EP0210514B1 - Hydrogenation of olefinic hydrocarbons in t-alkyl-alkyl-ether-containing hydrocarbon fractions - Google Patents

Hydrogenation of olefinic hydrocarbons in t-alkyl-alkyl-ether-containing hydrocarbon fractions Download PDF

Info

Publication number
EP0210514B1
EP0210514B1 EP86109588A EP86109588A EP0210514B1 EP 0210514 B1 EP0210514 B1 EP 0210514B1 EP 86109588 A EP86109588 A EP 86109588A EP 86109588 A EP86109588 A EP 86109588A EP 0210514 B1 EP0210514 B1 EP 0210514B1
Authority
EP
European Patent Office
Prior art keywords
hydrogenation
catalyst
process according
tert
alkyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP86109588A
Other languages
German (de)
French (fr)
Other versions
EP0210514A3 (en
EP0210514A2 (en
Inventor
Bernhard Dr. Schleppinghoff
Horst Dipl.-Ing. Reinhardt
Hans-Joachim Dr. Krämer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Erdoelchemie GmbH
Original Assignee
Erdoelchemie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Erdoelchemie GmbH filed Critical Erdoelchemie GmbH
Publication of EP0210514A2 publication Critical patent/EP0210514A2/en
Publication of EP0210514A3 publication Critical patent/EP0210514A3/en
Application granted granted Critical
Publication of EP0210514B1 publication Critical patent/EP0210514B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds

Definitions

  • the present invention relates to a process for the hydrogenation of olefinic hydrocarbons which are in a mixture with tert-alkyl alkyl ethers and optionally other saturated aliphatic or aromatic hydrocarbons, the tert-alkyl alkyl ethers being largely retained.
  • tertiary alkyl alkyl ethers the best known of which are methyl tertiary butyl ether (MTBE) and tertiary amyl methyl ether (TAME), can be added to the motor spirit.
  • MTBE methyl tertiary butyl ether
  • TAME tertiary amyl methyl ether
  • Such ethers are generally prepared by etherification of tertiary alkenes in gasoline cuts and other suitable starting materials with lower alkanols on acidic catalysts, such as cation exchangers, sulfuric acid and other acidic catalysts.
  • the resulting ether-containing reaction mixtures contain even larger amounts of olefinic hydrocarbons, which impair the quality of these mixtures as gasoline additives, especially if they are unleaded Gasoline should be added.
  • EP 49 803 discloses the hydrogenation of a pyrolysis gasoline fraction in which metals from subgroup VIII of the periodic table of the elements on zeolitic supports are used as catalysts. Because of their regular structure, zeolites have passages and pores with discrete diameters depending on the type; pore diameters of 3-12 ⁇ are suitable for the process of EP 49 803. Zeolites are generally acidic in character.
  • tert-alkyl alkyl ethers on acidic catalysts which include acidic cation exchangers and also mordenites, zeolites, various Al2O3 modifications, various SiO2 modifications and others, already from 90 ° C reaction temperature in alkanols and tert. -Alkenes are split back.
  • oligomeric tertiary alkenes can also be cleaved on acidic catalysts, for example those mentioned.
  • a catalyst which is a hydrogenation-active Component on a catalyst carrier with a specific surface area of more than 50 m2 / g and a pore diameter of predominantly ⁇ 1000 nm has, the catalyst carrier being neutral or doped with (earth) alkali compounds.
  • Elements of the 6th, 7th or 8th subgroup of the Periodic Table of the Elements are suitable as the hydrogenation-active component.
  • the platinum metals especially platinum and / or palladium, very particularly palladium, are used in a concentration of 1-50 g / l catalyst, especially 5-20 g / l catalyst.
  • the other metals mentioned which are not among the platinum metals can also be used in bound form.
  • Substances can be used as carrier material for the hydrogenation catalysts to be used according to the invention, the specific surface area of which is> 50 m2 / g catalyst, but especially> 100 m2 / g catalyst and the pore diameter of which is predominantly ⁇ 1000 nm, but especially ⁇ 200 nm.
  • Such substances can be, for example, neutral aluminum silicates, diatomaceous earth, Al2O3, coal, etc. if they meet the above conditions. Kieselguhr and Al2O3 are particularly suitable.
  • carrier materials such as SiO2 or acidic aluminum silicates are suitable if they are doped with alkali or alkaline earth compounds.
  • concentration of alkali or alkaline earth compounds is 0.01-1, preferably 0.02-0.2 equivalents of alkali / alkaline earth metal per liter of catalyst in question.
  • the above-mentioned neutral carriers can also be given such a doping.
  • the hydrogenation according to the invention is possible both in the trickle phase and in the liquid or gaseous phase and is generally carried out at a temperature of 50-200 ° C., preferably 80-180 ° C., particularly preferably 100-150 ° C.
  • the hydrogen partial pressure is generally set at 1-100 bar, preferably 2-40 bar, particularly preferably 5-30 bar.
  • Pure hydrogen, technical hydrogen or hydrogen-containing residual gas present in petrochemical plants can be used as hydrogen.
  • the hydrogen content is 70-100%, in many cases also about 80 to about 90%.
  • the impurities present in technical hydrogen and in hydrogen-containing residual gases are, for example, nitrogen, methane or ethane.
  • the amount of hydrogen is adjusted in the process according to the invention so that the degree of remaining unsaturation corresponds to the desired value.
  • the reaction temperature and / or the residence time in the hydrogenation reactor are also used in a manner known to the person skilled in the art; it is often possible to work with an excess of hydrogen which is removed after the hydrogenation reaction or is operated as a cycle gas.
  • the remaining degree of unsaturation is measured by the bromine number in g Br2 / 100 g hydrocarbon mixture. Bromine numbers over 50, even over According to the invention, 70 g Br2 / 100 g hydrocarbon mixture can be pressed over all conceivable intermediate values down to values of less than 5, even down to ⁇ 0.01 g Br2 / 100 g hydrocarbon mixture.
  • the content of tert-alkyl alkyl ether is obtained.
  • Preservation means, for example, the maintenance of at least 90% of the original ether content, in many cases more than 96% of the ether.
  • the catalyst load in the process according to the invention is 1-5 l of the material used per l catalyst and hour for working in the liquid and trickle phases.
  • the catalyst load is 2-3 l / l catalyst and hour.
  • the heat of reaction generated can be dissipated by cooling the reactor or by the sensible heat of the reaction product. To avoid temperature peaks, the feed can be diluted by returning some of the hydrogenated product to the feed.
  • Suitable starting materials for the process according to the invention are those which contain tert-alkyl alkyl ethers in addition to olefinic, paraffinic, naphthenic or aromatic hydrocarbons and, if appropriate, minor amounts of diolefins.
  • Such mixtures are obtained, for example, when gasoline cuts, for example from a steam cracker, a fluid catalyst cracker (FCC) or from dehydrogenation plants are reacted with lower alkanols.
  • Particularly suitable gasoline cuts are those which, due to their C number range, are suitable for suitable for later use in petrol.
  • Examples of such tertiary alkyl alkyl ethers in such mixtures are those derived from tertiary C4-C4 alkenes and C1-C4 alcohols.
  • the ethers of the tertiary C4-C Alk alkenes with methanol in particular those of the tertiary C5-C6 alkenes with methanol.
  • excess hydrogen is optionally separated off with accompanying substances such as methane, ethane or nitrogen and other low boilers as residual gas.
  • the hydrogenation product according to the invention which is present after the removal of a residual gas can be used as a gasoline additive.
  • the hydrogenation mixture obtainable according to the invention can also be separated in such a way that a gasoline cut without a tert-alkyl alkyl ether is obtained in a distillation column, from which the residual gas still has to be removed, a pure ether, for example TAME, is obtained as a side stream and Small amounts of higher boilers, such as higher ethers and oligomers, remain in the swamp.
  • a gasoline cut without a tert-alkyl alkyl ether is obtained in a distillation column, from which the residual gas still has to be removed
  • a pure ether for example TAME
  • the present invention is illustrated by the following examples.
  • Conventional hydrogenation apparatuses are used here (FIGS. 1, 2 and 3).
  • the experimental setup was basically the same for the hydrogenations; the only difference was the direction of flow through the hydrogenation reactor, which was set from bottom to top in the case of liquid phase hydrogenation and from top to bottom in the cases of gas phase and trickle phase hydrogenation.
  • the starting material for all experiments described below was a C5-C6 hydrocarbon fraction from a pre-hydrogenated pyrolysis gasoline which had been subjected to etherification with methanol and consequently contained tert-amyl methyl ether (TAME) and tert-hexyl methyl ether.
  • This feed material had the following characteristic compositional characteristics:
  • FIG. 1 hydrogenation in the trickle phase
  • FIG. 2 gas-phase hydrogenation
  • FIG. 3 hydrogenation in the liquid phase
  • the feed material was transported from a graduated insert vessel (1) by means of a piston pump (2) via the preheater (3) into the hydrogenation reactor (4). This consisted of a thermostatted double jacket with the following dimensions: inner diameter 25 mm and length 750 mm.
  • the hydrogenation catalyst 250 ml was arranged as a fixed bed and was enclosed up and down by a pack of ceramic balls (each 50 mm long).
  • the hydrogen (7) (about 80 vol .-% H2, about 20 vol .-% CH4) was added to the feed before the preheater (3).
  • the hydrogenated product reached the separator (6) via the cooler (5).
  • the amount of exhaust gas (8) was 200 Nl / h.
  • a circuit line (9) was additionally used to recirculate part of the H2 residual gas (8) obtained in the separator (6) to the fresh hydrogen (7).
  • the preheater (3) was also used as an evaporator and the cooler (5) was also used as a condenser.
  • the hydrogenation reactor (4) was flown from below. Valves and measuring and control devices known to the person skilled in the art are not shown in FIGS. 1, 2 and 3.
  • reaction pressure was adjusted to 2 bar at 100 ° C reactor temperature and to 5 bar at 150 ° C reactor temperature.
  • the amount of circulating gas in the gas phase hydrogenation was 500 Nl / h.
  • the mode of action of the hydrogenation was assessed for the reactor temperatures of 100 and 150 ° C. after the hydrogenation of the alkenes in the feed material by the bromine number and the TAME content.
  • the catalysts used for the hydrogenation are listed in Table 1.
  • the results for the particular hydrogenation depending on the catalysts listed in Table 1 are summarized in Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)

Description

Die vorliegende Erfindung betrifft ein Verfahren zur Hydrierung olefinischer Kohlenwasserstoffe, die sich im Gemisch mit tert.-Alkyl-alkylethern und gegebenenfalls anderen gesättigten aliphatischen oder aromatischen Kohlenwasserstoffen befinden, wobei die tert.-Alkyl-alkylether weitgehend erhalten bleiben.The present invention relates to a process for the hydrogenation of olefinic hydrocarbons which are in a mixture with tert-alkyl alkyl ethers and optionally other saturated aliphatic or aromatic hydrocarbons, the tert-alkyl alkyl ethers being largely retained.

Zur Erhöhung der Oktanzahl können den Fahrbenzinen tert.-Alkyl-alkylether zugesetzt werden, deren bekannteste Vertreter Methyl-tert.-butylether (MTBE) und tert.-Amylmethylether (TAME) sind. Solche Ether werden im allgemeinen durch Veretherung tertiärer Alkene in Benzinschnitten und anderen geeigneten Ausgangsstoffen mit niederen Alkanolen an sauren Katalysatoren, wie Kationenaustauschern, Schwefelsäure und anderen sauren Katalysatoren hergestellt.To increase the octane number, tertiary alkyl alkyl ethers, the best known of which are methyl tertiary butyl ether (MTBE) and tertiary amyl methyl ether (TAME), can be added to the motor spirit. Such ethers are generally prepared by etherification of tertiary alkenes in gasoline cuts and other suitable starting materials with lower alkanols on acidic catalysts, such as cation exchangers, sulfuric acid and other acidic catalysts.

Die hierbei entstehenden etherhaltigen Reaktionsgemische enthalten noch größere Mengen olefinischer Kohlenwasserstoffe, die die Qualität dieser Gemische als Fahrbenzin-Zusätze beeinträchtigen, insbesondere wenn sie unverbleitem Benzin zugesetzt werden sollen. Durch eine hydrierende Behandlung solcher etherhaltiger Reaktionsgemische konnte eine deutliche Qualitätsverbesserung erwartet werden, beispielsweise eine Erhöhung der Motor-Oktanzahl (MOZ), eine Verringerung der Sensitivity (= Abstand zwischen MOZ und Resarch-Oktanzahl (ROZ)) und eine Verbesserung ihrer Lagerfähigkeit.The resulting ether-containing reaction mixtures contain even larger amounts of olefinic hydrocarbons, which impair the quality of these mixtures as gasoline additives, especially if they are unleaded Gasoline should be added. A significant improvement in quality could be expected from a hydrogenating treatment of such ether-containing reaction mixtures, for example an increase in the engine octane number (MOZ), a decrease in sensitivity (= distance between MOZ and resarch octane number (ROZ)) and an improvement in their shelf life.

Zur Hydrierung von Olefinen oder olefinhaltigen Kohlenwasserstoffgemischen sind zahlreiche Verfahren bekannt, bei denen verschiedene Katalysatoren eingesetzt werden. Diese Hydrierkatalysatoren besitzen als hydrieraktive Komponente eines oder mehrere Elemente der 6., 7. oder 8. Nebengruppe des Periodensystems der Elemente in elementarer oder gebundener Form, die mit verschiedenen Zusätzen dotiert sein können, um bestimmte Katalysatoreigenschaften, wie Verlängerung der Lebensdauer, Resistenz gegen bestimmte Katalysatorgifte, Erhöhung der Selektivität oder eine bessere Regenerierbarkeit zu erlangen. Solche Hydrierkatalysatoren enthalten die hydrieraktive Komponente vielfach auf Trägern, wie Mordeniten, Zeolithen, Al₂O₃-Modifikationen, SiO₂-Modifikationen und anderen. Zur weitgehenden Hydrierung der Olefine werden im allgemeinen Reaktionstemperaturen von 150-250°C angewandt. So ist aus EP 49 803 die Hydrierung einer Pyrolyse-Benzinfraktion bekannt, in der Metalle der VIII. Nebengruppe des Periodensystems der Elemente auf zeolithischen Trägern als Katalysatoren eingesetzt werden. Zeolithe haben aufgrund ihres regelmäßigen Aufbaus Gänge und Poren mit je nach Typ diskreten Durchmessern; für das Verfahren von EP 49 803 sind Porendurchmesser von 3 - 12 Å geeignet. Zeolithe haben grundsätzlich einen sauren Charakter.Numerous processes are known for the hydrogenation of olefins or olefin-containing hydrocarbon mixtures, in which various catalysts are used. These hydrogenation catalysts have, as the hydrogenation-active component, one or more elements of the 6th, 7th or 8th subgroup of the Periodic Table of the Elements in elementary or bound form, which can be doped with various additives, in order to achieve certain catalyst properties, such as prolonging the service life, resistance to certain ones To obtain catalyst poisons, increase selectivity or better regenerability. Such hydrogenation catalysts often contain the hydrogenation-active component on supports such as mordenites, zeolites, Al₂O₃ modifications, SiO₂ modifications and others. For the extensive hydrogenation of the olefins, reaction temperatures of 150-250 ° C. are generally used. For example, EP 49 803 discloses the hydrogenation of a pyrolysis gasoline fraction in which metals from subgroup VIII of the periodic table of the elements on zeolitic supports are used as catalysts. Because of their regular structure, zeolites have passages and pores with discrete diameters depending on the type; pore diameters of 3-12 Å are suitable for the process of EP 49 803. Zeolites are generally acidic in character.

Andererseits ist es bekannt, daß tert.-Alkyl-alkylether an sauren Katalysatoren, zu denen neben sauren Kationenaustauschern auch Mordenite, Zeolithe, verschiedene Al₂O₃-Modifikationen, verschiedene SiO₂-Modifikationen und andere gehören, schon ab 90°C Reaktionstemperatur in Alkanole und tert.-Alkene zurückgespalten werden. Weiterhin ist es bekannt, daß oligomere tertiäre Alkene ebenfalls an sauren Katalysatoren, beispielsweise den genannten, gespalten werden können.On the other hand, it is known that tert-alkyl alkyl ethers on acidic catalysts, which include acidic cation exchangers and also mordenites, zeolites, various Al₂O₃ modifications, various SiO₂ modifications and others, already from 90 ° C reaction temperature in alkanols and tert. -Alkenes are split back. Furthermore, it is known that oligomeric tertiary alkenes can also be cleaved on acidic catalysts, for example those mentioned.

Es ist weiter bekannt, Ether von olefinischen Beimengungen, beispielsweise Ether, die durch Hydration von Olefinen hergestellt wurden, durch Hydrierung zu befreien, indem man Katalysatoren aus Nickel oder Kobalt auf sauer reagierendem SiO₂ einsetzt (FR 1.560.586 in Verbindung mit DE-OS 16 67 194). Dieses Verfahren ist für die Reinigung von Diethylether beschrieben und auf andere normalkettige Ether übertragbar.It is also known to free ethers from olefinic admixtures, for example ethers which have been prepared by hydration of olefins, by hydrogenation using catalysts of nickel or cobalt on acid-reacting SiO 2 (FR 1,560,586 in connection with DE-OS 16 67 194). This process has been described for the purification of diethyl ether and can be applied to other normal-chain ethers.

Es wurde nun ein Verfahren zur Hydrierung von olefinischen Kohlenwasserstoffen in Gemischen mit tert.-Alkyl-alkylethern und gegebenenfalls anderen gesättigten aliphatischen, naphthenischen oder aromatischen Kohlenwasserstoffen bei weitgehender Erhaltung der Ether gefunden, das dadurch gekennzeichnet ist, daß ein Katalysator verwendet wird, der eine hydrieraktive Komponente auf einem Katalysatorträger mit einer spezifischen Oberfläche von mehr als 50 m²/g und einem Porendurchmesser von überwiegend < 1000 nm besitzt, wobei der Katalysatorträger neutral ist oder mit (Erd)Alkali-Verbindungen dotiert ist.We have now found a process for the hydrogenation of olefinic hydrocarbons in mixtures with tert-alkyl-alkyl ethers and optionally other saturated aliphatic, naphthenic or aromatic hydrocarbons while largely maintaining the ethers, which is characterized in that a catalyst is used which is a hydrogenation-active Component on a catalyst carrier with a specific surface area of more than 50 m² / g and a pore diameter of predominantly <1000 nm has, the catalyst carrier being neutral or doped with (earth) alkali compounds.

Als hydrieraktive Komponente kommen Elemente der 6., 7. oder 8. Nebengruppe des Periodensystems der Elemente in Betracht, wie Molybdän, Rhenium, Eisen, Kobalt, Nickel oder die Platinmetalle. Die Platinmetalle, besonders Platin und/oder Palladium, ganz besonders Palladium, werden in einer Konzentration von 1-50 g/l Katalysator, besonders 5-20 g/l Katalysator eingesetzt. Die übrigen genannten Elemente, besonders Kobalt, Nickel und/oder Molybdän, ganz besonders Nickel, werden in einer Konzentration der hydrieraktiven Komponente, gerechnet als Metall, von 200-800 g/l, besonders 300-700 g/l Katalysator eingesetzt. Die nicht zu den Platinmetallen zählenden anderen genannten Metalle können auch in gebundener Form eingesetzt werden.Elements of the 6th, 7th or 8th subgroup of the Periodic Table of the Elements, such as molybdenum, rhenium, iron, cobalt, nickel or the platinum metals, are suitable as the hydrogenation-active component. The platinum metals, especially platinum and / or palladium, very particularly palladium, are used in a concentration of 1-50 g / l catalyst, especially 5-20 g / l catalyst. The other elements mentioned, in particular cobalt, nickel and / or molybdenum, very particularly nickel, are used in a concentration of the hydrogenation-active component, calculated as metal, of 200-800 g / l, in particular 300-700 g / l, of catalyst. The other metals mentioned which are not among the platinum metals can also be used in bound form.

Als Trägermaterial für die erfindungsgemäß einzusetzenden Hydrierkatalysatoren können Stoffe verwendet werden, deren spezifische Oberfläche > 50 m²/g Katalysator, besonders aber > 100 m²/g Katalysator und deren Porendurchmesser überwiegend < 1000 nm, besonders aber überwiegend <200 nm ist.Substances can be used as carrier material for the hydrogenation catalysts to be used according to the invention, the specific surface area of which is> 50 m² / g catalyst, but especially> 100 m² / g catalyst and the pore diameter of which is predominantly <1000 nm, but especially <200 nm.

Solche Stoffe können beispielsweise neutrale Aluminiumsilikate, Kieselgure, Al₂O₃, Kohle usw. sein, wenn sie die obigen Bedingungen erfüllen. Kieselgure und Al₂O₃ sind besonders geeignet.Such substances can be, for example, neutral aluminum silicates, diatomaceous earth, Al₂O₃, coal, etc. if they meet the above conditions. Kieselguhr and Al₂O₃ are particularly suitable.

Weiterhin sind Trägermaterialien, wie SiO₂ oder saure Aluminiumsilikate geeignet, wenn sie mit Alkali- oder Erdalkali-Verbindungen dotiert sind. Als Konzentration von Alkali-oder Erdalkali-Verbindungen kommt 0,01-1, bevorzugt 0,02-0,2 Äquivalente Alkali-/Erdalkalimetall pro Liter Katalysator in Frage. Auch die oben genannten neutralen Träger können eine solche Dotierung erhalten.Furthermore, carrier materials such as SiO₂ or acidic aluminum silicates are suitable if they are doped with alkali or alkaline earth compounds. The concentration of alkali or alkaline earth compounds is 0.01-1, preferably 0.02-0.2 equivalents of alkali / alkaline earth metal per liter of catalyst in question. The above-mentioned neutral carriers can also be given such a doping.

Die erfindungsgemäße Hydrierung ist sowohl in der Rieselphase als auch in der flüssigen bzw. gasförmigen Phase möglich und wird im allgemeinen bei einer Temperatur von 50-200°C, bevorzugt 80-180°C, besonders bevorzugt 100-150°C durchgeführt.The hydrogenation according to the invention is possible both in the trickle phase and in the liquid or gaseous phase and is generally carried out at a temperature of 50-200 ° C., preferably 80-180 ° C., particularly preferably 100-150 ° C.

Der Wasserstoff-Partialdruck wird im allgemeinen bei 1-100 bar, bevorzugt 2-40 bar, besonders bevorzugt 5-30 bar eingestellt.The hydrogen partial pressure is generally set at 1-100 bar, preferably 2-40 bar, particularly preferably 5-30 bar.

Als Wasserstoff kann reiner Wasserstoff, technischer Wasserstoff oder in petrochemischen Anlagen vorhandenes wasserstoffhaltiges Restgas eingesetzt werden. Der Wasserstoffgehalt beträgt darin 70-100 %, vielfach auch etwa 80 bis etwa 90 %. Die im technischen Wasserstoff und in wasserstoffhaltigen Restgasen vorhandenen Verunreinigungen sind beispielsweise Stickstoff, Methan oder Ethan. Die Menge des Wasserstoffs wird im erfindungsgemäßen Verfahren so eingestellt, daß der Grad der restlichen Ungesättigtheit dem gewünschten Wert entspricht. Zu dieser Erreichung des restlichen Grades an Ungesättigtheit wird auch die Reaktionstemperatur und/oder die Verweilzeit im Hydrierreaktor in einer dem Fachmann bekannten Weise herangezogen; hierbei kann vielfach mit Wasserstoffüberschuß gearbeitet werden, der nach der Hydrierreaktion entfernt oder als Kreisgas gefahren wird. Der restliche Grad an Ungesättigtheit wird durch die Bromzahl in g Br₂/100 g Kohlenwasserstoffgemisch gemessen. Bromzahlen von über 50, selbst über 70 g Br₂/100 g Kohlenwasserstoffgemisch lassen sich erfindungsgemäß über alle denkbaren Zwischenwerte bis zu Werten von unter 5, sogar bis herab zu < 0,01 g Br₂/100 g Kohlenwasserstoffgemisch drücken. Hierbei wird der Gehalt an tert.-Alkyl-alkylether erhalten. Als Erhalten sei beispielsweise die Erhaltung von mindestens 90 % des ursprünglichen Gehalts an Ether, in vielen Fällen mehr als 96 % des Ethers verstanden.Pure hydrogen, technical hydrogen or hydrogen-containing residual gas present in petrochemical plants can be used as hydrogen. The hydrogen content is 70-100%, in many cases also about 80 to about 90%. The impurities present in technical hydrogen and in hydrogen-containing residual gases are, for example, nitrogen, methane or ethane. The amount of hydrogen is adjusted in the process according to the invention so that the degree of remaining unsaturation corresponds to the desired value. To achieve the remaining degree of unsaturation, the reaction temperature and / or the residence time in the hydrogenation reactor are also used in a manner known to the person skilled in the art; it is often possible to work with an excess of hydrogen which is removed after the hydrogenation reaction or is operated as a cycle gas. The remaining degree of unsaturation is measured by the bromine number in g Br₂ / 100 g hydrocarbon mixture. Bromine numbers over 50, even over According to the invention, 70 g Br₂ / 100 g hydrocarbon mixture can be pressed over all conceivable intermediate values down to values of less than 5, even down to <0.01 g Br₂ / 100 g hydrocarbon mixture. The content of tert-alkyl alkyl ether is obtained. Preservation means, for example, the maintenance of at least 90% of the original ether content, in many cases more than 96% of the ether.

Die Katalysatorbelastung im erfindungsgemäßen Verfahren beträgt 1-5 l des eingesetzten Materials pro l Katalysator und Stunde für das Arbeiten in der Flüssig- und Rieselphase. Für das Arbeiten in der Gasphase beträgt die Katalysatorbelastung 2-3 l/l Katalysator und Stunde.The catalyst load in the process according to the invention is 1-5 l of the material used per l catalyst and hour for working in the liquid and trickle phases. For working in the gas phase, the catalyst load is 2-3 l / l catalyst and hour.

Die entstehende Reaktionswärme kann durch Kühlung des Reaktors oder durch die fühlbare Wärme des Reaktionsproduktes abgeführt werden. Zur Vermeidung von Temperaturspitzen kann das Einsatzmaterial durch Rückführung eines Teils des hydrierten Produktes zum Einsatzmaterial verdünnt werden.The heat of reaction generated can be dissipated by cooling the reactor or by the sensible heat of the reaction product. To avoid temperature peaks, the feed can be diluted by returning some of the hydrogenated product to the feed.

Als Einsatzmaterialien für das erfindungsgemäße Verfahren kommen solche in Betracht, die tert.-Alkyl-alkylether neben olefinischen, paraffinischen, naphthenischen oder aromatischen Kohlenwasserstoffen und gegebenenfalls untergeordneten Mengen an Diolefinen enthalten. Solche Gemische erhält man beispielsweise, wenn Benzinschnitte, z.B. aus einem Steamcracker, einem Fluid Catalyst Cracker (FCC) oder aus Dehydrierungsanlagen mit niederen Alkanolen umgesetzt werden. Als Benzinschnitte kommen insbesondere solche in Frage, die sich aufgrund ihres C-Zahl-Bereiches für einen späteren Einsatz im Fahrbenzin eignen. Als tert.-Alkyl-alkylether in solchen Gemischen seien beispielsweise solche genannt, die sich von tertiären C₄-C₈-Alkenen und C₁-C₄-Alkoholen ableiten. Insbesondere seien die Ether der tertiären C₄-C₆-Alkene mit Methanol, insbesondere die der tertiären C₅-C₆-Alkene mit Methanol genannt.Suitable starting materials for the process according to the invention are those which contain tert-alkyl alkyl ethers in addition to olefinic, paraffinic, naphthenic or aromatic hydrocarbons and, if appropriate, minor amounts of diolefins. Such mixtures are obtained, for example, when gasoline cuts, for example from a steam cracker, a fluid catalyst cracker (FCC) or from dehydrogenation plants are reacted with lower alkanols. Particularly suitable gasoline cuts are those which, due to their C number range, are suitable for suitable for later use in petrol. Examples of such tertiary alkyl alkyl ethers in such mixtures are those derived from tertiary C₄-C₄ alkenes and C₁-C₄ alcohols. In particular, the ethers of the tertiary C₄-C Alk alkenes with methanol, in particular those of the tertiary C₅-C₆ alkenes with methanol.

Nach der Durchführung des erfindungsgemäßen Verfahrens wird gegebenenfalls überschüssiger Wasserstoff mit Begleitstoffen, wie Methan, Ethan oder Stickstoff sowie anderen Leichtsiedern als Restgas abgetrennt.After carrying out the process according to the invention, excess hydrogen is optionally separated off with accompanying substances such as methane, ethane or nitrogen and other low boilers as residual gas.

Das nach der Abtrennung eines Restgases vorliegende erfindungsgemäße Hydrierprodukt kann als Fahrbenzin-Zusatz verwendet werden.The hydrogenation product according to the invention which is present after the removal of a residual gas can be used as a gasoline additive.

Selbstverständlich kann die Auftrennung des erfindungsgemäß erhältlichen Hydriergemisches auch so erfolgen, daß in einer Destillationskolonne ein Fahrbenzinschnitt ohne einen tert.-Alkyl-alkylether erhalten wird, aus dem das Restgas noch entfernt werden muß, als Seitenstrom ein reiner Ether, beispielsweise TAME, erhalten wird und im Sumpf geringe Mengen an Höhersiedern, wie höhere Ether und Oligomere zurückbleiben.Of course, the hydrogenation mixture obtainable according to the invention can also be separated in such a way that a gasoline cut without a tert-alkyl alkyl ether is obtained in a distillation column, from which the residual gas still has to be removed, a pure ether, for example TAME, is obtained as a side stream and Small amounts of higher boilers, such as higher ethers and oligomers, remain in the swamp.

BeispieleExamples

Die vorliegende Erfindung wird durch folgenden Beispiele erläutert. Hierbei werden übliche Hydrierapparaturen verwendet (Figur 1, 2 und 3). Der Versuchsaufbau war für die Hydrierungen prinzipiell gleich; unterschiedlich war lediglich die Strömungsrichtung durch den Hydrierreaktor, die im Falle der Flüssigphasenhydrierung von unten nach oben und in den Fällen der Gasphasen- und der Rieselphasenhydrierung von oben nach unten eingestellt wurde.The present invention is illustrated by the following examples. Conventional hydrogenation apparatuses are used here (FIGS. 1, 2 and 3). The experimental setup was basically the same for the hydrogenations; the only difference was the direction of flow through the hydrogenation reactor, which was set from bottom to top in the case of liquid phase hydrogenation and from top to bottom in the cases of gas phase and trickle phase hydrogenation.

Versuchsbeschreibung:Experiment description:

Einsatzmaterial für alle nachfolgend beschriebenen Versuche war eine C₅-C₆-Kohlenwasserstofffraktion aus einem vorhydrierten Pyrolysebenzin, die der Veretherung mit Methanol unterworfen worden war und demzufolge tert.-Amyl-methylether (TAME) und tert.-Hexyl-methylether enthielt. Dieses Einsatzmaterial wies folgende charakteristische Zusammensetzungsmerkmale auf:

Figure imgb0001
The starting material for all experiments described below was a C₅-C₆ hydrocarbon fraction from a pre-hydrogenated pyrolysis gasoline which had been subjected to etherification with methanol and consequently contained tert-amyl methyl ether (TAME) and tert-hexyl methyl ether. This feed material had the following characteristic compositional characteristics:
Figure imgb0001

Die Versuchsapparatur (Fig. 1: Hydrierung in der Rieselphase, Fig. 2: Gasphasen-Hydrierung und Fig. 3: Hydrierung in der Flüssigphase) setzte sich als folgenden Aggregaten zusammen:
Aus einen graduierten Einsatzgefäß (1) wurde des Einsatzmaterial mittels einer Kolbenpumpe (2) über den Vorwärmer (3) in den Hydrierreaktor (4) transportiert. Dieser bestand aus einem thermostatisierten Doppelmantel mit folgenden Abmessungen: Innendurchmesser 25 mm und Länge 750 mm. Der Hydrierkatalysator (250 ml) wurde als Festbett angeordnet und wurde von einer Packung Keramikkugeln nach oben und nach unten eingeschlossen (jeweils 50 mm Länge). Der Wasserstoff (7) (ca. 80 Vol.-% H₂, ca. 20 Vol.-% CH₄) wurde dem Einsatzmaterial vor dem Vorwärmer (3) zudosiert. Das hydrierte Produkt gelangte über den Kühler (5) in den Abscheider (6). Die Abgasmenge (8) (vorwiegend H₂ und CH₄) lag bei 200 Nl/h.
The experimental apparatus (FIG. 1: hydrogenation in the trickle phase, FIG. 2: gas-phase hydrogenation and FIG. 3: hydrogenation in the liquid phase) were composed as the following units:
The feed material was transported from a graduated insert vessel (1) by means of a piston pump (2) via the preheater (3) into the hydrogenation reactor (4). This consisted of a thermostatted double jacket with the following dimensions: inner diameter 25 mm and length 750 mm. The hydrogenation catalyst (250 ml) was arranged as a fixed bed and was enclosed up and down by a pack of ceramic balls (each 50 mm long). The hydrogen (7) (about 80 vol .-% H₂, about 20 vol .-% CH₄) was added to the feed before the preheater (3). The hydrogenated product reached the separator (6) via the cooler (5). The amount of exhaust gas (8) (predominantly H₂ and CH₄) was 200 Nl / h.

Abweichend von dieser Beschreibung wurde bei Versuchen mit Rückverdünnung des Einsatzmaterials das Einsatzmaterial mit hydriertem Produkt im Verhältnis 2 Teile Einsatzmaterial zu 1 Teil hydriertem Produkt verschnitten.Deviating from this description, in experiments with redilution of the feed material, the feed material with hydrogenated product was blended in a ratio of 2 parts feed material to 1 part hydrogenated product.

Bei der Gasphasenhydrierung wurde zusätzlich eine Kreislaufleitung (9) zur Rezirkulation eines Teils des im Abscheider (6) anfallenden H₂-Restgases (8) zum Frischwasserstoff (7) eingesetzt. Bei dieser Variante wurde der Vorwärmer (3) zusätzlich als Verdampfer und der Kühler (5) zusätzlich als Kondensator eingesetzt. Bei der Hydrierung in der Flüssigphase wurde der Hydrierreaktor (4) von unten angeströmt. Dem Fachmann bekannte Ventile sowie Meß- und Regeleinrichtungen sind in Fig. 1, 2 und 3 nicht dargestellt.In the gas phase hydrogenation, a circuit line (9) was additionally used to recirculate part of the H₂ residual gas (8) obtained in the separator (6) to the fresh hydrogen (7). In this variant, the preheater (3) was also used as an evaporator and the cooler (5) was also used as a condenser. During the hydrogenation in the liquid phase, the hydrogenation reactor (4) was flown from below. Valves and measuring and control devices known to the person skilled in the art are not shown in FIGS. 1, 2 and 3.

Versuchsbedingungen:Test conditions:

Bei der Flüssig- und der Rieselphasenhydrierung wurden bei allen eingesetzten Katalysatoren folgende Reaktionsbedingungen eingestellt:

Figure imgb0002
The following reaction conditions were set for all catalysts used in the liquid and trickle phase hydrogenation:
Figure imgb0002

Bei der Gasphasenhydrierung wurde abweichend hiervon der Reaktionsdruck auf 2 bar bei 100°C Reaktortemperatur und auf 5 bar bei 150°C Reaktortemperatur eingestellt. Die Kreisgasmenge betrug bei der Gasphasenhydrierung 500 Nl/h.In the case of gas phase hydrogenation, the reaction pressure was adjusted to 2 bar at 100 ° C reactor temperature and to 5 bar at 150 ° C reactor temperature. The amount of circulating gas in the gas phase hydrogenation was 500 Nl / h.

Verssuchsergebnisse:Test results:

Die Wirkungsweise der Hydrierung wurde für die Reaktortemperaturen von 100 bzw. 150°C nach der Hydrierung der Alkene im Einsatzmaterial durch die Bromzahl und den TAME-Gehalt beurteilt. Die für die Hydrierung eingesetzten Katalysatoren sind in der Tabelle 1 zusammengestellt. Die Ergebnisse für die jeweilige Hydrierung in Abhängigkeit von den in Tabelle 1 genannten Katalysatoren sind in der Tabelle 2 zusammengestellt.

Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006
The mode of action of the hydrogenation was assessed for the reactor temperatures of 100 and 150 ° C. after the hydrogenation of the alkenes in the feed material by the bromine number and the TAME content. The catalysts used for the hydrogenation are listed in Table 1. The results for the particular hydrogenation depending on the catalysts listed in Table 1 are summarized in Table 2.
Figure imgb0003
Figure imgb0004
Figure imgb0005
Figure imgb0006

Claims (9)

  1. Process for the hydrogenation of olefinic hydrocarbons in mixtures with tert.-alkyl alkyl ethers and, if appropriate, other saturated aliphatic, naphthenic or aromatic hydrocarbons, with substantial preservation of the ethers, characterized in that a catalyst which has an active component for hydrogenation on a catalyst support having a specific surface area of more than 50 m²/g and a pore diameter of, in the main, < 1,000 nm is used, the catalyst support being neutral or doped with alkali or alkaline earth metal compounds.
  2. Process according to Claim 1, characterized in that the active component for hydrogenation is at least one noble metal of the 8th subgroup of the periodic system of the elements, particularly platinum and/or palladium, and in that the concentration of noble metal is 1-50 g/l of catalyst, in particular 5-20 g/l of catalyst.
  3. Process according to Claim 1, characterized in that the active component for hydrogenation is cobalt, nickel, molybdenum or mixtures thereof in elementary or combined form, and in that the concentration of the active components for hydrogenation, calculated as metal, is 200-800 g/l, especially 300-700 g/l, of catalyst.
  4. Process according to Claim 1-3, characterized in that aluminium silicates, kieselguhrs, charcoal or Al₂O₃, especially kieselguhr and Al₂O₃, are used as the support material, the specific surface area thereof being > 50 m²/g of catalyst and the pore diameter thereof being < 1,000 nm.
  5. Process according to Claim 1-4, characterized in that the specific surface area of the catalyst support is > 100 m²/g.
  6. Process according to Claim 1-5, characterized in that the pore diameter of the catalyst support is, in the main, < 200 nm.
  7. Process according to Claim 1-6, characterized in that the support material or the catalyst is doped with alkali or alkaline earth metal compounds, the concentration being 0.01-1 equivalent of alkali/alkaline earth metal per litre of catalyst.
  8. Process according to Claim 1-7, characterized in that the hydrogenation is carried out at a reaction temperature of 50-200°C, especially at 80-180°C, and under an H₂ partial pressure of 1-100 bar, especially 2-40 bar.
  9. Process according to Claim 1-8, characterized in that the feed material used is hydrocarbon mixtures containing the methyl ether of isobutene and/or of tert.-amylenes and/or of tert.-hexenes, in particular pyrolysis gasoline fractions containing methyl ethers of tert.-amylenes and/or of tert.-hexenes.
EP86109588A 1985-07-24 1986-07-14 Hydrogenation of olefinic hydrocarbons in t-alkyl-alkyl-ether-containing hydrocarbon fractions Expired - Lifetime EP0210514B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19853526443 DE3526443A1 (en) 1985-07-24 1985-07-24 METHOD FOR HYDROGENATING OLEFINIC HYDROCARBONS IN HYDROCARBON MIXTURES CONTAINING TERT.-ALKYL-ALKYL ETHERS
DE3526443 1985-07-24

Publications (3)

Publication Number Publication Date
EP0210514A2 EP0210514A2 (en) 1987-02-04
EP0210514A3 EP0210514A3 (en) 1988-08-17
EP0210514B1 true EP0210514B1 (en) 1991-02-20

Family

ID=6276612

Family Applications (1)

Application Number Title Priority Date Filing Date
EP86109588A Expired - Lifetime EP0210514B1 (en) 1985-07-24 1986-07-14 Hydrogenation of olefinic hydrocarbons in t-alkyl-alkyl-ether-containing hydrocarbon fractions

Country Status (3)

Country Link
US (1) US4950820A (en)
EP (1) EP0210514B1 (en)
DE (2) DE3526443A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028665A (en) * 1989-01-09 1991-07-02 The Dow Chemical Company Polymer hydrogenation catalysts
DE4013711A1 (en) * 1990-04-28 1991-10-31 Erdoelchemie Gmbh METHOD FOR THE PRODUCTION OF HIGH-OCTANE, LOW-OILFINE FUELS AND FUEL COMPONENTS
US5600045A (en) * 1993-12-02 1997-02-04 The Dow Chemical Company Process for conversion of crude hydrocarbon mixtures
CN1051478C (en) * 1996-08-21 2000-04-19 中国石化齐鲁石油化工公司 Catalyst for etherification of olefine and preparing process thereof
DE19756369A1 (en) 1997-12-18 1999-07-01 Bayer Ag Process for the hydrogenation of aromatic polymers
US6548721B1 (en) * 2001-05-22 2003-04-15 Uop Llc Hydrotreating olefin stream with complete destruction of oxygenates
IN2008DN02156A (en) * 2005-11-10 2010-04-16 Uop Llc

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1667194A1 (en) * 1967-02-27 1972-03-16 Melle Benzons Saint Leger Les Hydrogenation catalyst and process for making the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA248010A (en) * 1925-03-24 The Gulf Refining Company Method of making aluminum chlorid
US3077733A (en) * 1959-08-17 1963-02-19 Phillips Petroleum Co Method of making jet fuel and use thereof
US3098106A (en) * 1959-12-07 1963-07-16 Exxon Research Engineering Co Production of rocket fuel
FR1560586A (en) * 1968-02-02 1969-03-21
US3549720A (en) * 1969-07-22 1970-12-22 Catalysts & Chem Inc Selective hydrogenation of acetylenes and catalyst therefor
US3679762A (en) * 1970-06-08 1972-07-25 Catalysts & Chem Inc Selective hydrogenation of acetylenes
FR2097016B1 (en) * 1970-07-27 1973-05-25 Inst Francais Du Petrole
GB1361671A (en) * 1971-01-06 1974-07-30 Bp Chem Int Ltd Process for the production of gaseous olefins from petroleum distillate feedstocks
US4224458A (en) * 1979-01-31 1980-09-23 Allied Chemical Corporation Process for homogeneous hydrogenation of polycyclic aromatic hydrocarbons
DE3038117A1 (en) * 1980-10-09 1982-05-13 EC Erdölchemie GmbH, 5000 Köln HYDRATED HYDROCARBON MIXTURES, METHOD FOR THE PRODUCTION THEREOF, THEIR USE AND FUELS, CONTAINING THESE HYDROGENATED HYDROCARBON MIXTURES
US4546204A (en) * 1983-11-07 1985-10-08 Imperial Chemical Industries Australia Limited Process for the manufacture of methyl t-butyl ether
US4558168A (en) * 1985-06-19 1985-12-10 Air Products And Chemicals, Inc. Production of high purity butene-1 from an n-butane feedstock

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1667194A1 (en) * 1967-02-27 1972-03-16 Melle Benzons Saint Leger Les Hydrogenation catalyst and process for making the same

Also Published As

Publication number Publication date
EP0210514A3 (en) 1988-08-17
US4950820A (en) 1990-08-21
DE3526443A1 (en) 1987-02-05
DE3677556D1 (en) 1991-03-28
EP0210514A2 (en) 1987-02-04

Similar Documents

Publication Publication Date Title
DE69816821T2 (en) Improved process for the production of saturated oligomers
DE69918017T2 (en) Process for the preparation of a blowing agent component
DE2921576A1 (en) METHOD FOR THE PRODUCTION OF METHYL-TERT.-BUTYLAETHER
DE2836645A1 (en) METHOD FOR CONVERTING C TIEF 4-OLEFIN FRACTIONS OF STEAM CRACKING INTO ISOOCTANE AND BUTANE
EP1784476B1 (en) Method for the production of c5 aldehydes and propene from a c4 stream containing 1-butene and 2-butene
WO2007096296A1 (en) Process for preparation of polyisobutylene whose content of terminal double bonds is more than 50% from an industrial c4 hydrocarbon stream comprising 1-butene, 2-butene and isobutene
EP0063813A1 (en) Process for the production of mixtures containing isopropyl-tert.-butyl ether and tert.-butyl alcohol
DE2912449A1 (en) METHOD FOR CONVERTING C TIEF 4-OLEFIN FRACTIONS OF CRACKING TO ALKYLATE AND GASOLINE
DE19629906A1 (en) Flexible production of butene oligomers and alkyl tertiary butyl ether(s) from Fischer-Tropsch olefin(s)
EP0063814B1 (en) Process for the preparation of mixtures containing sec.-butyl-tert.-butyl ether and tert.-butyl alcohol
EP0820973B1 (en) Process for the preparation of butene oligomers from natural butanes
EP0210514B1 (en) Hydrogenation of olefinic hydrocarbons in t-alkyl-alkyl-ether-containing hydrocarbon fractions
DE2516362A1 (en) PROCESS FOR THE RECOVERY OF 1,3-BUTADIENE FROM A C DEEP 4 HYDROCARBON MIXTURE
EP0124744B1 (en) Hydrogenating catalyst, its preparation and use
DE60103335T2 (en) A process for the selective production of di-isobutene from an i-butene-containing C4 feed
EP0455029B1 (en) Process for the preparation of fuels and fuel components with a high-octane, low-olefin content
EP0820974B1 (en) Process for the preparation of alkyl tert-butyl ethers and di-n-butene from field butanes
EP0042537B1 (en) Process for the position isomerization of terminal double bonds in olefins
EP1466881A2 (en) Process for the production of 1-butene
EP0820975B1 (en) Process for the preparation of alkyl tert-butyl ethers and di-n-butene from field butanes
EP0049803B1 (en) Hydrogenated hydrocarbon mixtures, process for their preparation, their utilization and fuels containing these hydrogenated hydrocarbon mixtures
DE10321523A1 (en) Process for double bond isomerization in olefins
EP0049804B1 (en) Process for the production of motor fuel fractions
DE885845C (en) Process for the catalytic production of unsaturated, gaseous hydrocarbons by reducing carbon oxide with hydrogen
EP4245828A1 (en) Method and system for the production of a synthetic kerosene from oxygenates

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19860725

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE DE FR GB IT NL

17Q First examination report despatched

Effective date: 19890823

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19910220

Ref country code: BE

Effective date: 19910220

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 3677556

Country of ref document: DE

Date of ref document: 19910328

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
K2C3 Correction of patent specification (complete document) published

Effective date: 19910220

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19980612

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19980623

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19980706

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19990731

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19990714

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000503

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050714