EP0224397A1 - Dispositif d'injection à bol sectorisé - Google Patents

Dispositif d'injection à bol sectorisé Download PDF

Info

Publication number
EP0224397A1
EP0224397A1 EP86402290A EP86402290A EP0224397A1 EP 0224397 A1 EP0224397 A1 EP 0224397A1 EP 86402290 A EP86402290 A EP 86402290A EP 86402290 A EP86402290 A EP 86402290A EP 0224397 A1 EP0224397 A1 EP 0224397A1
Authority
EP
European Patent Office
Prior art keywords
sectors
bowl
holes
combustion chamber
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP86402290A
Other languages
German (de)
English (en)
Other versions
EP0224397B1 (fr
Inventor
Gérard Yves Georges Barbier
Gérard Joseph Pascal Bayle-Laboure
Michel André Albert Desaulty
Rodolphe Martinez
Jérome Perigne
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Safran Aircraft Engines SAS
Original Assignee
Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
SNECMA SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA, SNECMA SAS filed Critical Societe Nationale dEtude et de Construction de Moteurs dAviation SNECMA
Publication of EP0224397A1 publication Critical patent/EP0224397A1/fr
Application granted granted Critical
Publication of EP0224397B1 publication Critical patent/EP0224397B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/26Controlling the air flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/008Flow control devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air

Definitions

  • the invention relates to the supply of fuel and primary air to a combustion chamber, in particular for a turbomachine.
  • Traditional combustion chambers generally have a high-rich primary zone and a dilution zone.
  • part of the primary air flow is injected, on the one hand by means of internal and external turbulence tendrils intended to create a cone for spraying the fuel leaving the injector, on the other hand by means orifices of the chamber bottom and the internal and external walls of the combustion chamber.
  • the choice of the fraction of air to be injected into the primary zone results from a compromise between the performance of the combustion chamber at full gas: emission of smoke, thermal resistance of the walls, distribution of temperatures and performance in idle mode : yield, stability.
  • aerodynamic bowl injectors such as those described in the applicant's prior patents have been developed: FR 2 357 738 and FR 2 391 359. These injectors are mounted on the chamber bottom with the interposition of a part intermediate called bowl comprising a frustoconical part flared downstream and pierced with a multiplicity of small diameter holes through which air at high pressure enters the sprayed fuel cone. By the turbulence it creates and the intimate mixing it produces, this bowl completes the role of the injector, acts on the mixing composition and allows the creation of a mini primary zone in slow motion.
  • the present invention aims to improve these types of aerodynamic injectors with intermediate bowl by shaping them so that they contribute, on the one hand, to improving the cooling of the walls of the combustion chamber and, on the other hand on the other hand, to improve the efficiency at idle, in particular when they are mounted in annular combustion chambers on the bottom of which they are regularly distributed, this making best use of the localized recirculation zones existing between the adjacent injectors.
  • the subject of the invention is a device for injecting air and fuel into a combustion chamber, in particular of a turbomachine, comprising at least one fuel injector, an external swirl spin for the passage of atomizing air.
  • fuel equipped with a diaphragm for modulating the air inlet flow rate, a bowl-shaped body comprising a downstream web flared in the direction of flow and provided with a row of bowl holes for the injection of air into the sprayed fuel cone and an impact cooling chamber formed by the downstream web, an intermediate ring and an outer skirt having air inlet orifices.
  • the chamber is divided into four equal sectors, diametrically opposite two by two and separated by radial partitions, two first sectors having small diameter bowl holes and two second sectors having large diameter bowl holes.
  • the diameter of the holes of the first sectors is calculated for an optimized operation of the combustion chamber at idle and the diameter of the holes of the second sectors for an optimized yield at full gas speed.
  • the injection device comprises a diaphragm for modulating the air flow rate of the large diameter bowl holes of the second sectors.
  • the bowls are oriented so that the first sectors of each bowl are arranged side by side while the second sectors of the bowls having large diameter holes are oriented towards the internal and external walls of the combustion chamber to improve cooling at full gas speed.
  • Figure 1 is shown in longitudinal half-section an annular combustion chamber 1 for a turbomachine comprising the injection system according to the invention.
  • Chamber 1 is between an external casing 2 and an internal ferrule 3 which delimit the stream of compressed gases.
  • a fraction F1 of the upstream air coming from the compressor (not shown) is guided through the injection system 4 for the formation of the fuel mixture. This passes into the primary zone 5 where the combustion reactions take place, then the gases produced are diluted in the dilution zone 6 and cooled in the downstream secondary zone 7 and are distributed to the turbine, not shown, which they train.
  • the injector of which only the body 8 is shown in dotted lines in FIG. 1 is connected to the bottom 9 of the combustion chamber by an intermediate bowl 10 whose particular structure is the subject of the invention.
  • the injection system comprises, in known manner, an internal turbulence spin (not shown) which can be either of the radial type, or of the centripetal axial type intended to project the fuel from the injector forming a tapered jet flared downstream.
  • the injector 8 provided with its internal swirl spin is surrounded by a cap 11 forming the upstream wall of the intermediate bowl 10.
  • the cap 11 comprises downstream a frustoconical part lla extended upstream by a cylindrical bearing llb and finally by a radial wall llc delimiting with the radial wall 12c of an intermediate ring 12 a radial channel provided with inclined blades 13 forming an external swirling swirl for the injection system.
  • the intermediate ring 12 has a cylindrical part 12b and is extended by tightening downstream by a frustoconical bearing 12a, the cap 11 and the ring 12 forming an axial-centripetal annular channel for the air coming from the swirl of external turbulence 13.
  • the external turbulence spin 13 can be diaphragmed by a cylindrical ring 22 movable in rotation and having air intake orifices in number equal to that of the passages of the spin 13.
  • the rotation of the diaphragm 22 takes place by means of an operating lever 23 (shown diagrammatically in FIG. 1) connected to a control system external to the casing 2 and not shown.
  • the external spin 13 can be closed at idle speed and opened continuously until full opening at full gas in order to optimize the air-fuel mixture conditions (air-fuel percentages, volume distribution, spraying) at all operating speeds, which is permitted because the external spin has an important axial component at full throttle conditions and low at idle, this being due to the fact that the spin is diaphragmed upstream and that, the section at the neck of the bowl being constant, the speed of delivery, axial at this level, is directly proportional to the air flow and is therefore increasing from idle to full throttle.
  • the ring 12 is extended downstream by a frustoconical downstream web 14 flared downstream and forming the bowl proper.
  • the latter is connected to the combustion chamber by an external cylindrical skirt 15 attached to its downstream edge and comprising a thread allowing a nut, not shown, to come to grip in a known manner a cup cut out in the bottom 9 of the combustion chamber.
  • the ring 12, the downstream web 14 and the outer skirt 15 form an annular cooling chamber 16 by impact of the web 14.
  • the skirt 15 has radial openings 17 regularly distributed around its periphery, allowing the supply of chamber 16 in upstream air.
  • the chamber 16 is divided into four equal, diametrically opposite sectors 16a, 16b, separated by radial partitions 21.
  • the downstream web 14 regularly has bowl holes distributed over its periphery allowing the upstream air introduced into the sectors 16a, 16b of the chamber 16 escape from said chamber by fulfilling a spraying function of the conical sheet 18 of fuel formed between the air jets from the two tendrils of external and internal turbulence.
  • the first two sectors 16a of the chamber 16 comprise on the parts of the downstream web 14 which are associated with them small diameter bowl holes 19 while the second sectors 16b comprise on the corresponding parts of the downstream web of bowl 20 of large diameter.
  • the first sectors 16a and the second sectors 16b are supplied separately with upstream air through the radial openings 17, the partitions 21 completely isolating them from each other.
  • the openings 17, supplying the second sectors with large-diameter bowl holes can be diaphragmed by two perforated cylindrical extensions 22a of the ring 22 forming the diaphragm of the external turbulence spin 13, in order to modulate the flow bowl hole outlet 20.
  • the diaphragms 22 and 22a thus secured are operated simultaneously towards opening or closing and it is immediately seen that, at idle, the large-diameter bowl holes 20 of the second sectors are not supplied and that they can be supplied up to full flow by the gradual opening of the diaphragm 22a until it is fully open to full gas, while the bowl holes 19 of the first two sectors remain supplied with upstream air throughout the operating life of the turbomachine.
  • Figure 5 shows the arrangement and orientation of the bowls according to the invention applied to an annular combustion chamber. In this figure, without showing the totality of each bowl, there are adjacent bowls 10 seen in a section similar to that of FIG. 4.
  • the combustion chamber 1 comprises a number of injectors connected to the chamber bottom by as many intermediate bowls regularly distributed in a ring.
  • the adjacent bowls are oriented so that their first sectors permanently supplied with upstream air are face to face while the second sectors diaphragmed at idle and delivering at full throttle are oriented facing the internal 3 and external walls. 2 of the combustion chamber to ensure maximum cooling at full gas.
  • This arrangement is chosen, in addition to the cooling needs of the walls at full gas speed, because we realized by tests of hydraulic analogy then by measurements of cold laser velocimetry that there was a zone of localized recirculation between the adjacent injectors where the flame is localized just before extinction and that it was important to keep a constant supply of carbureted air from this zone at idle in order to improve the flame stability in this operating configuration.
  • the diameter of the bowl holes 20 of the sectors 16b is calculated in order to make the operation of the injection device at full gas speed optimal, with the diaphragms open.
  • the optimal efficiency at idle and in full throttle was obtained with ten holes of two millimeters in diameter for each first sector of five holes of four millimeters in diameter for each second sector.
  • Another calculation element taken into account in determining the number and dimensions of the holes in each sector consists of the percentage of air admitted in the combustion chamber, respectively by the internal and external swirl tendrils, by the bowl and by the other air intake orifices of the chamber (primary orifices 24 and dilution orifices 25, devices for cooling the walls by impact, by convection or by wall film).
  • This arrangement combined with the orientation of the adjacent bowls with respect to each other and the variation in swirl angle of the external spin obtained by the upstream arrangement of the diaphragm 22, makes it possible to vary between idle and full throttle the volumetric distribution of the air-fuel mixture in the reaction zone and thereby improving the flame stability at idle and the combustion efficiency at full gas and achieving continuous modulation of these parameters throughout the operating range of the combustion chamber.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Spray-Type Burners (AREA)

Abstract

L'invention concerne un dispositif d'injection d'air et de carburant dans une chambre de combustion de turbomachine. Le dispositif d'injection comprend un bol d'entrée d'air possédant une chambre de refroidissement par impact divisée en quatre secteurs égaux (16a, 16b) opposés deux à deux et séparés par des cloisons radiales (21) deux premiers secteurs (16a) comprenant des trous de bol de faible diamètre et deux seconds secteurs comportant des trous de bols de gros diamètre, pouvant être diaphragmés.

Description

  • L'invention concerne l'alimentation en carburant et en air primaire d'une chambre de combustion notamment pour turbomachine.
  • Les chambres de combustion traditionnelles comportent généralement une zone primaire à richesse élevée et une zone de dilution. Dans la zone primaire, est injectée une partie du débit d'air primaire, d'une part au moyen de vrilles de turbulences internes et externes destinées à créer un cône de pulvérisation du carburant sortant de l'injecteur, d'autre part au moyen d'orifices du fond de chambre et des parois internes et externes de la chambre de combustion. Le choix de la fraction d'air à injecter dans la zone primaire résulte d'un compromis entre les performances de la chambre de combustion au plein gaz : émission de fumées, tenue thermique des parois, répartition des températures et les performances en régime de ralenti : rendement, stabilité.
  • En raison de l'accroissement des performances demandées aux chambres de combustion des moteurs modernes, le compromis entre performances au ralenti et au plein gaz est de plus en plus difficile à trouver. Pour y parvenir, une première solution a consisté à réaliser des chambres à deux modules : l'un adapté au régime de plein gaz et l'autre au régime de ralenti. Les chambres lourdes, car volumineuses, et coûteuses, car elles nécessitent le doublement des points d'injection, posent également des problèmes de régulation aux régimes intermédiaires.
  • Pour éviter les problèmes rencontrés avec les chambres de combustion initiales et les chambres à deux modules dont il vient d'être question, une autre voie a été abordée qui consiste à adapter de manière .continue la répartition du débit d'air en fonction du régime au moyen de volets mobiles aptes à diaphragmer plus ou moins les entrées d'air de la chambre, ce qui permet une optimisation continue du fonctionnement de la chambre, donc une réduction importante du volume de combustion et ainsi de l'encombrement de la chambre. Une première approche de cette solution est montrée dans les brevets français 2 491 139 et 2 491 140 qui divulguent des diaphragmes adaptés à une vrille de turbulence externe radiale ou axiale d'un dispositif d'injection par ailleurs totalement traditionnel. Ces dispositifs ont pour inconvénients un mauvais guidage de l'air à l'entrée des vrilles ainsi que la génération de sillages importants à l'intérieur de la chambre de combustion.
  • D'autre part, ont été développés des injecteurs aérodynamiques à bol tels que ceux décrits dans les brevets antérieurs de la demanderesse : FR 2 357 738 et FR 2 391 359. Ces injecteurs sont montés sur le fond de chambre avec interposition d'une pièce intermédiaire appelée bol comportant une partie tronconique évasée vers l'aval et percée d'une multiplicité de trous de faible diamètre par lesquels de l'air à forte pression pénètre dans le cône de carburant pulvérisé. Par les turbulences qu'il crée et le mélange intime qu'il réalise, ce bol complète le rôle de l'injecteur, agit sur la composition de mélange et permet la création d'une mini zone primaire au ralenti.
  • Pour améliorer ces injecteurs aérodynamiques à bol intermédiaire, on a doté leur vrille de turbulence externe ainsi que l'admission d'air des trous de bolide diaphragme permettant d'en moduler le débit de sortie pour adapter la richesse du mélange air-carburant en sortie de bol à toutes les conditions de fonctionnement de la chambre de combustion et ainsi adapter cette richesse à tous les régimes intermédiaires entre le ralenti et le plein gaz. Une telle disposition est prévue par la demande de brevet français n" 84.16536 au nom de la demanderesse déposée le 30 octobre 1984.
  • La présente invention a pour but d'améliorer ces types d'injecteurs aérodynamiques à bol intermédiaires en les conformant de telle sorte qu'ils contribuent, d'une part, à améliorer le refroidissement des parois de la chambre de combustion et, d'autre part, à améliorer le rendement au ralenti, notamment lorsqu'ils sont montés dans des chambres de combustion annulaires sur le fond desquelles ils sont régulièrement répartis, ceci en utilisant au mieux les zones de recirculation localisées existant entre les injecteurs adjacents.
  • Pour ce faire, l'invention a pour objet un dispositif d'injection d'air et de carburant dans une chambre de combustion notamment de turbomachine comprenant au moins un injecteur de carburant, une vrille de turbulence externe pour le passage d'air de pulvérisation du carburant, équipée d'un diaphragme de modulation de débit d'entrée d'air, un corps en forme de bol comportant un voile aval évasé dans le sens de l'écoulement et pourvu d'une rangée de trous de bol pour l'injection d'air dans le cône de carburant pulvérisé et une chambre de refroidissement par impact formée par le voile aval, une bague intermédiaire et une jupe externe possédant des orifices d'entrée d'air.
  • Selon l'invention, la chambre est divisée en quatre secteurs égaux, diamétralement opposés deux à deux et séparés par des cloisons radiales, deux premiers secteurs comportant des trous de bol de faible diamètre et deux seconds secteurs comportant des trous de bol de gros diamètre.
  • Selon une particularité de l'invention, le diamètre des trous des premiers secteurs est calculé pour un fonctionnement optimisé de la chambre de combustion au ralenti et le diamètre des trous des seconds secteurs pour un rendement optimisé au régime plein gaz.
  • Selon une autre particularité de l'invention, le dispositif d'injection comporte un diaphragme de modulation du débit d'air des trous de bol de gros diamètre des seconds secteurs.
  • Dans le cas où l'invention est appliquée à une chambre de combustion annulaire comportant plusieurs injecteurs adjacents les uns aux autres, répartis en couronne sur le fond de la chambre de combustion, on oriente les bols de telle sorte que les premiers secteurs de chaque bol soient disposés côte à côte tandis que les seconds secteurs des bols possédant des trous de gros diamètre sont orientés vers les parois interne et externe de la chambre de combustion pour en améliorer le refroidissement au régime plein gaz.
  • D'autres caractéristiques de l'invention seront explicitées en regard des planches de dessins représentant de façon non limitative des modes de réalisation de l'invention.
    • La figure 1 montre, en coupe longitudinale, une chambre de combustion équipée d'un dispositif d'injection selon l'invention.
    • La figure 2 montre, en demi-coupe longitudinale, un mode de réalisation de l'invention, sans le corps de l'injecteur de carburant proprement dit.
    • La figure 3 montre une coupe du bol de l'invention selon une coupe III-III de la figure 2.
    • La figure 4 montre une coupe IV-IV de la figure 2.
    • La figure 5 schématise l'orientation des dispositifs selon l'invention appliqués à une chambre de combustion annulaire.
  • Sur la figure 1 est représentée en demi-coupe longitudinale une chambre de combustion annulaire 1 pour turbomachine comprenant le système d'injection selon l'invention. La chambre 1 est comprise entre un carter externe 2 et une virole interne 3 qui délimitent la veine de gaz comprimés. Une fraction F1 de l'air amont provenant du compresseur (non représenté) est guidée à travers le système d'injection 4 pour la formation du mélange carburé. Celui-ci passe dans la zone primaire 5 où ont lieu les réactions de combustion, puis les gaz produits sont dilués dans la zone de dilution 6 et refroidis dans la zone secondaire aval 7 et sont distribués vers la turbine, non représentée, qu'ils entraînent.
  • L'injecteur dont seul le corps 8 est figuré en pointillé à la figure 1 est relié au fond 9 de la chambre de combustion par un bol intermédiaire 10 dont la structure particulière fait l'objet de l'invention. Le système d'injection comporte de façon connue une vrille de turbulence interne (non représentée) pouvant être soit de type radial, soit de type axial centripète destinée à projeter le carburant issu de l'injecteur en formant un jet tronconique évasé vers l'aval.
  • L'injecteur 8 muni de sa vrille de turbulence interne est entouré par un chapeau 11 formant la paroi amont du bol intermédiaire 10. Le chapeau 11 comporte en aval une partie lla tronconique prolongée vers l'amont par une portée cylindrique llb et enfin par une paroi radiale llc délimitant avec la paroi radiale 12c d'une bague intermédiaire 12 un canal radial doté d'aubages 13 inclinés formant une vrille de turbulence externe pour le système d'injection. La bague intermédiaire 12 comporte une partie cylindrique 12b et se prolonge en se resserrant vers l'aval par une portée tronconique 12a, le chapeau 11 et la bague 12 formant un canal annulaire axialo-centripète pour l'air provenant de la vrille de turbulence externe 13.
  • De façon connue, la vrille de turbulence externe 13 peut être diaphragmée par une bague cylindrique 22 mobile en rotation et comportant des orifices d'entrée d'air en nombre égal à celui des passages de la vrille 13. La mise en rotation du diaphragme 22 s'effectue par l'intermédiaire d'un levier de manoeuvre 23 (schématisé à la figure 1) relié à un système de commande externe au carter 2 et non représenté. Par ce moyen, on peut obturer la vrille externe 13 au régime de ralenti et l'ouvrir continuellement jusqu'à pleine ouverture au plein gaz afin d'optimiser les conditions de mélange air-carburant (pourcentages air-carburant, répartition volumique, pulvérisation) à tous les régimes de fonctionnement, ce qui est permis parce que la vrille externe possède une composante axiale importante aux conditions pleins gaz et faible au ralenti, ceci étant dû au fait que la vrille est diaphragmée en amont et que, la section au col du bol étant constante, la vitesse débitante, axiale à ce niveau, est directement proportionnelle au débit d'air et est donc croissante du ralenti au plein gaz.
  • La bague 12 est prolongée vers l'aval par un voile aval tronconique 14 évasé vers l'aval et formant le bol proprement dit. Celui-ci est relié à la chambre de combustion par une jupe externe 15 cylindrique rapportée à son bord aval et comportant un filetage permettant à un écrou non représenté de venir enserrer de façon connue une coupelle découpée dans le fond 9 de la chambre de combustion.
  • La bague 12, le voile aval 14 et la jupe externe 15 forment une chambre annulaire de refroidissement 16 par impact du voile 14. Pour obtenir ce refroidissement, la jupe 15 comporte des ouvertures radiales 17 régulièrement réparties sur son pourtour, permettant l'alimentation de la chambre 16 en air amont.
  • Selon l'invention, la chambre 16 est divisée en quatre secteurs 16a, 16b égaux, diamétralement opposés, séparés par des cloisons radiales 21. Le voile aval 14 comporte régulièrement répartis sur sa périphérie des trous de bol permettant à l'air amont introduit dans les secteurs 16a, 16b de la chambre 16 de s'échapper de ladite chambre en remplissant une fonction de pulvérisation de la nappe conique 18 de carburant formée entre les jets d'air issus des deux vrilles de turbulence externe et interne. Selon l'invention, les deux premiers secteurs 16a de la chambre 16 comportent sur les parties du voile aval 14 qui leur sont associées des trous de bol de petit diamètre 19 tandis que les seconds secteurs 16b comportent sur les parties correspondantes du voile aval des trous de bol 20 de gros diamètre.
  • Les premiers secteurs 16a et les seconds secteurs 16b sont alimentés séparément en air amont par les ouvertures radiales 17, les cloisons 21 les isolant totalement les uns des autres. Selon l'invention, les ouvertures 17, alimentant les seconds secteurs à trous de bol de gros diamètre, peuvent être diaphragmées par deux prolongements cylindriques ajourés 22a de la bague 22 formant le diaphragme de la vrille de turbulence externe 13, afin de moduler le débit de sortie des trous de bol 20.
  • Les diaphragmes 22 et 22a ainsi solidaires sont manoeuvrés simultanément vers l'ouverture ou la fermeture et l'on voit immédiatement que, au ralenti, les trous de bol 20 à gros diamètre des seconds secteurs ne sont pas alimentés et qu'ils peuvent être alimentés jusqu'à plein débit par l'ouverture progressive du diaphragme 22a jusqu'à sa pleine ouverture au plein gaz, alors que les trous de bol 19 des deux premiers secteurs restent alimentés en air amont pendant toute la durée de fonctionnement de la turbomachine.
  • La figure 5 montre la disposition et l'orientation des bols selon l'invention appliqués à une chambre de combustion annulaire. Sur cette figure, sans représenter la totalité de chaque bol, on a des bols adjacents 10 vus selon une coupe similaire à celle de la figure 4.
  • La chambre de combustion 1 comporte un certain nombre d'injecteurs reliés au fond de chambre par autant de bols intermédiaires régulièrement répartis en couronne. Selon l'invention, les bols adjacents sont orientés de façon à ce que leurs premiers secteurs alimentés en permanence en air amont soient face à face tandis que les seconds secteurs diaphragmés au ralenti et débitant au plein gaz soient orientés face aux parois interne 3 et externe 2 de la chambre de combustion afin d'en assurer le refroidissement maximum au plein gaz.
  • Cette disposition est choisie, outre les besoins de refroidissement des parois au régime plein gaz, parce que l'on s'est rendu compte par des essais d'analogie hydraulique puis par des mesures de vélocimétrie laser à froid qu'il existait une zone de recirculation localisée entre les injecteurs adjacents où se localise la flamme juste avant l'extinction et qu'il importait de garder une alimentation constante en air carburé de cette zone au ralenti afin d'améliorer la stabilité de flamme dans cette configuration de fonctionnement.
  • La séparation du bol en secteurs alimentés en air indépendamment, dont les secteurs 16a en regard sont alimentés constamment en air amont, permet d'obtenir ce résultat, d'autant mieux que le diamètre des trous de bol 19 des secteurs 16a est calculé de telle sorte que le rendement au ralenti du dispositif d'injection soit optimal avec les diaphragmes 22, 22a fermés.
  • Parallèlement, le diamètre des trous de bol 20 des secteurs 16b est calculé afin de rendre optimal, diaphragmes ouverts, le fonctionnement du dispositif d'injection au régime plein gaz. Ainsi, pour un bol expérimental réalisé, le rendement optimal au ralenti et en plein gaz a été obtenu avec dix trous de deux millimètres de diamètre pour chaque premier secteur de cinq trous de quatre millimètres de diamètre pour chaque second secteur.
  • Un autre élément de calcul pris en compte dans la détermination du nombre et des dimensions des trous de chaque secteur consiste dans le pourcentage d'air admis dans la chambre de combustion, respectivement par les vrilles de turbulence interne et externe, par le bol et par les autres orifices d'admission d'air de la chambre (orifices primaires 24 et de dilution 25, dispositifs de refroidissement des parois par impact, par convection ou par film pariétal).
  • Ainsi, selon l'invention, les dimensions et le nombre des trous de bol et des vrilles sont tels que le débit d'admission d'air dans la chambre par le système d'injection (vrille interne + vrille externe + trous de bol) varie de 5% à 22% du débit d'air total admis dans la chambre de combustion et plus particulièrement que les débits respectifs par rapport au débit d'air total de la chambre varient depuis le ralenti jusqu'au plein gaz :
    • - de 1% à 13% pour la vrille de turbulence externe,
    • - de 0% à 4% pour les trous de bol 20 des seconds secteurs,

    tandis que les débits de la vrille interne et des trous de bol 19 des premiers secteurs sont constants pendant tout le fonctionnement de la turbomachine, respectivement de 3% et de 2% du débit total d'air admis dans la chambre de combustion.
  • Cette disposition, combinée avec l'orientation des bols adjacents les uns par rapport aux autres et la variation d'angle de swirl de la vrille externe obtenue par la disposition amont du diaphragme 22, permet de faire varier entre le ralenti et le plein gaz la répartition volumétrique du mélange air-carburant dans la zone de réaction et de ce fait d'améliorer la stabilité de flamme au ralenti et le rendement de combustion au plein gaz et réalisant une modulation continue de ces paramètres tout au long de la plage de fonctionnement de la chambre de combustion.
  • Ces avantages rendent l'invention particulièrement adaptée aux turboréacteurs d'aviation à faible niveau de pollution.

Claims (6)

1. Dispositif d'injection d'air et de carburant dans une chambre de combustion notamment de turbomachine, comprenant au moins un injecteur de carburant, une vrille de turbulence externe pour le passage d'air de pulvérisation du carburant, équipée d'un diaphragme de modulation de débit d'entrée d'air, un corps en forme de bol comportant un voile aval évasé dans le sens de l'écoulement et pourvu d'une rangée de trous de bol pour l'injection d'air dans le cône de carburant pulvérisé et une chambre de refroidissement par impact (16) formée par le voile aval, une bague intermédiaire et une jupe externe possédant des orifices d'entrée d'air, caractérisé en ce que la chambre est divisée en quatre secteurs égaux (16a, 16b), diamétralement opposés deux à deux et séparés par des cloisons radiales (21), deux premiers secteurs (16a) comportant des trous de bol de faible diamètre (19) et deux seconds secteurs (16b) comportant des trous de bol de gros diamètre (20).
2. Dispositif d'injection selon la revendication 1, caractérisé en ce que le diamètre des trous (19) des premiers secteurs (16a) est calculé pour un fonctionnement optimisé de la chambre de combustion au ralenti et le diamètre des trous (20) des seconds secteurs (16b) pour un rendement optimisé au régime plein gaz.
3. Dispositif d'injection selon la revendication 2, caractérisé en ce qu'il comporte un diaphragme (22a) de modulation du débit d'air des trous de bol de gros diamètre (20) de chacun des seconds secteurs (16b).
4. Dispositif d'injection selon la revendication 3, caractérisé en ce que le diaphragme (22) de la vrille de turbulence externe et celui (22a) des orifices de bol des seconda secteurs (16b) sont solidaires et manoeuvrables simultanément vers l'ouverture au régime plein gaz ou la fermeture au ralenti.
5. Dispositif d'injection selon l'une quelconque des revendications 1 à 3, pour chambre de combustion annulaire comportant plusieurs injecteurs adjacents les uns aux autres, répartis en couronne sur le fond de la chambre de combustion, caractérisé en ce que les premiers secteurs (16a) des bols adjacents sont disposés face à face, les seconds secteurs (16b) des bols possédant les trous de gros diamètre (20) étant orientés vers les parois (2, 3) de la chambre de combustion pour assurer son refroidissement au régime plein gaz.
6. Dispositif d'injection selon la revendication 5, caractérisé en ce que les trous de bol (20) des seconds secteurs (16b) ont un débit global variant entre 0% au ralenti et 4% au plein gaz par rapport au débit total d'entrée d'air dans la chambre de combustion, le débit des trous de bol (19) des premiers secteurs (16a) étant de 2% constant et le débit de la vrille externe (13) variant entre 1% au ralenti et 13% aux pleins gaz.
EP86402290A 1985-10-18 1986-10-15 Dispositif d'injection à bol sectorisé Expired EP0224397B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8515925 1985-10-18
FR8515925A FR2588919B1 (fr) 1985-10-18 1985-10-18 Dispositif d'injection a bol sectorise

Publications (2)

Publication Number Publication Date
EP0224397A1 true EP0224397A1 (fr) 1987-06-03
EP0224397B1 EP0224397B1 (fr) 1988-12-14

Family

ID=9324228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86402290A Expired EP0224397B1 (fr) 1985-10-18 1986-10-15 Dispositif d'injection à bol sectorisé

Country Status (5)

Country Link
US (1) US4696157A (fr)
EP (1) EP0224397B1 (fr)
JP (1) JPH0637977B2 (fr)
DE (1) DE3661440D1 (fr)
FR (1) FR2588919B1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678715A1 (fr) * 1991-07-03 1993-01-08 Snecma Bol de chambre de combustion pour injection aerodynamique.

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2601115B1 (fr) * 1986-07-03 1988-09-02 Snecma Chambre de combustion annulaire comportant un moyen de commande unique des diaphragmes d'injecteurs
US5297385A (en) * 1988-05-31 1994-03-29 United Technologies Corporation Combustor
US5481867A (en) * 1988-05-31 1996-01-09 United Technologies Corporation Combustor
FR2639095B1 (fr) * 1988-11-17 1990-12-21 Snecma Chambre de combustion de turbomachine a bols de prevaporisation montes flottants
FR2652858B1 (fr) * 1989-10-11 1993-05-07 Snecma Stator de turbomachine associe a des moyens de deformation.
FR2698157B1 (fr) * 1992-11-18 1994-12-16 Snecma Système d'injection aérodynamique de chambre de combustion.
GB2299399A (en) * 1995-03-25 1996-10-02 Rolls Royce Plc Variable geometry air-fuel injector
US6898938B2 (en) * 2003-04-24 2005-05-31 General Electric Company Differential pressure induced purging fuel injector with asymmetric cyclone
ITMO20030154A1 (it) * 2003-05-23 2004-11-24 Worgas Bruciatori Srl Bruciatore modulabile
US7836699B2 (en) * 2005-12-20 2010-11-23 United Technologies Corporation Combustor nozzle
FR2901349B1 (fr) * 2006-05-19 2008-09-05 Snecma Sa Chambre de combustion d'une turbomachine
US8146365B2 (en) * 2007-06-14 2012-04-03 Pratt & Whitney Canada Corp. Fuel nozzle providing shaped fuel spray
FR2950415B1 (fr) * 2009-09-21 2011-10-14 Snecma Chambre de combustion de turbomachine aeronautique avec trous de combustion decales ou de debits differents
FR2980554B1 (fr) * 2011-09-27 2013-09-27 Snecma Chambre annulaire de combustion d'une turbomachine
FR3141755A1 (fr) * 2022-11-08 2024-05-10 Safran Aircraft Engines Chambre de combustion d’une turbomachine

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE386159C (de) * 1923-12-04 Stettin Act Ges Luftzufuehrung bei OElfeuerungen
FR950363A (fr) * 1946-07-30 1949-09-26 Westinghouse Electric Corp Dispositif de combustion pour turbines à gaz
US3490230A (en) * 1968-03-22 1970-01-20 Us Navy Combustion air control shutter
FR2341099A1 (fr) * 1976-02-10 1977-09-09 Mitsubishi Heavy Ind Ltd Bruleur, notamment pour combustibles liquides ou gazeux et foyers industriels
FR2391359A2 (fr) * 1977-05-18 1978-12-15 Snecma Chambre de combustion pour turbomachines
GB2085147A (en) * 1980-10-01 1982-04-21 Gen Electric Flow modifying device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2655787A (en) * 1949-11-21 1953-10-20 United Aircraft Corp Gas turbine combustion chamber with variable area primary air inlet
US3831854A (en) * 1973-02-23 1974-08-27 Hitachi Ltd Pressure spray type fuel injection nozzle having air discharge openings
US3834159A (en) * 1973-08-03 1974-09-10 Gen Electric Combustion apparatus
US3901446A (en) * 1974-05-09 1975-08-26 Us Air Force Induced vortex swirler
US3982392A (en) * 1974-09-03 1976-09-28 General Motors Corporation Combustion apparatus
FR2357738A1 (fr) * 1976-07-07 1978-02-03 Snecma Chambre de combustion pour turbomachines
GB1539136A (en) * 1976-07-07 1979-01-24 Snecma Gas turbine combustion chambers
US4050240A (en) * 1976-08-26 1977-09-27 General Motors Corporation Variable air admission device for a combustor assembly
GB2085146B (en) * 1980-10-01 1985-06-12 Gen Electric Flow modifying device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE386159C (de) * 1923-12-04 Stettin Act Ges Luftzufuehrung bei OElfeuerungen
FR950363A (fr) * 1946-07-30 1949-09-26 Westinghouse Electric Corp Dispositif de combustion pour turbines à gaz
US3490230A (en) * 1968-03-22 1970-01-20 Us Navy Combustion air control shutter
FR2341099A1 (fr) * 1976-02-10 1977-09-09 Mitsubishi Heavy Ind Ltd Bruleur, notamment pour combustibles liquides ou gazeux et foyers industriels
FR2391359A2 (fr) * 1977-05-18 1978-12-15 Snecma Chambre de combustion pour turbomachines
GB2085147A (en) * 1980-10-01 1982-04-21 Gen Electric Flow modifying device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2678715A1 (fr) * 1991-07-03 1993-01-08 Snecma Bol de chambre de combustion pour injection aerodynamique.

Also Published As

Publication number Publication date
EP0224397B1 (fr) 1988-12-14
JPH0637977B2 (ja) 1994-05-18
FR2588919A1 (fr) 1987-04-24
US4696157A (en) 1987-09-29
FR2588919B1 (fr) 1987-12-04
DE3661440D1 (en) 1989-01-19
JPS62106223A (ja) 1987-05-16

Similar Documents

Publication Publication Date Title
EP0214003B1 (fr) Dispositif d'injection à bol elargi pour chambre de combustion de turbomachine
EP0239462B1 (fr) Dispositif d'injection à vrille axialo centripète
EP0224397B1 (fr) Dispositif d'injection à bol sectorisé
EP0182687B1 (fr) Système d'injection à géométrie variable
EP1857741B1 (fr) Chambre de combustion d'une turbomachine
FR2626043A1 (fr) Dispositif de formation de turbulences-injecteur de carburant pour ensemble de combustion dans une turbine a gaz
CA2634615C (fr) Chambre de combustion de turbomachine a circulation helicoidale de l'air
EP3134627B1 (fr) Moteur à combustion interne à injection directe à double angle de nappe pour réaliser un mélange carburé dans une chambre de combustion à double zone de combustion et à faible taux de compression et procédé pour utiliser un tel moteur
FR2906868A1 (fr) Injecteur de carburant pour chambre de combustion de moteur a turbine a gaz
FR2980554A1 (fr) Chambre annulaire de combustion d'une turbomachine
CA2798679C (fr) Dispositif pour attenuer le bruit emis par le jet d'un moteur de propulsion d'un aeronef
EP3368826A1 (fr) Systeme d'injection aerodynamique pour turbomachine d'aeronef, a melange air/carburant ameliore
EP2462383A1 (fr) Chambre de combustion de turbomachine comprenant des orifices d'entree d'air ameliores
EP0301950B1 (fr) Moteur à combustion interne suralimenté équipé d'une chambrede combustion auxiliaire
FR2694624A1 (fr) Chambre de combustion à plusieurs injecteurs de carburant.
CA2647159C (fr) Chambre de combustion de turbomachine
FR2602271A1 (fr) Dispositif d'injection, pour turbomachines, a vrille de turbulence a calage variable
FR3080672A1 (fr) Prechambre pour chambre de combustion annulaire a ecoulement giratoire pour moteur a turbine a gaz
EP2771619B1 (fr) Chambre de combustion annulaire dans une turbomachine
FR2948987A1 (fr) Chambre de combustion de turbomachine comportant des orifices d'entree d'air ameliores
FR3033030A1 (fr) Systeme d'injection d'un melange air-carburant dans une chambre de combustion de turbomachine d'aeronef, comprenant un venturi perfore de trous d'injection d'air
EP4179256B1 (fr) Chambre annulaire de combustion pour une turbomachine d'aéronef
FR2685382A1 (fr) Procede et dispositif pour l'introduction de gaz additionnels dans un moteur a combustion interne.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19861030

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19880222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3661440

Country of ref document: DE

Date of ref document: 19890119

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CL

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Ref country code: FR

Ref legal event code: CD

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040924

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040927

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040929

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051015

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060503

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20051015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060630

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060630