends of the exhaust pipes in one Project gas discharge duct through which the boiler water supply line for preheating is led. Steam escapes from the hottest part of the kettle. Any control option for pulsating combustion is missing, as is a mixture formation zone, so that the quality of combustion is not particularly high.

Für Raumheizungen bzw. Zentralheizungen wurde bisher das Prinzip der pulsierenden Verbrennung nur wenig verwendet, da hinsichtlich der Leistungsregelung, der Geräuschentwicklung und der Verbrennungsgüte Probleme bestehen. Aus der DE-B-1 253 851 ist eine an einem Heizkessel vorgesehene Feuerungseinrichtung beschrieben, bei der die Brennstoffzufuhr direkt in die Brennkammer über eine Kolbenpumpe erfolgt, deren Pumpfrequenz einstellbar ist. Die Luftzufuhr erfolgt über Rückschlagventile in mehrere Vorkammern. Hier soll durch Veränderung der Brennstoffzufuhrfrequenz eine Abstimmung mit der Resonanzfrequenz der Brennkammervermieden werden, um die Geräuschentwicklung möglichst nieder zu halten.The principle of pulsating combustion has so far been used only little for room heating or central heating, since there are problems with regard to power control, noise development and combustion quality. DE-B-1 253 851 describes a firing device provided on a boiler, in which the fuel is fed directly into the combustion chamber via a piston pump, the pump frequency of which can be set. The air is supplied via check valves in several antechambers. By changing the fuel supply frequency, coordination with the resonance frequency of the combustion chamber is to be avoided in order to keep the noise level as low as possible.

Die WO-A-8 402 762 beschreibt ein Luft-Rückschlagventil für einen Pulsationsbrenner, der mit einer Vorkammer versehen ist. In der Vorkammer ist eine Einspritzdüse unmittelbar vor einer Querschnittsverengung der Vorkammer angeordnet. Die Gemischbildung mit der rings um die Einspritzdüse eintretenden Luft beginnt somit bereits in der Vorkammer, sie wird jedoch durch die beschleunigende Wirkung der verengten Vorkammer erst in der Brennkammer fortgesetzt, wobei die übliche Arbeitsfrequenz der Brennkammer eine vollständige, optimale Durchmischung ausschließt.WO-A-8 402 762 describes an air check valve for a pulsation burner which is provided with a prechamber. An injection nozzle is arranged in the antechamber immediately before a cross-sectional constriction of the antechamber. The mixture formation with the air entering around the injection nozzle therefore begins in the prechamber, but is only continued in the combustion chamber due to the accelerating effect of the narrowed prechamber, the usual operating frequency of the combustion chamber precluding complete, optimal mixing.

Ein weiteres Beispiel zeigt die EP-B-11 457, gemäß der eine Ausführung aus vorgefertigten Bauteilen, nämlich aus einem Sockelteil und einer Abgaskammer, aus einem Mittelteil und einem Heizkessel, in den die Brennkammer eingesetzt ist, und aus einem Oberteil mit einer Luft- und einer Gasverdichtungskammer zusammengesetzt ist, wobei ausschließlich gasförmiger Brennstoff Verwendung findet. Die Brennkammer ist als annähernd kugelförmiger Einsatz ausgebildet, aus dem an der Stelle des größten Durchmessers tangential ein Abgasanschlußrohr zu einem Zwischenbehälter führt, von dem aus mehrere gewendelte Rohre die Abgase in die Abgaskammer leiten. Eine Vorkammer dient zur Bildung eines Luft-Gasgemisches, das getrennt zugeführt wird und weist einen Flammhalter auf. Eine Rückschlagventilanordnung mit mehreren Tellerventilen ist vorgesehen, wobei jedes Tellerventil gleichzeitig die Luft- und die Gaszufuhr sperrt. In die Gaszuführleitung ist eine Druckregeleinrichtung eingesetzt, die abhängig vom Druck in der Luftverdichtungskammer den Druck in der Gasverdichtungskammer regelt, sodaß im wesentlichen konstante Druckverhältnisse herrschen.Another example is shown in EP-B-11 457, according to which an embodiment made of prefabricated components, namely a base part and an exhaust gas chamber, a central part and a boiler in which the combustion chamber is inserted, and an upper part with an air and a gas compression chamber is composed, only gaseous fuel being used. The combustion chamber is designed as an approximately spherical insert from which, at the location of the largest diameter, an exhaust gas connection pipe leads tangentially to an intermediate container, from which a plurality of coiled pipes guide the exhaust gases into the exhaust gas chamber. A pre-chamber serves to form an air-gas mixture which is fed separately and has a flame holder. A check valve arrangement with a plurality of poppet valves is provided, with each poppet valve simultaneously blocking the air and gas supply. A pressure control device is used in the gas supply line, which regulates the pressure in the gas compression chamber as a function of the pressure in the air compression chamber, so that the pressure conditions are essentially constant.

Auch die Feuerungseinrichtung nach der US-A-4 449 484 ist ähnlich aufgebaut. Von der Brennkammer ist eine Vorkammer, in der die Bildung des Luft-Brennstoffgemisches stattfindet, durch eine eine Durchtrittsöffnung geringeren Querschnitts aufweisende Blende abgeteilt. In die Vorkammer münden getrennte Zufuhrleitungen für Luft und Brennstoff, die von einem gemeinsamen Tellerventil gesperrt werden. Bei einem derartigen Aufbau kann nur gasförmiger Brennstoff verwendet werden. Dabei ist die gesamte Feuerungseinrichtung als Kesseleinsatz ausgebildet.The firing device according to US-A-4 449 484 is similarly constructed. A prechamber, in which the formation of the air / fuel mixture takes place, is separated from the combustion chamber by an orifice having a smaller cross section. Separate supply lines for air and fuel open into the prechamber and are blocked by a common poppet valve. With such a structure, only gaseous fuel can be used. The entire furnace is designed as a boiler insert.

Die US-A-2 715 390 beschreibt weiters eine Feuerungseinrichtung, deren Brennkammer ebenfalls in einen Heizkessel eingesetzt ist. Eine Vorkammer dient der Bildung eines Luft-Brennstoffgemisches, und ein Tellerventil sperrt die Übertrittsöffnung von der Vorkammer in die Brennkammer.US-A-2 715 390 further describes a firing device, the combustion chamber of which is also inserted into a boiler. A pre-chamber serves to form an air-fuel mixture, and a poppet valve closes the transfer opening from the pre-chamber into the combustion chamber.

Keine der bisher erwähnten Feuerungseinrichtungen ist entsprechend den Erfordernissen einer Zentral- oder Raumheizung in der Leistung einstellbar, obwohl auch hiezu schon Vorschläge bekannt geworden sind. So kann bei einer Einrichtung gemäß US-A-2 609 660, die eine Rückschlagventilanordnung am Übergang von der für die Gemischbildung vorgesehenen Vorkammer in die Brennkammer zeigt, durch einen Drehschieber der Querschnitt der Durchtrittsöffnung verändert werden. Eine andere Art der Einstellbarkeit zeigt die JP-A-5 895 105, gemäß der in einer Erweiterung des Abgasrohres ein konischer Staukörper angeordnet ist, der über einen Hebel in das Abgasrohr wählbar weit einschiebbar ist und so den Querschnitt des Abgasrohres und damit die Schwingungsfrequenz verändert. Auch diese Feuerungseinrichtung zeigt eine Vorkammer, die durch eine Blende von der Brennkammer abgeteilt ist, und in der ein Tellerventil die getrennten Zuführungen für Luft und gasförmigen Brennstoff gemeinsam sperrt.None of the firing devices mentioned so far can be adjusted in terms of performance in accordance with the requirements of central or space heating, although suggestions have already been made for this. In a device according to US-A-2 609 660, which shows a check valve arrangement at the transition from the pre-chamber intended for mixture formation into the combustion chamber, the cross section of the passage opening can be changed by means of a rotary slide valve. Another type of adjustability is shown in JP-A-5 895 105, according to which a conical baffle is arranged in an extension of the exhaust pipe, which can be inserted into the exhaust pipe via a lever and thus changes the cross section of the exhaust pipe and thus the oscillation frequency . This firing device also shows a prechamber, which is separated by a Orifice is separated from the combustion chamber, and in which a poppet valve blocks the separate feeds for air and gaseous fuel together.

Die DE-A-2 120 749 beschreibt schließlich ein tragbares Sprüh- oder Nebelgerät, in dem mittels der Abgase eines Pulsationsbrenners eine Zerstäubung von zu versprühender Flüssigkeit erfolgt, etwa von Insektiziden usw., die aus einem zugeordneten Tank angesaugt werden. Das Gerät ist zur Verbrennung von Benzin vorgesehen, und besitzt eine der Brennkammer vorgesetzte Mischkammer mit einem Wirbelelement, das die über ein Rückschlagventil zugeführte Luft mit dem durch einen Vergaser vergasten Bezin vermischt und gemeinsam der Brennkammer zuführt.Finally, DE-A-2 120 749 describes a portable spray or mist device in which the exhaust gases from a pulsation burner are used to atomize liquid to be sprayed, for example insecticides, etc., which are drawn in from an assigned tank. The device is intended for the combustion of gasoline and has a mixing chamber located in front of the combustion chamber with a swirl element which mixes the air supplied via a check valve with the gasoline gasified by a carburetor and feeds it together to the combustion chamber.

Die Erfindung hat es sich nun zur Aufgabe gestellt, eine Feuerungseinrichtung der eingangs genannten Art, die bekanntlich einen hohen Wirkungsgrad aufweist, speziell an Raum- oder Zentralheizungsanlagen herkömmlicher Bauart anzupassen. Bei derartigen Anwendungszwecken soll der übliche erweiterte Betriebsbereich der Heizungsanlagen erhalten bleiben, und dabei auch modernen Abgasvorschriften gerecht werdende niedere Abgaswerte erzielt werden, obwohl nicht nur gasförmige Brennstoffe, sondern auch Heizöle, insbesondere aber auch brennbare Abfallmaterialien, wie Altöle aus dem Kraftfahrzeugwesen, und ähnliches verbrennbar sein sollen. Weiters soll sie sowohl bestehende Feuerungseinrichtungen, etwa Ölfeuerungsanlagen ersetzen können, als auch bei der Neuerstellung einbaubar sein, ohne daß Änderungen an den Bauteilen der Heizungsanlage erforderlich werden.The invention has now set itself the task of adapting a firing device of the type mentioned, which is known to have a high efficiency, especially to room or central heating systems of conventional design. In such applications, the usual extended operating range of the heating systems is to be retained, and low exhaust gas values which meet modern exhaust gas regulations are to be achieved, although not only gaseous fuels, but also heating oils, but in particular also combustible waste materials, such as used oils from the automotive industry, and the like are combustible should be. Furthermore, it should both be able to replace existing firing equipment, such as oil firing systems, and be installable when new, without changes to the components of the heating system being necessary.

Erfindungsgemäß wird diese Aufgabe nun dadurch gelöst, daß die Einströmdüse, über die der Brennstoff unter Druck zuführbar ist, im Übertrittsbereich angeordnet ist, und daß eine eine variable Luftdurchtrittsöffnung zwischen der Vorkammer und der Brennkammer begrenzende Stellvorrichtung vorgesehen ist, mit deren Hilfe ein die Stärke der Zugwirkung auf die Rückschlagventilanordnung beeinflussender Lufteinströmwiderstand in die Brennkammer einstellbar ist.According to the invention, this object is now achieved in that the inflow nozzle, via which the fuel can be supplied under pressure, is arranged in the transition area, and in that a variable air passage opening between the antechamber and the combustion chamber is provided, with the aid of which the strength of the The air inflow resistance influencing the check valve arrangement into the combustion chamber can be adjusted.

Für den Betrieb einer Brennkammer mit pulsierender Verbrennung ist ein Lufteinströmwiderstand erforderlich, der bisher durch Rückströmsperren oder durch Rückschlagventile erzeugt wird. Ist die offene Ventilfläche zu groß bemessen, läßt sich die Feuerungseinrichtung weder starten noch betreiben. Ist die offene Ventilfläche zu klein, so ist nicht nur die Leistung gering, sondern auch deren Verstellbereich. Bei der erfindungsgemäßen Feuerungseinrichtung wird der Einströmwiderstand nicht durch die Lufteintrittsventile, sondern durch die Größe der Luftdurchtrittsfläche der Stellvorrichtung bestimmt. Somit kann der Gesamtöffnungsquerschnitt der Lufteintrittsventile beliebig groß sein, da mit Hilfe der Stellvorrichtung die Luftdurchtrittsfläche zwischen der Vorkammer und der Brennkammer so eingestellt werden kann, daß die Luftzufuhr im Hinblick auf eine stöchiometrische Gemischzusammenstellung optimiert wird. Die Anpassung der Luftzufuhr wird dabei für jeden Leistungsbereich erzielt, da mit jeder Veränderung des Brennstoffstromes, insbesondere des Einspritzdruckes eine Veränderung des Einströmwiderstandes durch die Verstellung der Größe der Luftdurchtrittsfläche erfolgen kann.For the operation of a combustion chamber with pulsating combustion, an air inflow resistance is required, which was previously generated by non-return valves or by check valves. If the open valve area is too large, the firing device cannot be started or operated. If the open valve area is too small, not only is the performance low, but also its adjustment range. In the firing device according to the invention, the inflow resistance is not determined by the air inlet valves, but by the size of the air passage area of the actuating device. Thus, the total opening cross section of the air inlet valves can be of any size, since with the help of the adjusting device the air passage area between the prechamber and the combustion chamber can be adjusted so that the air supply is optimized with regard to a stoichiometric mixture composition. The adaptation of the air supply is achieved for every power range, since with every change in the fuel flow, in particular the injection pressure, a change in the inflow resistance can take place by adjusting the size of the air passage area.

In einer bevorzugten Ausführung ist hiezu vorgesehen, daß die Stellvorrichtung die Einströmdüse der Brennstoffzuführleitung und ein den Querschnitt des Übertrittsbereiches verringerndes Element umfaßt, die zusammen einen in der Größe verstellbaren Ringspalt für den Luftdurchtritt begrenzen.In a preferred embodiment it is provided that the adjusting device comprises the inflow nozzle of the fuel supply line and an element which reduces the cross section of the transition area, which together limit an adjustable annular gap for the air passage.

Eine besonders feine Anpassung der Luftzufuhr an die eingestellte Brennstoffmenge wird dabei dadurch erreicht, daß die Einströmdüse zwischen einer vorderen Endstellung nahe dem querschnittsverringernden Element und einer weiter beabstandeten hinteren Endstellung verstellbar ausgebildet ist. Die Verstellung kann mechanisch, pneumatisch oder hydraulisch erfolgen. Ein bevorzugter Verstellbereich für die Einströmdüse liegt zwischen 10 mm und 20 mm vor dem querschnittsverringerndem Element.A particularly fine adjustment of the air supply to the set amount of fuel is achieved in that the inflow nozzle is designed to be adjustable between a front end position near the cross-section-reducing element and a more distant rear end position. The adjustment can be made mechanically, pneumatically or hydraulically. A preferred adjustment range for the inflow nozzle is between 10 mm and 20 mm in front of the element that reduces the cross section.

Das querschnittsverringernde Element ist insbesondere als Ringblende ausgebildet, wobei eine weitere Anpassung der Luftzufuhr dann erreicht werden kann, wenn die Öffnungsweite der Ringblende verstellbar ist, wobei ein derartiges querschnittsverringerndes Element etwa als mechanisch verstellbare Schuberblende ausgebildet sein kann, und/oder wenn die Ringblende axial verstellbar ist, sodaß ihr Abstand zum Brennkammerboden verändert werden kann.The cross-section-reducing element is designed in particular as a ring diaphragm, a further adjustment of the air supply can be achieved when the opening width of the ring diaphragm is adjustable, such a cross-section-reducing element being able to be designed as a mechanically adjustable slip plate, and / or when the ring diaphragm is axially adjustable is so that their distance from the combustion chamber floor can be changed.

Da im Übertrittsbereich in die Brennkammer für die Verwirbelung des Brennstoffs mit der Luft vor dessen Zuführung in die Brennzone der Brennkammer das Wirbelelement vorgesehen ist, das zu einer gleichzeitigen und gleichmäßigen Durchzündung des Gemisches in der Brennzone beiträgt, und für die später angeführten ausgezeichneten Abgaswerte mitverantwortlich ist, ist in einer bevorzugten Ausführung vorgesehen, daß das Wirbelelement, das mit einem Abstand zum Brennkammerboden von insbesondere 10 bis 20 mm angeordnet ist, durch die Ringblende gebildet ist.Since in the transition area into the combustion chamber for swirling the fuel with the air before it is fed into the combustion zone of the combustion chamber, the swirl element is provided, which contributes to simultaneous and uniform ignition of the mixture in the combustion zone and is jointly responsible for the excellent exhaust gas values mentioned later In a preferred embodiment, it is provided that the swirl element, which is arranged at a distance from the combustion chamber base of in particular 10 to 20 mm, is formed by the ring diaphragm.

Wird das Wirbelelement durch eine brennkammerseitige Erweiterung der Vorkammer gebildet, so kann das den Querschnitt der Luftdurchtrittsfläche verringernde, insbesondere durch die Ringblende gebildete Element in der Erweiterung der Vorkammer angeordnet sein.If the vortex element is formed by an expansion of the prechamber on the combustion chamber side, the element which reduces the cross section of the air passage area and in particular is formed by the ring diaphragm can be arranged in the extension of the prechamber.

Wie erwähnt liegt ein bevorzugter Verstellbereich für die Einströmdüse zwischen 10 und 20 mm vor dem querschnittsändernden Element bzw. dem Wirbelelement. Mit ein und demselben Brenner kann somit ein weit größerer Leistungsbereich überdeckt werden, der bei verstellbarer Einströmdüse und verstellbarem querschnittsverringerndem Element etwa ein Dreifaches des Leistungsbereiches bei nicht verstellbaren Teilen ist.As mentioned, a preferred adjustment range for the inflow nozzle lies between 10 and 20 mm in front of the cross-section-changing element or the swirl element. With one and the same burner, a much larger power range can thus be covered, which is approximately three times the power range for non-adjustable parts with an adjustable inflow nozzle and an adjustable cross-section-reducing element.

Eine als Wirbelelement eingesetzte Blende stellt auch einen Teil eines Flammhalters dar, der die rasche Verdampfung flüssiger Brennstoffe fördert.A screen used as a swirl element also forms part of a flame holder, which promotes the rapid evaporation of liquid fuels.

Die bei der Verbrennung entstehenden Gase schießen einerseits in ein an die Brennkammer angesetztes Anschlußrohr der Abgasabführeinrichtung und drücken andererseits auch in die Vorkammer, wobei sie die weiterhin einströmenden Brennstoffteilchen ebenfalls in die Vorkammer drücken. Durch den Druckanstieg dichten sie die Rückschlagventile, die durch die eigene Federkraft im wesentlichen bereits geschlossen sind. Die in der Vorkammer enthaltenen Gase, die ein mit Altgasteilchen vermischtes Brennstoffluftgemisch darstellen, werden dadurch vorverdichtet. Dabei enthält die brennkammernächste Schicht hauptsächlich Verbrennungsprodukte mit noch vorhandenem, nicht verbrannten Brennstoff und geringem Luftanteil. Die nächste Schicht besteht aus einem Brennstoff-Luftnebel, in dem der Brennstoff überreich vorhanden ist. Die letzte Schicht besteht aus einem Brennstoff-Luftgemisch, in dem Brennstoff nur mehr geringfügig vorhanden ist, also aus einem sogenannten Magergemisch. Diese unterschiedlichen Schichten werden beim nächsten Ansaugvorgang in die Brennkammer eingebracht, wobei die einschießende Gemischsäule bei der Passage der Stellvorrichtung und am Wirbelelement durch dessen Diffusorwirkung extrem verwirbelt wird. Dabei hat sich der Anteil an Altgas am einschießenden Gemisch als günstig für die Senkung des Stickoxidanteils in den Verbrennungsgasen erwiesen.The gases produced during combustion on the one hand shoot into a connecting pipe of the exhaust gas discharge device attached to the combustion chamber and on the other hand also press into the antechamber, whereby they Fuel particles that continue to flow also press into the prechamber. Due to the pressure increase, they seal the check valves, which are essentially already closed by their own spring force. The gases contained in the prechamber, which are a mixture of fuel and air mixed with waste gas, are pre-compressed. The layer closest to the combustion chamber mainly contains combustion products with still existing, unburned fuel and a small amount of air. The next layer consists of a fuel-air mist in which the fuel is abundant. The last layer consists of a fuel-air mixture in which there is only a small amount of fuel, i.e. a so-called lean mixture. These different layers are introduced into the combustion chamber during the next suction process, the injecting mixture column being extremely swirled as it passes through the adjusting device and on the swirl element due to its diffuser effect. The proportion of waste gas in the injecting mixture has proven to be favorable for reducing the nitrogen oxide content in the combustion gases.

Während des Ansaugvorganges wird der Brennstoff von der mit hoher Geschwindigkeit einschießenden Frischluft mitgerissen und als Brennstoffluftgemisch mit hoher Geschwindigkeit in die Brennkammer eingebracht. Durch die weitere Diffusorwirkung der gegenüber der Vorkammer erweiterten Brennkammer tritt eine Verlangsamung des einschießenden Frischgasgemisches und gleichzeitige Druckerhöhung auf. Dabei kommt dem Frischgasgemisch die aus dem Auspuffrohr rückfließende Abgaswelle entgegen. Beim darauffolgenden detonationsartigen Verbrennungsvorgang, der durch eine praktisch gleichzeitige Zündung des gesamten Brennkammerinhalts bewirkt wird, und der damit verbundenen schlagartigen Druckerhöhung schießen die Verbrennungsprodukte in das Auspuffrohr und zurück in die Vorkammer.During the intake process, the fuel is entrained by the fresh air that shoots in at high speed and is introduced into the combustion chamber at high speed as a mixture of fuel and air. As a result of the further diffuser effect of the combustion chamber, which is enlarged compared to the prechamber, the incoming fresh gas mixture is slowed down and the pressure is simultaneously increased. The fresh gas mixture is matched by the exhaust gas wave flowing back from the exhaust pipe. In the subsequent detonation-like combustion process, which is brought about by practically simultaneous ignition of the entire combustion chamber contents, and the sudden pressure increase associated therewith, the combustion products shoot into the exhaust pipe and back into the prechamber.

Der beschriebene Ansaugvorgang wiederholt sich und das Gemisch aus Altgas, Frischluft und Treibstoff wird wieder in die Brennkammer eingesaugt. Es ergibt sich eine stetige Einnebelung des Brennstoffes, trotz unterbrochener, dem Arbeitsrhythmus des Gerätes (beispielsweise 50 Hz) entsprechender Einbringung des Brennstoffgemisches in der Brennkammer.The suction process described is repeated and the mixture of waste gas, fresh air and fuel is sucked back into the combustion chamber. The fuel is continuously fogged, despite the fact that the fuel mixture is introduced into the combustion chamber in accordance with the working rhythm of the device (for example 50 Hz).

Da der Gesamtöffnungsquerschnitt der Lufteintrittsventile beliebig groß sein kann, läßt sich die Anpassung der Luftzufuhr an unterschiedliche Leistungsbereiche noch weiter verbessern, wenn die hintere Endstellung der Einströmdüse zwischen zwei Mündungsästen der Luftzuführleitung liegt, die seitlich in die etwa zylindrische Vorkammer münden, wobei zumindest ein Mündungsast getrennt sperrbar ist.Since the total opening cross section of the air inlet valves can be of any size, the adaptation of the air supply to different performance ranges can be further improved if the rear end position of the inflow nozzle lies between two mouth branches of the air supply line, which open laterally into the roughly cylindrical prechamber, at least one branch branch separated is lockable.

Als Lufteintrittsventile eignen sich vor allem Rückschlagventile mit V-förmig ausgebildeten Ventilsitzen, die mit einem Paar von Ventilklappen belegt sind. Da die V-förmig angebrachten Ventilklappen nicht den Lufteinströmwiderstand zu bestimmen haben und daher überdimensionierter sind, werden sie auch bei maximaler Luftzufuhr nur geringfügig öffnen. Dadurch werden sie nur minimal beansprucht und sind weitgehend verschließfrei. Sie bestehen beispielsweise aus Federstahlblech, glas- oder kohlenstoffaserverstärktem Kunststoff.Check valves with V-shaped valve seats, which are fitted with a pair of valve flaps, are particularly suitable as air inlet valves. Since the V-shaped valve flaps do not have to determine the air inflow resistance and are therefore oversized, they will only open slightly even with maximum air supply. As a result, they are only subjected to minimal stress and are largely free of closures. They consist, for example, of spring steel sheet, glass or carbon fiber reinforced plastic.

Die Ventile haben im Ruhezustand einen geringen Spalt, der als Voröffnung bezeichnet wird und vorzugsweise durch eine geringfügige konvexe Krümmung des Ventilsitzes erreicht wird. Eine Voröffnung soll an der Spitze der Ventilklappen zwischen 0,1 und 0,3 mm betragen. Die Voröffnung dient dazu, daß beim Start von einem kleinen Gebläse (Startgebläse) Luft mit geringem Widerstand durch die vorgeöffneten Ventile geführt werden kann, um die Brennkammer zu lüften und Startfrischluft einzulassen. Die Ventile öffnen während des Betriebes auf 2 bis 4 mm Spaltbreite. Der Überdruck in der Brennkammer hält sie dicht geschlossen, sie gehen beim Übergang von Überdruck auf Unterdruck in die Voröffnungsstellung und werden durch die angesaugte Frischluft auf den erforderlichen Durchtrittsquerschnitt geöffnet. Bei gebogenen Ventilsitzen sind die Ventilklappen ebene Blättchen, die in der Voröffnungsstellung entspannt sind, und sowohl in Schließ- als auch in Offenstellung gespannt sind. Die selbsttätig variable Öffnung der V-Ventile ist ein wesentlicher Bestandteil der stufenlosen Regelbarkeit der Feuerungseinrichtung.In the idle state, the valves have a small gap, which is referred to as a pre-opening and is preferably achieved by a slight convex curvature of the valve seat. A pre-opening at the tip of the valve flaps should be between 0.1 and 0.3 mm. The pre-opening serves to allow air with low resistance to be led through the pre-opened valves by a small blower (starting blower) in order to ventilate the combustion chamber and admit fresh starting air. The valves open to a gap of 2 to 4 mm during operation. The overpressure in the combustion chamber keeps them tightly closed, they go into the pre-opening position at the transition from overpressure to underpressure and are opened to the required cross-section by the fresh air drawn in. In the case of curved valve seats, the valve flaps are flat leaflets which are relaxed in the pre-opening position and which are tensioned in both the closed and open positions. The automatically variable opening of the V-valves is an essential part of the infinitely variable control of the combustion device.

Wird der Einspritzdruck und damit die Menge des Brennstoffes erhöht, nehmen die Druckschwankungen bei der Verbrennung zu. Dies hat zur Folge, daß in der Ansaugzeit eine größere Menge Luft angesaugt wird, und die Luftgeschwindigkeit zunehmen muß, was auf Grund der Überdimensionierten V-förmigen Ventilklappen problemlos bewältigt wird. Wie erwähnt, entsteht die stufenlose Regelbarkeit des Brenners durch Veränderung des Einspritzdruckes, wobei das Brennstoff-Luftverhältnis über den ganzen Regelbereich im wesentlichen stöchiometrisch ist.If the injection pressure and thus the amount of fuel is increased, the pressure fluctuations during combustion increase. The result of this is that a larger amount of air is sucked in during the suction time, and the air speed has to increase, which can be handled without any problems due to the oversized V-shaped valve flaps. As mentioned, the infinitely variable controllability of the burner is created by changing the injection pressure, the fuel-air ratio being essentially stoichiometric over the entire control range.

Weiters erweist es sich als günstig, wenn die Ventilklappen der Rückschlagventile aus unterschiedlichem Material bestehen, wobei das Rückschlagventil des brennkammernahen Mündungsastes Ventilklappen mit geringer Biegefestigkeit aufweisen kann, um zuerst luftreiches, dann brennstoffreiches und schließlich wieder luftreiches Gemisch in die Brennkammer einströmen zu lassen, sodaß sich eine Schichtladung der Brennkammer ergibt.Furthermore, it has proven to be advantageous if the valve flaps of the check valves are made of different materials, the check valve of the branch branch near the combustion chamber being able to have valve flaps with low flexural strength in order first to allow air-rich, then fuel-rich and finally air-rich mixture to flow into the combustion chamber, so that results in a stratified charge of the combustion chamber.

Insbesondere hierfür bewährt sich eine Ausbildung des querschnittverringernden Elementes als Venturirohreinsatz, da dann, wenn die Luftzuführleitung in zwei Mündungsäste geteilt ist, der brennkammernahe Mündungsast der Luftzuführleitung bevorzugt an der engsten Stelle des Venturirohreinsatzes mündet, der mit Durchtrittsöffnungen versehen ist.A design of the cross-section-reducing element as a venturi tube insert has proven particularly useful for this purpose, since if the air supply line is divided into two mouth branches, the mouth branch of the air supply line near the combustion chamber preferably opens at the narrowest point of the venturi tube insert, which is provided with through-openings.

In der Praxis hat es sich gezeigt, daß bestimmte Maßverhältnisse besonders günstig sind. So ist bei der Brennkammer ein Verhältnis von Durchmesser zu Länge von 1 : 1,5 bis 1 : 2,5, vorzugsweise von 1 : 2 vorteilhaft. Die Länge der Vorkammer sollte etwa dem 1,5- bis 3-fachen ihres Durchmessers entsprechen, was etwa einem Dreißigstel bis einem Fünfzigstel des Abstandes eines ersten Schalldämpfers der Abgasabführeinrichtung vom Brennkammerboden entspricht. Dieser Abstand beträgt andererseits das 40- bis 60-fache des Durchmessers des Auspuffrohres zwischen der Brennkammer und dem ersten Schalldämpfer.In practice, it has been shown that certain proportions are particularly favorable. A ratio of diameter to length of 1: 1.5 to 1: 2.5, preferably of 1: 2, is advantageous in the combustion chamber. The length of the prechamber should correspond to about 1.5 to 3 times its diameter, which corresponds to about a thirtieth to a fiftieth of the distance of a first silencer of the exhaust gas discharge device from the combustion chamber floor. On the other hand, this distance is 40 to 60 times the diameter of the exhaust pipe between the combustion chamber and the first silencer.

Insbesondere für die Verbrennung flüssiger Brennstoffe ist zur Erzielung besonders günstiger Abgaswerte die Brennkammer mit einem Doppelmantel versehen, der einen Ausgleichsspalt umschließt. Der Innenmantel ist nur brennkammerbodenseitig mit dem Außenmantel verbunden, wobei die innere Bodenplatte einen Hitzeschild bildet und die äußere mit einer Trägerplatte verbunden ist.In particular for the combustion of liquid fuels, the combustion chamber is provided with a double jacket which encloses a compensation gap in order to achieve particularly favorable exhaust gas values. The inner jacket is only connected to the outer jacket on the combustion chamber bottom side, the inner base plate forming a heat shield and the outer one being connected to a carrier plate.

Durch den Ausgleichsspalt wird nicht nur eine Dehnungszone gebildet, sondern es wird auch der Innenmantel zum Glühen gebracht, wodurch sich eine heiße Brennkammer mit umweltschonenden Abgasen ergibt, die aus den nachfolgenden Meßwerttabellen ersichtlich sind.The expansion gap not only forms an expansion zone, but also the inner jacket is made to glow, which results in a hot combustion chamber with environmentally friendly exhaust gases, which can be seen in the following measurement tables.

Insgesamt bewirken die an den eingestellten Brennstoffdruck mit Hilfe der einstellbaren Stellvorrichtung sich selbsttätig anpassende Luftmengenzugabe und die heiße Brennkammer über den gesamten Leistungsbereich der Feuerungseinrichtung eine hellblaue, durchsichtige Flamme und damit optimale Verbrennung.All in all, the addition of air volume that automatically adjusts to the set fuel pressure with the help of the adjustable adjusting device and the hot combustion chamber result in a light blue, transparent flame and thus optimal combustion over the entire performance range of the firing device.

Da derartige Feuerungseinrichtungen mit pulsierender Verbrennung keinen Kamin benötigen, kann die Abgastemperatur beliebig nieder gewählt werden. Im Sinne des möglichst vollständigen Wärmetausches kann der Wärmetauschbereich der Abgasabführeinrichtung auch eine Länge aufweisen, die wesentlich größer als jene Länge des Auspuffrohres ist, die die periodische Schwingbewegung in der Abgassäule in der gewünschten Frequenz bewirkt. Es ist daher bevorzugt vorgesehen, daß in das Anschlußrohr der Abgasabführeinrichtung eine querschnittsverengende Blende eingesetzt ist, die die Länge der pulsierenden Abgassäule abgrenzt. Nach dieser Blende können Schalldämpfer, Wärmetauscher etc. beliebiger Art und Größe ohne Einfluß auf die Verbrennungsvorgänge angeschlossen werden. Die Länge der pulsierenden Abgassäule zwischen dem Brennkammerboden und der querschnittsverengenden Blende im Abgasanschlußrohr bzw. Auspuffrohr entspricht dabei vorzugsweise etwa dem Fünfzehnfachen der Länge der Vorkammer. Jeder im Wärmetauschmedium eingetauchte Schalldämpfer ist bevorzugt doppelwandig ausgebildet, wobei der Zwischenraum eine Breite von ca. 2 - 3 mm aufweist. Dadurch wird der Schwitzwasserbildung vorgebeugt.Since such combustion devices with pulsating combustion do not require a chimney, the exhaust gas temperature can be chosen as low as desired. In the sense of the most complete possible heat exchange, the heat exchange area of the exhaust gas discharge device can also have a length which is substantially greater than the length of the exhaust pipe which causes the periodic oscillating movement in the exhaust gas column at the desired frequency. It is therefore preferably provided that a cross-sectional constricting diaphragm is used in the connecting pipe of the exhaust gas discharge device, which delimits the length of the pulsating exhaust gas column. Mufflers, heat exchangers etc. of any type and size can be connected after this cover without influencing the combustion processes. The length of the pulsating exhaust gas column between the combustion chamber floor and the cross-sectional constricting orifice in the exhaust pipe or exhaust pipe preferably corresponds to approximately fifteen times the length of the prechamber. Each muffler immersed in the heat exchange medium is preferably of double-walled design, the gap having a width of approximately 2-3 mm. This prevents condensation.

In einer anderen Ausführung ist vorgesehen, daß die Brennkammer an der dem Brennkammerboden gegenüberliegenden Stirnseite eine Deckplatte aufweist, an der zentral ein Wirbelkörper hochsteht, wobei das Anschlußrohr seitlich angesetzt ist und wobei der Wirbelkörper vorzugsweise S-förmig ist. Auch diese Ausführung erhöht die Durchmischung der in der Brennkammer enthaltenen Gase. In einer wiederum anderen Ausführung sind zumindest zwei Anschlußrohre, vorzugsweise in verschiedenen Abständen zum Brennkammerboden vorgesehen, von denen zumindest eines sperrbar ist. Die Anschlußrohre können in einem gemeinsamen Zwischenbehälter münden, wobei durch die Möglichkeit der Absperrung eines Anschlußrohres die Wärmetauschfläche der Feuerungseinrichtung ebenfalls geregelt werden kann.In another embodiment it is provided that the combustion chamber has a cover plate on the end face opposite the combustion chamber base, on which a vertebral body stands up centrally, the connecting pipe being attached laterally and the vertebral body preferably being S-shaped. This version also increases the mixing of the gases contained in the combustion chamber. In yet another embodiment, at least two connecting pipes are provided, preferably at different distances from the combustion chamber floor, at least one of which can be blocked. The connecting pipes can open into a common intermediate container, the heat exchange surface of the firing device also being able to be regulated by the possibility of shutting off a connecting pipe.

Es ist weiters denkbar, daß eines dieser Anschlußrohre als sperrbare Heißgasentnahmeleitung in der heißesten Zone der Brennkammer enden zu lassen, und diese entgegengesetzt zur Abgasabführeinrichtung durch den Brennkammerboden nach außen zu führen. Diese kann in den Wärmetauschbehälter zurückgeführt werden und eine zusätzliche Vergrößerung der Wärmetauschfläche bilden, wobei sie wieder, beispielsweise zwischen zwei Schalldämpfern, in das Auspuffrohr eingeführt wird. Eine derartige Heißgasentnahmeleitung kann jedoch auch anderweitig verwendet werden. So ist in einer Ausführung vorgesehen, daß ein Teil der Heißgasentnahmeleitung einen Rohrheizkörper bildet. Der Rohrheizkörper kann einen Raumluftheizkörper dargstellen, er könnte aber ebenso in schneckenartigen Windungen geführt sein und Kochstellen bilden.It is also conceivable that one of these connecting pipes ends as a lockable hot gas extraction line in the hottest zone of the combustion chamber, and that it leads outward through the combustion chamber floor opposite to the exhaust gas discharge device. This can be returned to the heat exchanger tank and form an additional enlargement of the heat exchange surface, whereby it is inserted again, for example between two mufflers, into the exhaust pipe. Such a hot gas extraction line can, however, also be used in another way. It is provided in one embodiment that part of the hot gas extraction line forms a tubular heater. The tubular heater can represent a room air heater, but it could also be guided in helical windings and form cooking areas.

Für den Einbau in bestehenden Zentralheizungsanlagen ist in einer bevorzugten Ausführung weiters vorgesehen, daß die Brennkammer an der Innenseite und die Vorkammer an der Außenseite einer am Wärmetauschbehälter befestigbaren Trägerplatte angeordnet sind, und die Feuerungseinrichtung einen einbaufertigen Einsatz in den Wärmetauschbehälter bildet.For installation in existing central heating systems, it is further provided in a preferred embodiment that the combustion chamber is arranged on the inside and the prechamber on the outside of a support plate which can be fastened to the heat exchanger tank, and the firing device forms a ready-to-install insert in the heat exchanger tank.

Die Feuerungseinrichtung stellt dadurch eine vorfertigbare Baueinheit dar, die im Falle einer Warmwasserheizung in den üblichen Heizkessel oder Boiler, im Fall einer Warmluftheizung in den gegebenenfalls sonst mit festen Brennstoffen beheizbaren Ofen eingeschoben wird. Das Wärmetauschmedium könnte jedoch auch eine geeignete Speichermasse, wie Beton oder Leichtmetall sein, sodaß die Feuerungseinrichtung Teil einer Speicherheizung ist.The firing device thus represents a prefabricated unit which, in the case of hot water heating, is inserted into the usual boiler or boiler, and in the case of hot air heating into the furnace, which may otherwise be heated with solid fuels. However, the heat exchange medium could also be a suitable storage mass, such as concrete or light metal, so that the firing device is part of a storage heater.

Verschiedene Varianten sind dabei im Rahmen der Erfindung möglich, die vor allem eine Optimierung der Luftzufuhr und Gemischbildung bei Veränderung der Leistung bewirken. So ist es möglich, die Brennkammer auch mit mehreren Vorkammern zu bestücken, die wahlweise über getrennte Brennstoffzuführleitungen gespeist werden.Various variants are possible within the scope of the invention, which above all bring about an optimization of the air supply and mixture formation when the output changes. It is therefore possible to equip the combustion chamber with several prechambers, which are optionally fed via separate fuel supply lines.

Schließlich besteht auch die Möglichkeit, die Feuerungseinrichtung mit mehreren Brennkammern auszustatten, deren Abgasabführeinrichtungen in ein gemeinsames Auspuffrohr führen. Hier stellt sich automatisch eine Phasenverschiebung der einzelnen Brennkammern ein, sodaß eine gleichmäßigere, geringere Geräuschentwicklung erfolgt. Die beiden letztgenannten Ausführungen erlauben einen sehr großen Regelbereich der Feuerungseinrichtung.Finally, there is also the possibility of equipping the firing device with several combustion chambers, the exhaust gas discharge devices of which lead into a common exhaust pipe. A phase shift of the individual combustion chambers is automatically set here, so that there is a more uniform, lower noise development. The latter two versions allow a very large control range for the furnace.

Mit handelsüblichem Ofenheizöl wurden nachstehende Versuche durchgeführt. In die Vorkammer wurde als querschnittsverringerndes Wirbelelement eine Blende mit 26 mm lichter Weite in einem Abstand zum Brennkammerboden von 12 mm eingesetzt und der Brennstoff kontinuierlich mit 18 bar Einspritzdruck über eine Düse 0,45/60" in die Vorkammer eingespritzt. Dabei ergab sich eine Brennerleistung von ca. 26 kW.

Figure imgb0001
The following tests were carried out with commercially available furnace heating oil. As a cross-section-reducing vortex element, an orifice with a clear width of 26 mm was inserted into the prechamber at a distance of 12 mm from the bottom of the combustion chamber, and the fuel was continuously injected into the prechamber with an injection pressure of 18 bar via a 0.45 / 60 "nozzle. This resulted in a burner output of approx. 26 kW.
Figure imgb0001

Wie deutlich ersichtlich erbrachte die Doppelmantelbrennkammer mit einer Spaltbreite von 0,3 mm die günstigsten Abgaswerte.As can clearly be seen, the double jacket combustion chamber with a gap width of 0.3 mm produced the most favorable exhaust gas values.

Diese Brennkammer wurde für weitere Versuche herangezogen, in denen eine querschnittverringernde und wirbelbildende Ringblende mit 28 mm lichter Weite im Brennkammerbodenabstand von 12 mm verwendet wurde. Die Versuche wurden einmal mit 11 bar Öleinspritzdruck (Brennerleistung ca. 14 kW) und zum anderen mit 22 bar Öleinspritzdruck (Brennerleistung ca. 30 kW) durchgeführt. Dabei ergaben sich nachstehende Meßwerte, wobei vor allem die niederen Werte des 02-Restanteiles bemerkenswert sind.This combustion chamber was used for further experiments in which a cross-section-reducing and vortex-forming ring diaphragm with a clear width of 28 mm was used at a distance of 12 mm from the combustion chamber. The tests were carried out once with 11 bar oil injection pressure (burner output approx. 14 kW) and on the other hand with 22 bar oil injection pressure (burner output approx. 30 kW). The following measured values were obtained, the low values of the residual 0 2 fraction being particularly noteworthy.

1. Öleinspritzdruck 11 bar, Brennkammertemperatur - 1100°C1. Oil injection pressure 11 bar, combustion chamber temperature - 1100 ° C

Figure imgb0002
Figure imgb0002

2. Öleinspritzdruck 22 bar, Brennkammertemperatur - 1150°C2. Oil injection pressure 22 bar, combustion chamber temperature - 1150 ° C

Figure imgb0003
Figure imgb0003

Nachstehend werden Ausführungsbeispiele der Erfindung an Hand der Figuren der beiliegenden Zeichnung näher beschrieben.Exemplary embodiments of the invention are described in more detail below with reference to the figures in the accompanying drawing.

Die Fig. 1 zeigt einen Längsschnitt durch eine erste Ausführung einer erfindungsgemäßen Feuerungseinrichtung, die Fig. 2 einen Schnitt durch die Vorkammer gemäß der Linie 11 - 11 der Fig. 3, die Fig. 3 einen Teillängsschnitt durch die Vorkammer nach der Linie 111 - III der Fig. 2, die Fig. 4 eine Darstellung nach Fig. 3 einer Variante der Vorkammer, die Fig. 5 einen Längsschnitt durch ein zweites Ausführungsbeispiel, Fig. 6 einen Schnitt nach der Linie VI - VI der Fig. 5, Fig. 7 eine Darstellung nach Fig. 3 einer zweiten Variante der Vorkammer und die Fig. 8 bis 11 schematisch den Betriebsablauf in den Phasen des Ansaugens, Verdichtens, Verbrennens und des Auspuffens.1 shows a longitudinal section through a first embodiment of a firing device according to the invention, FIG. 2 shows a section through the prechamber according to line 11-11 of FIG. 3, and FIG. 3 shows a partial longitudinal section through the prechamber according to line 111-III 2, FIG. 4 shows an illustration according to FIG. 3 of a variant of the prechamber, FIG. 5 shows a longitudinal section through a second exemplary embodiment, FIG. 6 shows a section along the line VI-VI of FIG. 5, FIG. 7 3 shows a second variant of the prechamber and FIGS. 8 to 11 schematically illustrate the operational sequence in the phases of intake, compression, combustion and exhaust.

Ein Wärmetauschbehälter 1, in den gezeigten Ausführungsbeispielen als mit Wasser 3 gefüllter Heizkessel einer Zentralheizungsanlage 4 ausgebildet, ist von zylindrischer Form und durch eine obere Stirnplatte verschlossen. Die obere Stirnplatte dient als Trägerplatte 2 für eine Feuerungseinrichtung mit einer Brennkammer 5 zur pulsieregneden Verbrennung insbesondere flüssiger Brennstoffe. Die Brennkammer 5 ist dabei in eine Öffnung der Trägerplatte 2 eingesetzt und geht in der Ausführung nach Fig. 1 bis 4 über einen konischen Endabschnitt 20 in ein Anschlußrohr 8 über. Dieser ist als Teil einer abgasabführeinrichtung 6 mehrfach abgewinkelt durch den Wärmetauschbehälter 1 geführt und mündet in einen doppelwandigen Schalldämpfer 9, von dem aus ein Auspuffrohr 7 die Verbrennungsgase ins Freie leitet. Das Auspuffrohr 7 ist mit einer Deckelklappe 38 versehen, die einen Durchzug und eine zu rasche Abkühlung der abgestellten Feuerungsanlage vermeidet. Vorzugsweise sind zwei bis drei Schalldämpfer 9 hintereinander vorgesehen. In das Anschlußrohr 8 ist eine dessen Querschnitt verengende Blende 37 eingesetzt, durch deren Abstand zur Brennkammer 5 die Länge der pulsierenden Abgassäule begrenzt werden kann. Die Brennkammer 5 ist an einer Verschlußplatte 25 (Fig. 3) befestigt und bildet einen Behältereinsatz, der an der Trägerplatte 2 befestigt und in den Wärmetauschbehälter 1 eingeschoben wird. Dies ermöglicht es auch, bestehende Heizungsanlagen in einfacher Weise umzurüsten. An der Verschlußplatte 25 ist weiters außenseitig eine Vorkammer 10 befestigt, die im wesentlichen zylindrisch ausgebildet ist und in die axial die beispeilsweise mittels eines Magnetventils sperrbare Brennstoffzuführleitung 12 und seitlich die mit einer Rückschlagventilanordnung 30 versehene Luftzuführleitung 11 münden. Ein Ansaugschalldämpfer 14, ein Gebläse 15 und nicht näher bezeichnete Steuerungs- und andere Hilfseinrichtungen ergänzen die erfindungsgemäße Feuerungseinrichtung zu einer Bau- und Montageeinheit.A heat exchange container 1, in the exemplary embodiments shown as a boiler 3 of a central heating system 4 filled with water 3, is cylindrical in shape and closed by an upper end plate. The upper end plate serves as a carrier plate 2 for a firing device with a combustion chamber 5 for pulsating combustion, in particular of liquid fuels. The combustion chamber 5 is inserted into an opening in the carrier plate 2 and in the embodiment according to FIGS. 1 to 4 passes over a conical end section 20 into a connecting pipe 8. As part of an exhaust gas discharge device 6, this is guided through the heat exchange container 1 at multiple angles and opens into a double-walled silencer 9, from which an exhaust pipe 7 guides the combustion gases into the open. The exhaust pipe 7 is provided with a lid flap 38, which avoids a draft and a too rapid cooling of the parked combustion system. Preferably two to three silencers 9 are provided one behind the other. In the connecting pipe 8 is a cross-section narrowing diaphragm 37 is inserted, the distance from the combustion chamber 5, the length of the pulsating exhaust gas column can be limited. The combustion chamber 5 is fastened to a closure plate 25 (FIG. 3) and forms a container insert which is fastened to the carrier plate 2 and is inserted into the heat exchange container 1. This also makes it possible to convert existing heating systems in a simple manner. On the closure plate 25, a prechamber 10 is also attached on the outside, which is essentially cylindrical and into which the fuel supply line 12, which can be blocked, for example, by means of a solenoid valve, and laterally the air supply line 11 provided with a check valve arrangement 30 open out. An intake muffler 14, a blower 15 and control devices and other auxiliary devices (not described in more detail) complement the firing device according to the invention to form a construction and assembly unit.

Wie insbesondere aus Fig. 2 und 3 ersichtlich, ist die Brennkammer 5 doppelwandig ausgebildet, wobei der Außenmantel 21 mittels der Verschlußplatte 25 an der Trägerplatte 2 befestigt ist, und in das Anschlußrohr 8 übergeht (Fig. 1), während der Innenmantel 22 unter Belassung eines Luftspaltes 23 von vorzugsweise 0,3 mm zum Außenmantel 21 vom Brennkammerboden 19 sich über den konischen Endabschnitt 20 der Brennkammer 5 bis in das Anschlußrohr 8 erstreckt (Fig. 1, bis 11). Der Brennkammerboden 19 ist ebenfalls doppelwandig und weist einen inneren Hitzeschild 24 und außen die Verschlußplatte 25 auf. Der Hitzeschild 24 und die Verschlußplatte 25 begrenzen damit einen bodenseitigen Spalt 48, der vorzugsweise 10 mm beträgt, sodaß eine "heiße" Innenkammer entsteht, die ausschließlich über die Schrauben 49 mit dem Außenteil verbunden ist. Durch die Verschlußplatte 25 erstreckt sich das Ende der Vorkammer 10 bis zum Hitzeschild 24 als Teil eines Flammhalters. Der Hitzeschild 24 bildet gleichzeitig eine Verdampferplatte für die Verdampfung des Brennstoffnebels, der im Übertrittsbereich in die Brennkammer 5 zusammen mit der Luft durch die Diffusorwirkung eines Wirbelelementes 27 vermischt und verwirbelt wird.As can be seen in particular from FIGS. 2 and 3, the combustion chamber 5 is double-walled, the outer jacket 21 being fastened to the carrier plate 2 by means of the closure plate 25 and merging into the connecting pipe 8 (FIG. 1), while the inner jacket 22 is left unchanged an air gap 23 of preferably 0.3 mm to the outer jacket 21 from the combustion chamber bottom 19 extends over the conical end portion 20 of the combustion chamber 5 into the connecting pipe 8 (Fig. 1, to 11). The combustion chamber floor 19 is also double-walled and has an inner heat shield 24 and the outside of the closure plate 25. The heat shield 24 and the closure plate 25 thus delimit a bottom-side gap 48, which is preferably 10 mm, so that a "hot" inner chamber is created, which is connected to the outer part exclusively by means of the screws 49. Through the closure plate 25, the end of the prechamber 10 extends to the heat shield 24 as part of a flame holder. The heat shield 24 simultaneously forms an evaporator plate for the evaporation of the fuel mist, which is mixed and swirled in the transition area into the combustion chamber 5 together with the air by the diffuser action of a swirl element 27.

Das Wirbelelement 27 dient als querschnittsverringerndes Element im Übertrittsbereich und kann beispielsweise durch eine in die Vorkammer 10 eingesetzte Blende gebildet sein (Fig. 3, 4, 8 - 11). Das Wirbelelement kann gemäß Fig. 7 auch aus einer Erweiterung 55 der Vorkammer 10 bestehen, in die als querschnittsverringerndes Element zusätzlich eine Ringblende 56 eingesetzt ist. Nach Fig. 4 ist als querschnittsverringerndes Element ein Venturirohreinsatz 35 im Übertrittsbereich angeordnet.The swirl element 27 serves as a cross-section-reducing element in the transition area and can be formed, for example, by an aperture inserted into the antechamber 10 (FIGS. 3, 4, 8-11). According to FIG. 7, the vortex element can also consist of an extension 55 of the prechamber 10, into which an annular screen 56 is additionally inserted as a cross-section-reducing element. According to FIG. 4, a venturi tube insert 35 is arranged in the transition area as a cross-section-reducing element.

Durch den Brennkammerboden 19 ragt (Fig. 3) eine Zündkerze 18 für die Erstzündung der Feuerungseinrichtung. Die axial in die Vorkammer 10 eintretende Brennstoffzuführungsleitung 12 endet in einer Einströmdüse 29, durch die kontinuierlich flüssiger Brennstoff unter einem Druck, vorzugsweise zwischen 10 und 25 bar, beispielsweise Heizöle, Abfallöle usw. in die Brennkammer 5 eingesprüht werden. Die Einströmdüse 29 und das im Übertrittsbereich angeordnete, einen verringerten Durchtrittsquerschnitt aufweisende Element bilden eine Stellvorrichtung 26, die einen Luftdurchtrittsspalt 53 begrenzt. Da als Element mit verringertem Durchtrittsquerschnitt bevorzugt das Wirbelelement 27 eingesetzt wird, ist die Einströmdüse 29 axial verstellbar, wie dies strichliert dargestellt ist. Die Einströmdüse 29 liegt in ihrer vordersten Stellung knapp hinter dem Wirbelelement 27 unter Belassung des Luftdurchtrittsspaltes 53. Für die Leistungseinstellung der Feuerungseinrichtung ist neben der Wahl des Öleinspritzdruckes auch die Bemessung des Luftdurchtrittsspaltes 53 durch Veränderung der Stellvorrichtung 26 maßgeblich, wodurch in jeder Stellung ein nahezu stöchiometrisches Luft-Brennstoff-Verhältnis für die optimale Verbrennung erreicht werden kann. Die Änderung des Luftdurchtrittsspaltes 53 kann nun durch die erwähnte axiale Verstellung der Einströmdüse 29 erfolgen, sie kann weiters durch Änderung der Öffnungsweite des querschnittsverringernden Elementes bzw. des Wirbelelementes 27 erfolgen, wenn es als Blende ausgebildet ist. Fig. 2 zeigt dies schematisch, in der die Blende durch zwei in Ausnehmungen 54 der Verschlußplatte 25 eingesetzte Schieber gebildet ist, die zueinander gerichtete Ausnehmungen aufweisen und einander überlappen, sodaß die aus den beiden Ausnehmungen gebildete Blendenöffnung sich beim Verschieben verändert. In Fig. 7 ist für die Änderung des Luftdurchtrittsspaltes 53 die Verstellung der Blende 56 in der Erweiterung 55 der Vorkammer 10 parallel zur Brennstoffzufuhrleitung 12 schematisch angedeutet. Bei Bewegung der an Längsführungselementen 57 fixierten Blende 56 in Richtung zur Brennkammer 5 hin öffnet sich zwischen der Blende 56 und der Wandung der Erweiterung 55 ein zusätzlicher Ringspalt (strichlierte Pfeile 58). Die für die Änderung des Luftdurchtrittsspaltes 53 angeführten Maßnahmen können dabei auch in Kombination vorgesehen sein. Ihre richtige Einstellung ermöglicht die Verbrennung mit der erwähnten blauen Flammenfärbung.A spark plug 18 protrudes through the combustion chamber floor 19 (FIG. 3) for the initial ignition of the firing device. The fuel supply line 12 axially entering the prechamber 10 ends in an inflow nozzle 29, through which liquid fuel is continuously sprayed into the combustion chamber 5 under a pressure, preferably between 10 and 25 bar, for example heating oils, waste oils, etc. The inflow nozzle 29 and the element arranged in the transition area and having a reduced passage cross section form an actuating device 26 which delimits an air passage gap 53. Since the swirl element 27 is preferably used as the element with a reduced passage cross section, the inflow nozzle 29 is axially adjustable, as shown in broken lines. The inlet nozzle 29 is in its foremost position just behind the swirl element 27, leaving the air passage gap 53. In addition to the selection of the oil injection pressure, the dimensioning of the air passage gap 53 by changing the adjusting device 26 is also decisive for the power setting of the firing device, so that an almost stoichiometric one in each position Air-fuel ratio for optimal combustion can be achieved. The air passage gap 53 can now be changed by the aforementioned axial adjustment of the inflow nozzle 29, it can also be done by changing the opening width of the cross-section-reducing element or the swirl element 27 if it is designed as a diaphragm. Fig. 2 shows this schematically, in which the diaphragm is formed by two slides inserted in recesses 54 of the closure plate 25, which have mutually directed recesses and overlap one another, so that the diaphragm opening formed from the two recesses changes when moved. In FIG. 7, the adjustment of the diaphragm 56 in the extension 55 of the prechamber 10 parallel to the fuel supply line 12 is indicated schematically for the change in the air passage gap 53. When the diaphragm 56 fixed to the longitudinal guide elements 57 moves in the direction of the combustion chamber 5, an additional annular gap opens between the diaphragm 56 and the wall of the extension 55 (dashed arrows 58). The measures listed for changing the air passage gap 53 can also be provided in combination. Their correct setting enables combustion with the blue flame color mentioned.

Vom Gehäuse 13 der Vorkammer 10 (Fig. 3) zweigt seitlich die Luftzuführungsleitung 11 ab, in die Rückschlagventile 30 eingesetzt sind. Diese weisen eine Gesamtdurchtrittsfläche auf, die größer als die Querschnittsfläche der Vorkammer 10 ist. Die Rückschlagventile 30 sind mit V-förmigen, vorzugsweise geringfügig konvex gebogenen Ventilsitzen 31 (Fig. 2) versehen, an denen flache Ventilklappen 32 befestigt sind. Durch die übergroße Gesamtquerschnittsfläche haben die Ventilklappen 32 einen kleinen Öffnungswinkel, sodaß sie sehr geringen Biegebeanspruchungen ausgesetzt sind.The air supply line 11, into which check valves 30 are inserted, branches off from the housing 13 of the prechamber 10 (FIG. 3). These have a total passage area that is larger than the cross-sectional area of the prechamber 10. The check valves 30 are provided with V-shaped, preferably slightly convexly curved valve seats 31 (FIG. 2), to which flat valve flaps 32 are attached. Due to the oversized total cross-sectional area, the valve flaps 32 have a small opening angle, so that they are exposed to very low bending stresses.

In der in Fig. 4 gezeigten Vorkammervariante teilt sich die Luftzuführungsleitung in zwei Mündungsäste 16, 17 mit jeweils einem Rückschlagventil 30, wobei jeder Mündungsast 16, 17 durch eine Klappe 33 einzeln sperrbar ist, wodurch die Regelbarkeit der Feuerungseinrichtung nochmals erhöht wird. Ebenfalls zur Verbesserung des Regelbereiches weisen die Ventilklappen 32 der einzelnen Ventile 30 vorzugsweise unterschiedliche Materialeigenschaften auf, sodaß sie unterschiedliche Biegefestigkeiten besitzen. Es wird daher jenes Ventil 30, dessen Ventilklappen weicher sind, früher und das zweite -erst bei weiterem Luftbedarf öffnen. In der Ausführung nach Fig. 4 ist das brennkammernahe Ventil im Mündungsast 16 mit weicheren Ventilklappen 32 versehen, über den auch der kürzere Strömungsweg in die Brennkammer 5 führt. Die in die seitlichen Abzweigungen verlegten Ventile 30 sind den hohen Temperaturen in der Brennkammer 5, die bis 1200°C betragen können, nicht unmittelbar ausgesetzt, wobei die kontinuierliche Brennstoffzufuhr durch die Einströmdüse 29 ebenfalls zur Kühlung beiträgt. Die Mündungsäste 16, 17 sind weiters so angeordnet, daß in der weitest zurückgezogenen Stellung der Einströmdüse 29 diese zwischen den beiden Mündungsästen 16, 17 zu liegen kommt. Hiedurch wird auch eine Schichtladung der Brennkammer 5 erreicht, da beim Ansaugvorgang zuerst eine brennstoffärmere Luft-Brennstoffmischung (Luft über den Mündungsast 16), dann eine brennstoffreichere, und schließlich wieder ein brennstoffärmere Luft-Brennstoffmischung (Luft über den Mündungsast 17) in die Brennkammer 5 gelangt. In Fig. 4 ist auch eine Querschnittsverengung der Vorkammer durch einen Venturirohreinsatz 35 gegeben, der Durchtrittsöffnungen 36 aufweist, durch die die Luft aus dem Mündungsast 16 eintritt. Insbesondere in dieser Ausführung bewirkt die Verstellbarkeit der Einströmdüse 29 eine nochmals verfeinerte Regelmöglichkeit der Luftzufuhr, da die beiden Endstellungen der Einströmdüse vor oder hinter dem Venturirohreinsatz 35 liegen.In the prechamber variant shown in FIG. 4, the air supply line is divided into two outlet branches 16, 17, each with a check valve 30, each outlet branch 16, 17 being individually lockable by a flap 33, which further increases the controllability of the firing device. Also to improve the control range, the valve flaps 32 of the individual valves 30 preferably have different material properties, so that they have different bending strengths. It will therefore open that valve 30, the valve flaps of which are softer, earlier and the second only when there is a further need for air. In the embodiment according to FIG. 4, the valve near the combustion chamber is provided in the branch branch 16 with softer valve flaps 32, via which the shorter flow path also leads into the combustion chamber 5. The valves 30 laid in the lateral branches are not directly exposed to the high temperatures in the combustion chamber 5, which can be up to 1200 ° C., the continuous fuel supply through the inflow nozzle 29 also contributing to cooling. The mouth branches 16, 17 are further arranged so that in the most retracted position of the inflow nozzle 29 this comes to rest between the two mouth branches 16, 17. A stratified charge of the combustion chamber 5 is also achieved in this way, because during the intake process first a lower-fuel air-fuel mixture (air via the branch branch 16), then a more fuel-rich, and finally a lower-fuel air-fuel mixture (air via the branch branch 17) into the combustion chamber 5 reached. 4 there is also a cross-sectional narrowing of the prechamber through a venturi tube insert 35 which has through openings 36 through which the air enters from the outlet branch 16. In this embodiment in particular, the adjustability of the inflow nozzle 29 brings about a further refined control option for the air supply, since the two end positions of the inflow nozzle are in front of or behind the venturi tube insert 35.

In den Ausführungen nach Fig. 5 und 6 ist ein weiteres Ausführungsbeispiel dargestellt, in dem die an der Trägerplatte 2 montierte Feuerungseinrichtung wiederum als Behältereinsatz ausgebildet ist. Die Brennkammer 5 dieser Ausführung ist topfartig ausgebildet und an iher dem Brennkammerboden gegenüberliegenden Stirnseite durch eine Deckplatte 40 verschlossen, von der zentral ein etwa S-förmiger Wirbelkörper 41 hochsteht (Fig. 6).5 and 6, a further embodiment is shown in which the firing device mounted on the carrier plate 2 is again designed as a container insert. The combustion chamber 5 of this embodiment is pot-shaped and closed on its end opposite the combustion chamber bottom by a cover plate 40, from which an approximately S-shaped vertebral body 41 rises centrally (FIG. 6).

Aus der Brennkammer 5 zweigen zwei Anschlußrohre 42, 43 seitlich tangential ab, die gemeinsam in eine Kammer 39 münden, durch die die Länge und Frequenz der pulsierenden Abgassäulen begrenzt wird. Die beiden Anschlußrohre 42, 43 zweigen einander gegenüberliegend in verschiedenen Höhen aus der Brennkammer 5 ab, wobei das der Vorkammer 10 nähere Anschlußrohr mittels eines von außen betätigbaren Verschlusses 44 sperrbar ist. Auch dies ermöglicht eine Regelung der Feuerungseinrichtung. Selbstverständlich kann auch das zweite Anschlußrohr 43 sperrbar sein.From the combustion chamber 5, two connecting pipes 42, 43 branch off laterally tangentially, which open together into a chamber 39, through which the length and frequency of the pulsating exhaust gas columns are limited. The two connecting pipes 42, 43 branch off opposite one another at different heights from the combustion chamber 5, the connecting pipe closer to the antechamber 10 being lockable by means of a closure 44 which can be actuated from the outside. This also enables control of the firing device. Of course, the second connecting pipe 43 can also be blocked.

Der übrige Aufbau der Feuerungseinrichtung entspricht im wesentlichen der bereits oben beschriebenen Feuerungseinrichtung gemäß den Fig. 1 bis 4. Es ist jedoch hier auch die Möglichkeit gezeigt, daß die Vorkammer 10 in die Brennkammer 5 ragt, und das querschnittsverringernde Wirbelelement 27 an der Mündung der Vorkammer 10 durch deren vorstehenden Rand gebildet ist. Die Diffusorwirkung entsteht dabei außerhalb des Wirbelelementes im Ringraum zum Brennkammerboden 19 hin, der in dieser Ausführung konisch verläuft.The remaining structure of the firing device corresponds essentially to the firing device already described above according to FIGS. 1 to 4. However, the possibility is also shown here that the prechamber 10 protrudes into the combustion chamber 5, and the cross-section-reducing vortex element 27 at the mouth of the prechamber 10 is formed by the projecting edge. The diffuser effect arises outside the vortex element in the annular space towards the combustion chamber floor 19, which in this embodiment is conical.

Die durch den Wärmetausch mit dem Heizmedium der Raum- oder Zentralheizungsanlage abgekühlten, ausgestoßenen Abgase benötigen keinen Kamin, sodaß die Abgasabführeinrichtung 6 als Auspuffanlage zu bezeichnen ist. Die ausgestoßenen Abgase, die einen oder mehrere Schalldämpfer 9 passieren, können dabei zusätzlich noch über ein Turbinenrad einen Generator antreiben, der den für die Brennstoffpumpe, das Magnetventil in der Brennstoffzuführleitung 12 und das für den Start der Feuerungsanlage erforderliche Luftgebläse benötigten Strom erzeugt, sodaß sie von der Versorgung mit elektrischer Energie für die Hilfseinrichtungen unabhängig ist. Der erzeugte Strom wird in einem Akkumulator beispielsweise einer Kraftfahrzeugbatterie, gespeichert.The exhaust gases cooled by the heat exchange with the heating medium of the room or central heating system do not require a chimney, so that the exhaust gas discharge device 6 can be referred to as an exhaust system. The exhaust gases that pass through one or more silencers 9 can additionally drive a generator via a turbine wheel, which generates the electricity required for the fuel pump, the solenoid valve in the fuel supply line 12 and the air blower required to start the combustion system, so that they is independent of the supply of electrical energy for the auxiliary devices. The electricity generated is stored in an accumulator, for example a motor vehicle battery.

In Fig. 1 ist ein weiteres Anschlußrohr 50 gezeigt, das etwa in der heißesten Zone der Brennkammer 5 endet und entgegegengesetzt zum Hauptanschlußrohr 8 der Abgasabführungseinrichtung 6 durch den Brennkammerboden 19 nach außen geführt ist. Dieses Anschlußrohr 50 stellt eine Heißgasentnahmeleitung dar, die beispielsweise als Luftheizquelle einen Rohrheizkörper oder, wie schematisch angedeutet, als spiralig gewundenes Rohr etwa eine Kochstelle 52 bilden kann. Das Anschlußrohr 50 ist über ein Ventil 51 sperrbar und führt zurück in das Auspuffrohr 7. Diese Heißgasentnahmeleitung kann auch dazu verwendet werden, um eine gegebenenfalls zu niedere Abgastemperatur im Auspuffrohr 7 zu erhöhen.1 shows a further connection pipe 50, which ends approximately in the hottest zone of the combustion chamber 5 and, in the opposite direction to the main connection pipe 8 of the exhaust gas discharge device 6, is led through the combustion chamber floor 19 to the outside. This connecting pipe 50 represents a hot gas extraction line which, for example, can form a tubular heating element as an air heating source or, as indicated schematically, as a coiled pipe, for example a hotplate 52. The connecting pipe 50 can be blocked via a valve 51 and leads back into the exhaust pipe 7. This hot gas extraction line can also be used to increase an exhaust gas temperature in the exhaust pipe 7 which may be too low.

Die Fig. 8 - 11 zeigen schematisch einzelne Phasen im Verbrennungsablauf. In der Ansaugphase gemäß Fig. 8 herrscht in der Brennkammer 5, im Anschlußrohr 8 und in der Vorkammer 10 Unterdruck (durch Striche 46 bezeichnet), sodaß dem ständig zuströmenden Brennstoff Luft zugesaugt wird. Das Wirbelelement 27 verwirbelt das sich im Ringspalt zwischen dem Wirbelelement 27 und der Einströmdüse 29 entstehende Gemisch wie erwähnt, das gemäß Fig. 9 durch die aus dem Anschlußrohr 8 rückfließende Abgaswelle verdichtet wird. Es baut sich ein Überdruck (durch Kreuze 47 bezeichnet) auf, wobei die heißen Abgase und die hohe Temperatur des auch als Flammhalter dienenden Wirbelelementes 27 die selbsttätige Zündung bewirken, die in Fig. 10 gezeigt ist. Eine Überdruckwette breitet sich (Pfeile 45) nach beiden Seiten aus, wobei in der Vorkammer die Ventile 30 schließen. Fig. 11 zeigt die Auspuffphase, in der die Abgase (Pfeile 45) durch das Anschlußrohr 8 abziehen und wieder Unterdruck in der Brennkammer 5 gemäß Fig. 8 entsteht. Da während des gesamten Zeitraumes kontinuierlich Brennstoff eingesprüht wird, wird dessen die hohe Verbrennungsgüte bewirkende feinste Zerstäubung, Verdampfung und optimaler Vermischung mit der Verbrennungsluft deutlich.8-11 show schematically individual phases in the combustion process. 8 there is negative pressure in the combustion chamber 5, in the connecting pipe 8 and in the prechamber 10 (denoted by lines 46), so that air is sucked into the constantly flowing fuel. The vortex element 27 swirls the mixture formed in the annular gap between the vortex element 27 and the inflow nozzle 29 as mentioned, which is compressed according to FIG. 9 by the exhaust gas wave flowing back from the connecting pipe 8. An overpressure (designated by crosses 47) builds up, the hot exhaust gases and the high temperature of the swirl element 27, which also serves as a flame holder, causing the automatic ignition, which is shown in FIG. 10. An overpressure bet spreads (arrows 45) to both sides, the valves 30 closing in the prechamber. FIG. 11 shows the exhaust phase in which the exhaust gases (arrows 45) are drawn off through the connecting pipe 8 and negative pressure is again generated in the combustion chamber 5 according to FIG. 8. Since fuel is sprayed continuously throughout the entire period, the finest atomization, evaporation and optimal mixing with the combustion air, which brings about the high quality of combustion, becomes clear.

Claims (21)

1. A furnace system for an installation that has a heat exchanger (1), preferably water filled, comprising: at least one combustion chamber (5) for the pulse combustion of free-flowing fuels, which is provided with an ignition system (18) for the initial ignition of the fuel and makes a transition to a waste-gas disposal system (6), a pre-chamber (10) having a transition area into the combustion chamber (5), a supply line (12) for the fuel, which ends in an injection nozzle (29) arranged in the pre-chamber (10), a supply line (11) for air which has at the inlet into the pre-chamber (10) a non-return valve system (30) through which the air is discontinuously fed into the pre-chamber (10) by the draft effect which is produced in the combustion chamber (5) because of the expansive dynamics of the combustion products, and comprising a vortexing element (27) which is arranged in the transition area and on the combustion chamber side of which the air - fuel mixture is whirled, characterized in that the injection nozzle (29) through which the fuel can be supplied under pressure is arranged in the transition area, and that control means (26) limiting a variable air passage opening between the pre-chamber (10) and the combustion chamber (5) are provided by means of which an air influx inhibitor into the combustion chamber (5) is adjustable which influences the degree of the draft effect on the non-return valve system (30).
2. A furnace system according to claim 1, characterized in that the control means (26) comprises the injection nozzle (29) of the fuel supply line (12) and an element restricting the cross-section of the transition area, which together limit an annular gap (53) for the passage of air.
3. A furnace system according to claim 2, characterized in that the injection nozzle (29) is adjustably provided between a front end position near the element that restricts the cross-section and a rear end position that is further spaced.
4. A furnace system according to claim 2 or 3, characterized in that the element that restricts the cross-section is an annular baffle spaced from the combustion chamber (10).
5. A furnace system according to claim 4, characterized in that the opening width of the annular baffle (56) is adjustable.
6. A furnace system according to claim 4 or 5, characterized in that the annular baffle is adjustable in respect of the distance from the combustion chamber (10).
7. A furnace system according to one of claims 4 to 6, characterized in that the annular baffle is formed by the vortexing element (27).
8. A furnace system according to claim 4 or 5, characterized in that the annular baffle (56) is arranged in a wider section (55) of the pre-chamber (10) at a distance from the combustion chamber (5).
9. A furnace system according to claim 2 or 3, characterized in that the element that restricts the cross-section is a venturi tube insert (35).
10. A furnace system according to claim 3, characterized in that the rear end position of the injection nozzle (29) lies between two branches (16, 17) of the air supply line (11) which laterally open out into the substantially cylindrical pre-chamber (10), at least one branch (16,17) being separately closable.
11. A furnace system according to claims 9 and 10, characterized in that the branch (16) of the air supply line (11) that is closed to the combustion chamber opens out at the narrowest part of the venturi tube insert (35) that is provided with passage openings (36).
12. A furnace system according to claim 10 or 11, characterized in that the branch (16, 17) of the air supply line (11) comprises a non-return valve that has a V-shaped valve seat (31) and a pair of valve flaps (32), the total opening cross-section of the non-return valve system (30) being greater than the cross-section of the air supply line (11).
13. A furnace system according to claims 10 and 12, characterized in that the valve flaps (32) of the non-return valves are of different materials, the non-return valve in the branch (16) that is closed to the combustion chamber having valve flaps (32) that are less resistant to bending.
14. A furnace system according to claim 1, characterized in that a baffle (37) is installed in the waste-gas disposal system (6) which defines the length of the pulsating column of waste-gas.
15. A furnace system according to claims 1 and 14, characterized in that the length of the pre-chamber (10) is approximately one fifteenth of the length of the pulsating waste-gas column between the combustion chamber base (19) and the baffle (37) in the waste-gas disposal system (6).
16. A furnace system according to claim 1 or 15, characterized in that the combustion chamber (5) has a cover plate (40) on the face side that is opposite the combustion chamber base (19), from the center of which rises a vortexer body (41), the connector pipe (42) being located at the side.
17. A furnace system according to claim 16, characterized in that the vortexer body (41) is S-shaped.
18. A furnace system according to claim 1 or 16, characterized in that at least two connector pipes (42, 43, 50) of the waste-gas disposal system (6) are arranged at different distances from the combustion chamber base (19), at least one of the connector pipes (43, 50) being closable.
19. A furnace system according to claim 18, characterized in that a closable connector pipe (50) ends as a hotgas removal line in the hottest zone of the combustion chamber (5) and is led through the combustion chamber base (19) to the outside.
20. A furnace system according to claim 19, characterized in that a part of the hot-gas removal line (50) forms at least one tubular heater body.
21. A furnace system according to one of claims 1 to 20, characterized in that the combustion chamber (5) is arranged on the inner side and the pre-chamber (10) on the outer side of a carrier plate (2) secured to the heat exchange container (1), and the furnace system forms an insert for the heat exchange container that is ready for installation.
EP86903107A 1985-06-12 1986-06-04 Furnace device Expired EP0227699B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT1746/85 1985-06-12
AT174685 1985-06-12

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP88106358A Division EP0307538A3 (en) 1985-06-12 1986-06-04 Furnace device
EP88106358.0 Division-Into 1988-04-21

Publications (2)

Publication Number Publication Date
EP0227699A1 EP0227699A1 (en) 1987-07-08
EP0227699B1 true EP0227699B1 (en) 1989-01-04

Family

ID=3520111

Family Applications (2)

Application Number Title Priority Date Filing Date
EP86903107A Expired EP0227699B1 (en) 1985-06-12 1986-06-04 Furnace device
EP88106358A Withdrawn EP0307538A3 (en) 1985-06-12 1986-06-04 Furnace device

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP88106358A Withdrawn EP0307538A3 (en) 1985-06-12 1986-06-04 Furnace device

Country Status (5)

Country Link
US (1) US4759312A (en)
EP (2) EP0227699B1 (en)
AT (1) ATE39746T1 (en)
DE (1) DE3661653D1 (en)
WO (1) WO1986007435A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010052268A1 (en) 2010-11-23 2012-05-24 Michael Seifert Pulse jet steam generator

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01306705A (en) * 1988-06-04 1989-12-11 Paloma Ind Ltd Pulse burner
EP0347834B1 (en) * 1988-06-21 1993-05-12 Walter Dreizler Burner head for a forced-draft gas burner
JPH0656246B2 (en) * 1988-11-10 1994-07-27 パロマ工業株式会社 Pulse combustor and pulse combustion type liquid heating device
DE3839861A1 (en) * 1988-11-25 1990-05-31 Rudi Pedersen HEATING SYSTEM
DE3842457A1 (en) * 1988-12-16 1990-06-21 Werner Pletzer Firing device for the pulsating combustion of gaseous fuels
NL8901416A (en) * 1989-06-05 1991-01-02 Stichting Impuls BURNER FOR PULSE BURNING.
US5090891A (en) * 1989-06-26 1992-02-25 Indugas, Inc. Hybrid combustion device and system therefor
US4959009A (en) * 1989-06-26 1990-09-25 Indugas, Inc. Pulse burner and method of operation
SE464540B (en) * 1989-08-24 1991-05-06 Pulsonex Ab SCRUBBURGERS FOR HOT WATER BOILERS, WHILE NECK COOLED BY AN OUTPUT FOR HOT WATER
GB9013154D0 (en) * 1990-06-13 1990-08-01 Chato John D Improvements in pulsating combustors
AT398120B (en) * 1991-03-14 1994-09-26 Vaillant Gmbh WATER TANK HEATED BY A GAS BURNER
US5472141A (en) * 1992-12-01 1995-12-05 Combustion Concepts, Inc. High efficiency gas furnace
US5282457A (en) * 1992-12-01 1994-02-01 Combustion Concepts, Inc. High efficiency gas furnace
US5636786A (en) * 1992-12-01 1997-06-10 Combustion Concepts, Inc. High efficiency gas furnace
AU4781296A (en) * 1995-11-29 1997-06-19 Powertech Industries Inc. Pulse combustor and boiler for same
US6464490B1 (en) 1998-08-31 2002-10-15 Clean Energy Combustion Systems, Inc. Circular pulsating combustors
US6325616B1 (en) 2000-04-03 2001-12-04 John D. Chato Pulsating combustion unit with interior having constant cross-section
DE102007009404B4 (en) 2007-02-23 2012-11-29 Georg Pletzer firing
US8052418B2 (en) * 2008-09-05 2011-11-08 Energy Efficiency Solutions, Llc Oil burning system
WO2020117087A1 (en) * 2018-12-06 2020-06-11 Ильгиз Амирович Ямилев Pulsating combustion device with improved energy conversion efficiency and reduced noise level
US11255540B2 (en) * 2019-06-20 2022-02-22 Catherine J. Chagnot Crude and waste oil burner
RU2734669C1 (en) * 2020-01-14 2020-10-21 Общество с Ограниченной Ответственностью "Научно-Производственное Предприятие "Авиагаз-Союз+" Process gas heating unit
WO2021154107A1 (en) * 2020-01-27 2021-08-05 Ильгиз Амирович Ямилев Pulsating combustion apparatus with vibration damping
RU2745230C1 (en) * 2020-06-29 2021-03-22 Общество с ограниченной ответственностью "Газпром трансгаз Казань" Pulsating combustion heat generator
RU2767121C1 (en) * 2021-03-22 2022-03-16 Мусрет Османович Намазов Flow-through boiler for pulsating combustion
RU2760606C1 (en) * 2021-04-05 2021-11-29 Общество с Ограниченной Ответственностью "Научно-Производственное Предприятие "Авиагаз-Союз+" Pulsating combustion heat generator

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB386908A (en) * 1932-08-16 1933-01-26 Marco Barbera Improvements in impulse and reaction engines
US2722180A (en) * 1950-05-12 1955-11-01 Oran T Mcilvaine Fuel burners
US2715390A (en) * 1950-07-18 1955-08-16 Tenney Resonant intermittent combustion heater and system
FR1023114A (en) * 1950-08-08 1953-03-13 Snecma Improvements to boilers
US2729939A (en) * 1952-06-09 1956-01-10 Lawrence F Campbell Ribless pulse jet valve grid
GB780148A (en) * 1954-11-15 1957-07-31 Heizmotoren Gmbh Improvements in or relating to oscillating column combustion apparatus
DE1253851B (en) * 1955-12-16 1967-11-09 Gustavsbergs Fabriker Ab Installation on a boiler with a combustion chamber working with pulsating combustion
DE1626364B1 (en) * 1961-09-04 1970-08-20 Schmitz & Apelt Industrieofenb Heating for gaseous or liquid fuels, especially heating oil
GB1023752A (en) * 1962-05-18 1966-03-23 Karl Borje Olsson Improvements in or relating to an oscillating gas column combustion apparatus
US3267985A (en) * 1964-03-12 1966-08-23 John A Kitchen Pulse combustion apparatus
FR1547310A (en) * 1966-12-24 1968-11-22 Junkers & Co Pulsating combustion burner installation
DE1922650B2 (en) * 1969-05-03 1972-05-04 Huber, Ludwig, Dr.-Ing., 7000 Stuttgart Liquid heater with a swing burner as a heat source
US3669079A (en) * 1970-08-06 1972-06-13 Robert B Black Water heater
DE2120749C3 (en) * 1971-04-28 1980-09-04 Motan Gmbh, 7972 Isny Spray or fog machine
US4271789A (en) * 1971-10-26 1981-06-09 Black Robert B Energy conversion system
SE361522B (en) * 1972-04-04 1973-11-05 K B Olsson
SE422990B (en) * 1980-08-12 1982-04-05 Mareck Bv FUEL CHAMBER FOR PULSING COMBUSTION
US4479484A (en) * 1980-12-22 1984-10-30 Arkansas Patents, Inc. Pulsing combustion
US4488865A (en) * 1980-12-22 1984-12-18 Arkansas Patents, Inc. Pulsing combustion
US4433645A (en) * 1981-05-20 1984-02-28 Hunter Investment Company Heat exchanger
SE435098B (en) * 1982-12-30 1984-09-03 Mareck Bv BACK VALVE IN AIR INLET FOR A SCRUBBURNER

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010052268A1 (en) 2010-11-23 2012-05-24 Michael Seifert Pulse jet steam generator
WO2012069155A2 (en) 2010-11-23 2012-05-31 Michael Seifert Pulse jet steam generator
DE102010052268B4 (en) * 2010-11-23 2015-07-02 Michael Seifert Pulse jet steam generator

Also Published As

Publication number Publication date
DE3661653D1 (en) 1989-02-09
US4759312A (en) 1988-07-26
ATE39746T1 (en) 1989-01-15
EP0227699A1 (en) 1987-07-08
EP0307538A2 (en) 1989-03-22
WO1986007435A1 (en) 1986-12-18
EP0307538A3 (en) 1989-05-10

Similar Documents

Publication Publication Date Title
EP0227699B1 (en) Furnace device
EP0970327B1 (en) A boiler fitted with a burner
DE2928021C2 (en) Reciprocating internal combustion engine with compression ignition
DE1926474A1 (en) Internal combustion engine
DE3709976A1 (en) METHOD AND SPARK PLUG FOR THE IGNITION OF VERY LOW FUEL-AIR MIXTURES, ESPECIALLY FOR GAS ENGINES
DE2323608A1 (en) PROCEDURE FOR OPERATING COMBUSTION MACHINES AND SUITABLE COMBUSTION MACHINES FOR CARRYING OUT THE PROCEDURE
DE1806764A1 (en) Combustion engine and combustion process carried out using a diffuse mixture and additional air
DE3248918T1 (en) COMBUSTION ENGINE WITH EXHAUST GAS RECIRCULATION AND METHOD FOR OPERATING THE SAME
DE2840923A1 (en) INTERNAL COMBUSTION ENGINE WITH DIVIDED GAME
DE2448815C3 (en) Exhaust system for an externally ignited internal combustion engine with main combustion chambers and auxiliary combustion chambers and exhaust gas afterburning
DE1576030C3 (en) Internal combustion engine with an evaporation chamber designed as a spark plug antechamber
DE2703316A1 (en) Fuel injected two stroke engine - has compression cylinder transferring charge to power cylinder into which fuel is injected
DE2650660A1 (en) BOILER WITH A HOT GAS GENERATOR FOR LIQUID OR GAS FUEL
DE1526290A1 (en) Internal combustion engine with main combustion chamber and ignition pre-chamber
EP0275401B1 (en) Heater and process for operating this heater
DE2259286C3 (en) Four-stroke reciprocating internal combustion engine
EP0266377B2 (en) Heating device with reheater
DE19923346C2 (en) engine
EP0182826A1 (en) Four-stroke combustion engine with a device for conveying gases from an exhaust gas pipe back into the combustion chamber
DE2910273C2 (en) Internal combustion engine
CH236956A (en) Kettle for heating water.
DE654416C (en) Piston internal combustion engine with external combustion, in which compressed oxygen-containing gases or gas mixtures are burned in combustion chambers with fuel and thus compressed gases are generated
DE2253209A1 (en) PROCESS FOR COMBUSTION OF GASOLINE FUELS AND EXHAUST GASES AND REACTOR BURNERS FOR CARRYING OUT THIS PROCESS
DE1751189C3 (en) Pre-chamber diesel engine
DE182528C (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19870212

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17Q First examination report despatched

Effective date: 19871116

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890104

REF Corresponds to:

Ref document number: 39746

Country of ref document: AT

Date of ref document: 19890115

Kind code of ref document: T

ITF It: translation for a ep patent filed

Owner name: DOTT. FRANCO CICOGNA

REF Corresponds to:

Ref document number: 3661653

Country of ref document: DE

Date of ref document: 19890209

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19890630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19910604

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19910606

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19910619

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19910626

Year of fee payment: 6

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19910630

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19920604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19920630

Ref country code: CH

Effective date: 19920630

Ref country code: BE

Effective date: 19920630

BERE Be: lapsed

Owner name: PLETZER GEORG

Effective date: 19920630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19930101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19920604

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19930226

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19990813

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020614

Year of fee payment: 17

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050604