EP0217969A1 - Tauchankerelektromagnet für Frequenzen im Bereich bis 3000 Hz und Höher - Google Patents

Tauchankerelektromagnet für Frequenzen im Bereich bis 3000 Hz und Höher Download PDF

Info

Publication number
EP0217969A1
EP0217969A1 EP85112335A EP85112335A EP0217969A1 EP 0217969 A1 EP0217969 A1 EP 0217969A1 EP 85112335 A EP85112335 A EP 85112335A EP 85112335 A EP85112335 A EP 85112335A EP 0217969 A1 EP0217969 A1 EP 0217969A1
Authority
EP
European Patent Office
Prior art keywords
plunger
armature
anchor
plunger armature
electromagnet according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP85112335A
Other languages
English (en)
French (fr)
Inventor
Josef Pichler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mannesmann Tally GmbH Austria
Original Assignee
Mannesmann Tally GmbH Austria
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mannesmann Tally GmbH Austria filed Critical Mannesmann Tally GmbH Austria
Priority to EP85112335A priority Critical patent/EP0217969A1/de
Priority to JP61227895A priority patent/JPS6298604A/ja
Priority to US06/913,066 priority patent/US4749976A/en
Publication of EP0217969A1 publication Critical patent/EP0217969A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/22Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material
    • B41J2/23Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of impact or pressure on a printing material or impression-transfer material using print wires
    • B41J2/27Actuators for print wires
    • B41J2/285Actuators for print wires of plunger type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/088Electromagnets; Actuators including electromagnets with armatures provided with means for absorbing shocks

Definitions

  • the invention relates to a plunger armature electromagnet for frequencies in the range up to 3,000 Hz and higher, in particular for driving printing needles in matrix printers, with a plunger armature to which the printing needle or an actuating element is fastened and to a damping means assigned to the plunger armature.
  • Such plunger armature electromagnets are used to drive a device element that e.g. can consist of a switching element. Such plunger electromagnets are therefore used in electrical circuits as actuators for changing a circuit state, for transmitting a signal or for similar processes.
  • a special application of such plunger armature electromagnets is matrix printing technology, in which plunger armature electromagnets are used for matrix line printers and so-called serial matrix print heads.
  • the present invention has for its object to provide damping means for high switching frequencies in the range up to 3,000 Hz and higher, which allow a largely bounce-free working of the plunger.
  • the damping means consists of at least one separate damping body which rests on the plunger armature in the rest position and which is mounted radially outside the contact surface of the plunger armature between two elastic ring elements without play. It has been shown in practice after extensive tests that such damping agents ensure a largely bounce-free working of the submersible at switching frequencies in the range up to 3,000 Hz and higher. In this way, the vibration that occurs with the smallest strokes (e.g. 0.3 mm) can be achieved without such post-vibrations that it e.g. comes to a second full movement stroke of the actuating element or the pressure needle. Above all, this prevents the printing needle from firing outside the defined rest position. Furthermore, such damping means are stable for an actuation number of a few hundred million characters.
  • the damping body consists of a metallic disc and that the plunger is made of plastic, at least in the area of the contact surface.
  • the interaction of the metallic washer and the submersible anchor, which is partially equipped with plastic, has proven to be particularly effective in practice for damping the return stroke movement of the submersible anchor.
  • Optimal damping conditions are also achieved when the damping body has a multiple of the mass of the plunger.
  • Such an immersion armature electromagnet is ideally matched to the mass of the damping body with regard to the switching frequency and the mass of the immersion armature to be moved.
  • a composite body can easily be produced by removing the submersible anchor from the There is a pressure needle with a connected holder and the pressure needle and holder are surrounded by the plastic part forming the contact surface and by a magnetically conductive plunger shaft being fastened to the plastic part.
  • the part of the plunger anchor which has the magnetic conductivity advantageously takes up a minimum of mass.
  • the proposed design advantageously allows a return spring to be arranged between the plunger and the bearing ring, each of which is supported on a plunger armature shoulder and on a shoulder of the bearing ring.
  • the invention also allows a clear separation of the functional assemblies in the electromagnetic drive area and in the damping area.
  • a further improvement of the invention therefore represents that a magnetic yoke, a tube surrounding the electromagnetic coil, the magnetic flux ring and the plunger shaft are each made of an iron-silicon alloy.
  • the plunger anchor electromagnet serves as a drive for a pressure element, e.g. a printing needle for a matrix line printer or a serial matrix print head.
  • a pressure element e.g. a printing needle for a matrix line printer or a serial matrix print head.
  • a pressure element e.g. a printing needle for a matrix line printer or a serial matrix print head.
  • the plunger electromagnets are arranged in a horizontal line at the same height and with exactly the same side spacing from a shuttle which is moved back and forth.
  • the plunger electromagnets are arranged in a polygonal configuration, e.g. 7, 9, 18 or 24 plunger electromagnets can be provided.
  • the housing 1 consists of a pipe section 1a, which e.g. has an outer diameter of approx. 10 mm.
  • a ruby holder 2 is attached, which receives the ruby 3 as a guide for an actuating element, here for the pressure needle 4.
  • a centering shaft 5 is provided on the ruby holder 2, with which the entire plunger armature electromagnet is inserted and centered in the mentioned carriage of a matrix line printer. The attachment is carried out in each case by means of a threaded nut (not shown) on a threaded section 6.
  • a magnetic yoke 7 connects to the ruby holder 2 in the housing 1.
  • An electromagnetic coil 9 provided with an electrically insulating core 8 is pushed onto a stepped shoulder 7a.
  • the electromagnet coil 9 is provided with a two-wire power supply 10 for the purpose of energizing it via current pulses, which is connected through a slot 1b along an insulation piece 11 to the coil ends of the electromagnet coil 9.
  • a magnetic flux ring 12 At the right end (Fig. 1) of the core 8 is a magnetic flux ring 12, which at the same time forms a magnetically non-conductive bearing in the form of a bearing ring 13 made of plastic.
  • the bearing ring 13 supports a plunger armature 14.
  • the magnetic yoke 7, the tube 1a surrounding the electromagnetic coil 9, the magnetic flux ring 12 and a plunger armature shaft 14a are each made of an iron-silicon alloy and can therefore be magnetized quickly.
  • the rear (right) end of the magnet yoke shoulder 7a and the front (left) end of the plunger armature 14 form a primary air gap 15 which, when the solenoid 9 is not energized, e.g. Is 0.325 mm.
  • the plunger armature 14 is pressed back into the rear (drawn) position by means of a return spring 17 after each current pulse.
  • the return spring 17 is designed as a conical coil spring, which is supported on a plunger armature shoulder 18 and on a shoulder 19 of the bearing ring 13.
  • the plunger anchor 14 is shown larger in Fig. 2. It has a holder 20 which is surrounded by a plastic part 20a, at least the contact surface 21 which is important in connection with the invention being made of plastic.
  • the contact surface 21 arises from the size of the radius 21a.
  • the pressure needle 4 is firmly connected to the metallic holder 20; the connection can be created, for example, by soldering. The impact energy is therefore transferred from the plastic part 20a to the holder 20 and thus to the printing needle 4 or another actuator.
  • the plastic part 20a is extended beyond the submersible anchor shoulder 18 to below the submersible anchor shaft 14a and ends with the magnetically conductive immersed anchor shaft 14a connected by thread 22.
  • This diving anchor shaft 14a is guided in a central opening 13a of the bearing ring 13.
  • the immersion anchor 14 designed as described is damped as follows when actuated with a frequency of up to 3,000 Hz and more:
  • the plunger anchor 14 is directly opposite a damping assembly 23 (FIG. 1).
  • the damping means 24 are located in an annular housing 25 and consist of at least one separate damping body 26, which is mounted outside of the effective contact surface 21 without play between two elastic ring elements 27 and 28.
  • the outer ring element 28 is held by means of a cover 29 and can optionally be prestressed by means of the cover.
  • the damping body 26 consists of a circular, metallic disc 26a, which has an (integer) multiple of the mass of the plunger anchor 14, for example twice the mass.
  • this damping assembly 23 The effect of this damping assembly 23 is that an oscillation (forward and return stroke of the plunger armature 14) takes place practically without post-oscillation, ie the plunger armature 14 with the pressure needle 4 comes to rest in an extremely short time and can therefore be used earlier for repeated actuation be energized.
  • the damping time practically passes into the next full oscillation, which means that the high frequency of 3,000 Hz can be achieved without any intermediate damping curves.
  • the invention can be used particularly advantageously in matrix line printers, since the total weight of the plunger armature electromagnet is extremely low, so that the mass of the plunger armature solenoid to be moved back and forth does not increase significantly due to the large number of plunger armature electromagnets of this type. Even more favorable conditions arise for serial matrix print heads, which generally do not have more than 24 immersion armature electromagnets of this type.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Impact Printers (AREA)
  • Electromagnets (AREA)

Abstract

Ein derartiger Tauchankerelektromagnet wird insbesondere für den Antrieb von Drucknadeln in Matrixdruckern, z.B. Matrixzeilendruckern, verwendet, mit einem Tauchanker (14), an dem die Drucknadel (4) oder ein Betätigungselement befestigt ist und einem dem Tauchanker zugeordneten Dämpfungsmittel (24). Um bei extrem hohen Frequenzen ein prellfreies Arbeiten des Tauchankers zu gewährleisten, wird vorgeschlagen, daß das Dämpfungsmittel (24) aus zumindest einem separaten Dämpfungskörper (26) besteht, der in Ruhestellung am Tauchanker (14) anliegt und der jeweils radial außerhalb der Anliegefläche (21) des Tauchankers (14) zwischen zwei elastischen Ringelementen (27,28) spielfrei gelagert ist.

Description

  • Die Erfindung betrifft einen Tauchankerelektromagneten für Frequenzen im Bereich bis 3.000 Hz und höher, insbesondere für den Antrieb von Drucknadeln in Matrixdruckern, mit einem Tauchanker, an dem die Drucknadel oder ein Betätigungselement befestigt ist und einem dem Tauchanker zugeordneten Dämpfungs­mittel.
  • Derlei Tauchankerelektromagnete dienen zum Antrieb eines Geräte­gliedes, das z.B. aus einem Schaltglied bestehen kann. Derartige Tauchankerelektromagnete werden daher in elektrischen Schaltungen als Stellglied für die Umstellung eines Schaltungszustandes, für die Weitergabe eines Signals oder für ähnliche Vorgänge benutzt. Eine spezielle Anwendung derartiger Tauchankerelektromagnete bildet die Matrixdrucktechnik, in der Tauchankerelektromagnete für Matrixzeilendrucker und sog. serielle Matrixdruckköpfe eingesetzt werden.
  • Es ist bekannt (DE-OS 18 06 245), geforderte hohe Schaltfrequenzen durch möglichst geringes Magnetgewicht zu erreichen, da entweder die bewegten Ankermassen zu groß oder die erreichbaren Anker­anzugskräfte zu gering sind. Die bekannte Lösung strebt an, einen Elektromagneten für hohe Schaltfrequenzen zu schaffen, der bei minimalen Magnetaußenabmessungen ein optimales Kraft-Masse-­Verhältnis erreicht und sich besonders zur Betätigung der Druck­nadeln von Mosaikdruckern eignet. Die bekannte Lösung versucht, dieses Ziel durch geeignete Ausbildung des Magnetankers zu errei­chen.
  • Derartige Überlegungen berücksichtigen jedoch nicht gerade bei sehr hohen Schaltfrequenzen, daß der Tauchanker in extrem kurzer Zeit zum Stillstand gebracht werden muß, um einen neuen Strom­impuls aufbauen zu können. Das Abbremsen des Tauchankers am Ende des Rückhubs bedarf somit geeigneter Dämpfungsmittel.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, für hohe Schaltfrequenzen im Bereich bis 3.000 Hz und höher Dämpfungsmittel zu schaffen, die ein weitestgehend prellfreies Arbeiten des Tauchankers gestatten.
  • Die gestellte Aufgabe wird bei dem eingangs bezeichneten Tauch­ankerelektromagneten erfindungsgemäß dadurch gelöst, daß das Dämpfungsmittel aus zumindest einem separaten Dämpfungskörper besteht, der in Ruhestellung am Tauchanker anliegt und der jeweils radial außerhalb der Anliegefläche des Tauchankers zwischen zwei elastischen Ringelementen spielfrei gelagert ist. Es hat sich in der Praxis nach ausführlichen Versuchen gezeigt, daß solche Dampfungsmittel bei Schaltfrequenzen im Bereich bis 3.000 Hz und höher ein weitestgehend prellfreies Arbeiten des Tauchankers gewährleisten. Hierbei kann die bei kleinsten Hüben (von z.B. 0,3 mm) entstehende Schwingung ohne solche Nachschwingungen erzielt werden, daß es z.B. zu einem zweiten vollen Bewegungshub des Betätigungselementes bzw. der Drucknadel kommt. Vor allem wird hierdurch ein Abfeuern der Drucknadel außerhalb der definierten Ruhelage vermieden. Ferner sind derartige Dämpfungsmittel für eine Betätigungszahl von einigen hundert Millionen Zeichen standfest.
  • Der gewünschte Schwingungsverlauf kann außerdem dadurch gesichert werden, daß der Dämpfungskörper aus einer metallischen Scheibe besteht und daß der Tauchanker zumindest im Bereich der Anliege­fläche aus Kunststoff besteht. Das Zusammenwirken der metallischen Scheibe und des in einem Teilbereich mit Kunststoff bestückten Tauchankers hat sich in der Praxis als besonders wirkungsvoll für die Dämpfung der Rückhubbewegung des Tauchankers erwiesen.
  • Optimale Dämpfungsverhältnisse werden außerdem dann erreicht, wenn der Dämpfungskörper ein Vielfaches der Masse des Tauchankers aufweist. Ein solcher Tauchankerelektromagnet ist bezüglich der Schaltfrequenz und der zu bewegenden Masse des Tauchankers ideal auf die Masse des Dämpfungskörpers abgestimmt.
  • Trotz der widersprüchlichen Forderungen, einen Tauchanker mit magnetischen Eigenschaften zugrundezulegen und dennoch die Masse des Tauchankers so gering wie möglich zu halten und darüber hinaus dem Tauchanker im Dämpfungsbereich entsprechend elastische Eigen­schaften zu verleihen, kann ein derartiger Verbundkörper leicht dadurch hergestellt werden, indem der Tauchanker aus der Drucknadel mit verbundenem Halter besteht und Drucknadel und Halter durch den die Anliegefläche bildenden Kunststoffteil umgeben sind und indem auf dem Kunststoffteil ein magnetisch leitender Tauchankerschaft befestigt ist. Vorteilhafterweise nimmt der die magnetische Leitfähigkeit aufweisende Teil des Tauchankers ein Minimum an Masse ein.
  • Die zu fordernde genaue Bewegung des Tauchankers wird in weiterer Verbesserung der Erfindung dahingehend erreicht, daß an die Elektromagnetspule anschließend ein Magnetflußring vorgesehen ist, den der Tauchankerschaft durchdringt und daß an dem Magnetflußring ein Lagerring befestigt ist, in dessen Mittenöffnung der Tauch­ankerschaft geführt ist.
  • Die vorgeschlagene Bauweise erlaubt konstruktiv vorteilhaft, daß zwischen Tauchanker und dem Lagerring eine Rückholfeder angeordnet ist, die sich jeweils an einem Tauchankerabsatz und an einem Absatz des Lagerrings abstützt.
  • Die Erfindung gestattet ferner eine klare Trennung der Funktions­baugruppen im Elektromagnetantriebsbereich und im Dämpfungs­bereich. Eine weitere Verbesserung der Erfindung stellt daher dar, daß ein Magnetjoch, ein die Elektromagnetspule umgebendes Rohr, der Magnetflußring und der Tauchankerschaft jeweils aus einer Eisen-Silizium-Legierung hergestellt sind.
  • Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung darge­stellt und wird im folgenden näher beschrieben.
  • Es zeigen:
    • Fig. 1 einen axialen Längsschnitt durch den Tauchankerelektromagnet und
    • Fig. 2 einen gegenüber Fig. 1 im Maßstabe vergrößerten Längsschnitt durch den Tauchanker mit einer Drucknadel als Betätigungselement.
  • Der Tauchankerelektromagnet dient als Antrieb für ein Druck­element, wie z.B. eine Drucknadel für einen Matrixzeilendrucker oder einen seriellen Matrixdruckkopf. Bei einem Matrixzeilen­drucker sind bis zu 60 und mehr solcher Tauchankerelektromagnete aus einem hin- und herbewegten Schlitten (shuttle) in einer hori­zontalen Linie auf gleicher Höhe und mit genau gleichen Seiten­abständen angeordnet. Bei einem seriellen Matrixdruckkopf sind die Tauchankerelektromagnete in einer polygonalen Konfiguration angeordnet, wobei z.B. 7, 9, 18 oder 24 Tauchankerelektromagnete vorgesehen werden.
  • Das Gehäuse 1 besteht aus einem Rohrstück 1a, das z.B. einen Außendurchmesser von ca. 10 mm aufweist. Am vorderen Ende des Gehäuses 1 ist ein Rubinhalter 2 befestigt, der den Rubin 3 als Führung für ein Betätigungselement, hier für die Drucknadel 4, aufnimmt. Am Rubinhalter 2 ist ein Zentrierschaft 5 vorgesehen, mit dem der gesamte Tauchankerelektromagnet in den erwähnten Schlitten eines Matrixzeilendruckers gesteckt und zentriert wird. Die Befestigung erfolgt jeweils mittels einer (nicht gezeigten) Gewindemutter auf einem Gewindeabschnitt 6.
  • Im Gehäuse 1 schließt sich an den Rubinhalter 2 ein Magnetjoch 7 an. Auf einem abgesetzten Absatz 7a ist eine mit einem elektrisch isolierenden Kern 8 versehene Elektromagnetspule 9 aufgeschoben.
  • Die Elektromagnetspule 9 ist zwecks Bestromung über Stromimpulse mit einer Zweileiterstromzuführung 10 versehen, die durch einen Schlitz 1b an einem Isolationsstück 11 entlang an die Spulenenden der Elektromagnetspule 9 angeschlossen ist.
  • An das rechte Ende (Fig. 1) des Kerns 8 liegt ein Magnetflußring 12 an, der gleichzeitig ein magnetisch nicht leitendes Lager in form eines Lagerringes 13 aus Kunststoff bildet. Der Lagerring 13 stützt einen Tauchanker 14. Das Magnetjoch 7, das die Elektro­magnetspule 9 umgebende Rohr 1a, der Magnetflußring 12 und ein Tauchankerschaft 14a sind jeweils aus einer Eisen-Silizium-­Legierung hergestellt und daher schnell magnetisierbar.
  • Das hintere (rechte) stirnseitige Ende des Magnetjoch-Absatzes 7a und das vordere (linke) stirnseitige Ende des Tauchankers 14 bilden einen Primärluftspalt 15, der im nicht bestromten Zustand der Elektromagnetspule 9 z.B. 0,325 mm beträgt. Zwischen dem Tauchankerschaft 14a und dem Magnetflußring 12 besteht ein unveränderlicher Sekundärluftspalt 16. Der Tauchanker 14 wird mittels einer Rückholfeder 17 nach jedem Stromimpuls wieder in die rückwärtige (gezeichnete) Lage gedrückt. Die Rückholfeder 17 ist hierbei als kegelige Schraubenfeder ausgeführt, die sich an einem Tauchankerabsatz 18 und an einem Absatz 19 des Lagerringes 13 abstützt.
  • Der Tauchanker 14 ist in Fig. 2 größer dargestellt. Er weist einen Halter 20 auf, der von einem Kunststoffteil 20a umgeben ist, wobei zumindest die in Verbindung mit der Erfindung bedeutsame Anliege­fläche 21 aus Kunststoff besteht. Die Anliegefläche 21 entsteht durch die Größe des Radius' 21a. Die Drucknadel 4 ist mit dem metallischen Halter 20 fest verbunden; die Verbindung kann z.B. durch Löten geschaffen werden. Die Stoßenergie überträgt daher der Kunststoffteil 20a auf den Halter 20 und damit auf die Drucknadel 4 bzw. ein anderes Betätigungselement. Im Ausführungsbeispiel ist der Kunststoffteil 20a über den Tauchankerabsatz 18 hinaus bis unter den Tauchankerschaft 14a verlängert und schließt mit dem durch Gewinde 22 verbundenen, magnetisch leitenden Tauchanker­schaft 14a ab. Dieser Tauchankerschaft 14a ist in einer Mitten­öffnung 13a des Lagerringes 13 geführt. Der wie beschrieben ausge­bildete Tauchanker 14 ist wie folgt bei Betätigung mit einer Frequenz bis 3.000 Hz und mehr gedämpft:
    Der Tauchanker 14 liegt unmittelbar einer Dämpfungsbaugruppe 23 (Fig. 1) gegenüber. Die Dämpfungsmittel 24 befinden sich in einem Ringgehäuse 25 und bestehen aus zumindest einem separaten Dämpfungkörper 26, der außerhalb der wirksamen Anliegefläche 21 spielfrei zwischen zwei elastischen Ringelementen 27 und 28 gelagert ist. Das äußere Ringelement 28 ist mittels eines Deckels 29 gehalten und kann ggf. mittels des Deckels vorgespannt werden. Der Dämpfungskörper 26 besteht aus einer kreisrunden, metallischen Scheibe 26a, die ein (ganzzahliges) Viefaches der Masse des Tauchankers 14, z.B. die zweifache Masse, aufweist. Die Wirkung dieser Dämpfungsbaugruppe 23 besteht darin, daß eine Schwingung (Vor- und Rückhub des Tauchankers 14) praktisch ohne Nach­schwingung abläuft, d.h. der Tauchanker 14 mit der Drucknadel 4 kommt in extrem kurzer Zeit wieder zur Ruhe und kann demgemäß für eine wiederholte Betätigung wieder früher bestromt werden. Die Dämpfungszeit geht praktisch in die nächste volle Schwingung über, wodurch sich die hohe Frequenz von 3.000 Hz ohne zwischenliegende Dämpfungskurven verwirklichen läßt.
  • Die Erfindung läßt sich besonders vorteilhaft bei Matrixzeilen­druckern anwenden, da das Gesamtgewicht des Tauchankerelektro­magneten extrem niedrig ist, so daß durch eine hohe Anzahl von Tauchankerelektromagneten dieser Bauart sich die Masse des hin- und herzubewegenden Matrixdruckerschlittens nicht wesentlich erhöht. Noch günstigere Bedingungen ergeben sich für serielle Matrixdruckköpfe, die in der Regel nicht über 24 derartiger Tauch­ankerelektromagnete aufweisen.

Claims (7)

1. Tauchankerelektromagnet für Frequenzen im Bereich bis 3000 Hz und höher, insbesondere für den Antrieb von Drucknadeln in Matrix­druckern, mit einem Tauchanker, an dem die Drucknadel oder ein Betätigungselement befestigt ist und einem dem Tauchanker zugeordneten Dämpfungsmittel,
dadurch gekennzeichnet,
daß das Dämpfungsmittel (24) aus zumindest einem separaten Dämpfungskörper (26) besteht, der in Ruhestellung am Tauchanker (14) anliegt und der jeweils radial außerhalb der Anliegefläche (21) des Tauchankers (14) zwischen zwei elastischen Ringelementen (27,28) spielfrei gelagert ist.
2. Tauchankerelektromagnet nach Anspruch 1,
dadurch gekennzeichnet,
daß der Dämpfungskörper (26) aus einer metallischen Scheibe (26a) besteht und daß der Tauchanker (14) zumindest im Bereich der Anliegefläche (21) aus Kunststoff besteht.
3. Tauchankerelektromagnet nach den Ansprüchen 1 und 2,
dadurch gekennzeichnet,
daß der Dämpfungskörper (26) die ein Vielfaches der Masse des Tauchankers (14) aufweist.
4. Tauchankerelektromagnet nach den Ansprüchen 1 bis 3,
dadurch gekennzeichnet,
daß der Tauchanker (14) aus der Drucknadel (4) mit verbundenem Halter (20) besteht und Drucknadel (4) und Halter (20) durch den die Anliegefläche (21) bildenden Kunststoffteil (20a) umgeben sind und daß auf dem Kunststoffteil (20a) ein magnetisch leitender Tauchankerschaft (14a) befestigt ist.
5. Tauchankerelektromagnet nach den Ansprüchen 1 bis 4,
dadurch gekennzeichnet,
daß an die Elektromagnetspule (9) anschließend ein Magnetflußring (12) vorgesehen ist, den der Tauchankerschaft (14a) durchdringt und daß an dem Magnetflußring (12) ein Lagerring (13) befestigt ist, in dessen Mittenöffnung (13a) der Tauchankerschaft (14a) geführt ist.
6. Tauchankerelektromagnet nach den Ansprüchen 1 bis 5,
dadurch gekennzeichnet,
daß zwischen Tauchanker (14) und dem Lagerring (13) eine Rückhol­feder (17) angeordnet ist, die sich jeweils an einem Tauchanker­absatz (18) und an einem Absatz (19) des Lagerrings (13) abstützt.
7. Tauchankerelektromagnet nach den Ansprüchen 4 bis 6,
dadurch gekennzeichnet,
daß ein Magnetjoch (7), ein die Elektromagnetspule (9) umgebendes Rohr (1a), der Magnetflußring (12) und der Tauchankerschaft (14a) jeweils aus einer Eisen-Silizium-Legierung hergestellt sind.
EP85112335A 1985-09-28 1985-09-28 Tauchankerelektromagnet für Frequenzen im Bereich bis 3000 Hz und Höher Withdrawn EP0217969A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP85112335A EP0217969A1 (de) 1985-09-28 1985-09-28 Tauchankerelektromagnet für Frequenzen im Bereich bis 3000 Hz und Höher
JP61227895A JPS6298604A (ja) 1985-09-28 1986-09-26 3000Hzまでまたはそれ以上の範囲の周波数のソレノイドプランジヤ電磁石
US06/913,066 US4749976A (en) 1985-09-28 1986-09-29 Solenoid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP85112335A EP0217969A1 (de) 1985-09-28 1985-09-28 Tauchankerelektromagnet für Frequenzen im Bereich bis 3000 Hz und Höher

Publications (1)

Publication Number Publication Date
EP0217969A1 true EP0217969A1 (de) 1987-04-15

Family

ID=8193795

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85112335A Withdrawn EP0217969A1 (de) 1985-09-28 1985-09-28 Tauchankerelektromagnet für Frequenzen im Bereich bis 3000 Hz und Höher

Country Status (3)

Country Link
US (1) US4749976A (de)
EP (1) EP0217969A1 (de)
JP (1) JPS6298604A (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039236A (en) * 1987-05-11 1991-08-13 Citizen Watch Co., Ltd. Print head with tapered conical return spring
EP0774763A3 (de) * 1995-11-18 1997-09-03 Schultz Wolfgang E Elektromagnet mit beweglichem Bremskörper

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4839621A (en) * 1988-10-18 1989-06-13 International Business Machines Corporation Electromagnetic actuator having improved dampening means
JPH07120584B2 (ja) * 1988-10-27 1995-12-20 三明電機株式会社 高速応答電磁石
US5527117A (en) * 1994-02-16 1996-06-18 Impact Devices, Inc. Braille printing solenoid housing
DE202007005133U1 (de) * 2007-04-04 2008-08-14 Eto Magnetic Gmbh Elektromagnetische Stellvorrichtung
WO2011031307A2 (en) * 2009-09-08 2011-03-17 Saia-Burgess Inc. Quiet electromagnetic actuator
DE102010014140B4 (de) * 2010-04-07 2013-09-19 Schlaeger Kunststofftechnik Gmbh Elektromagnetische Stellvorrichtung
CN103262185B (zh) * 2010-12-21 2016-08-10 三菱电机株式会社 电磁操作装置
US9704636B2 (en) 2015-02-17 2017-07-11 Enfield Technologies, Llc Solenoid apparatus
CN114746752A (zh) 2019-11-27 2022-07-12 沃特世科技公司 有源阻尼梯度比例阀

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1102282B (de) * 1952-11-14 1961-03-16 Licentia Gmbh Anordnung zum Justieren der Lage des Magnetkernes eines Wechselstrommagnetsystems mit elastischer Lagerung
US3134932A (en) * 1960-03-28 1964-05-26 Itt Alternating current solenoid having yieldingly mounted stop
DE1806245A1 (de) * 1968-10-31 1970-05-21 Philips Electrologica Elektromagnet
DE2509917A1 (de) * 1975-03-07 1976-09-09 Philips Patentverwaltung Elektromagnet
DE2636985A1 (de) * 1975-08-19 1977-02-24 Ncr Co Tauchankermagnet
US4046244A (en) * 1975-08-06 1977-09-06 Sycor, Inc. Impact matrix print head solenoid assembly
DE2919632A1 (de) * 1978-06-30 1980-01-10 Robotron Veb K Daempfungssystem fuer tauchankermagneten
DE2953193A1 (de) * 1978-05-22 1980-12-04 Ledex Inc Solenoid fuer einen druckdraht eines rasterdruckers

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US31813A (en) * 1861-03-26 Improvement in rotary harrows
US3675172A (en) * 1971-05-17 1972-07-04 Decision Data Corp Damping apparatus for a linear actuator device
US4463332A (en) * 1983-02-23 1984-07-31 South Bend Controls, Inc. Adjustable, rectilinear motion proportional solenoid

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1102282B (de) * 1952-11-14 1961-03-16 Licentia Gmbh Anordnung zum Justieren der Lage des Magnetkernes eines Wechselstrommagnetsystems mit elastischer Lagerung
US3134932A (en) * 1960-03-28 1964-05-26 Itt Alternating current solenoid having yieldingly mounted stop
DE1806245A1 (de) * 1968-10-31 1970-05-21 Philips Electrologica Elektromagnet
DE2509917A1 (de) * 1975-03-07 1976-09-09 Philips Patentverwaltung Elektromagnet
US4046244A (en) * 1975-08-06 1977-09-06 Sycor, Inc. Impact matrix print head solenoid assembly
DE2636985A1 (de) * 1975-08-19 1977-02-24 Ncr Co Tauchankermagnet
DE2953193A1 (de) * 1978-05-22 1980-12-04 Ledex Inc Solenoid fuer einen druckdraht eines rasterdruckers
DE2919632A1 (de) * 1978-06-30 1980-01-10 Robotron Veb K Daempfungssystem fuer tauchankermagneten

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039236A (en) * 1987-05-11 1991-08-13 Citizen Watch Co., Ltd. Print head with tapered conical return spring
EP0774763A3 (de) * 1995-11-18 1997-09-03 Schultz Wolfgang E Elektromagnet mit beweglichem Bremskörper

Also Published As

Publication number Publication date
US4749976A (en) 1988-06-07
JPS6298604A (ja) 1987-05-08

Similar Documents

Publication Publication Date Title
DE2139458C3 (de) Antriebsvorrichtung für die Druckdrähte eines Druckkopfes
DE2636985C3 (de) Tauchankermagnet, sowie dessen Verwendung in einem Drahtmatrixdrucker
EP0406782B1 (de) Elektromagnetische Haltevorrichtung
DE3031855C2 (de) Druckkopf
DE3017903C2 (de) Druckkopf
DE2536217A1 (de) Ballistischer drahtmatrix-schlagdruckknopf
DE3230564C2 (de) Elektromagnetisches Schaltgerät, bestehend aus einem Magnetantrieb und einem oberhalb dessen angeordneten Kontaktapparat
EP0060969A1 (de) Magnetantriebssystem zur Erzeugung linearer Bewegungen
DE3419912C2 (de)
EP0217969A1 (de) Tauchankerelektromagnet für Frequenzen im Bereich bis 3000 Hz und Höher
DE2910859A1 (de) Druckkopf fuer einen rasterdrucker
EP0293638A1 (de) Nadeldruckkopf mit Klappankermagneten
DE2624809A1 (de) Magnetspulen-baugruppe
DE2846215C3 (de) Tauchankermagnet für Drahtdrucker
DE2629267B2 (de) Betätigungsvorrichtung für einen Draht-Matrixdrucker
DE2809428A1 (de) Druckvorrichtung
EP0081809B1 (de) Nadeldrucksystem mit montagegünstigem Aufbau und Verfahren zur Herstellung desselben
DE3110798C2 (de) Druckkopf
DE3502469C2 (de)
DE69013260T2 (de) Punktrasterdruckkopf.
EP0112275B1 (de) Nadeldruckkopf für Matrixdrucker
DE2542077A1 (de) Druckkopf
DE2733312A1 (de) Elektrodynamischer druckhammerantrieb
DE1817848A1 (de) Elektromagnetische Antriebsvorrichtung fuer die Drucknadeln eines Mosaikrasterdruckwerkes
EP0188672B1 (de) Matrixdruckkopf

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19870518

17Q First examination report despatched

Effective date: 19880816

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19890823

RIN1 Information on inventor provided before grant (corrected)

Inventor name: PICHLER, JOSEF