EP0184740A2 - Process for the preparation of methyl esters of fatty acids - Google Patents

Process for the preparation of methyl esters of fatty acids Download PDF

Info

Publication number
EP0184740A2
EP0184740A2 EP85115217A EP85115217A EP0184740A2 EP 0184740 A2 EP0184740 A2 EP 0184740A2 EP 85115217 A EP85115217 A EP 85115217A EP 85115217 A EP85115217 A EP 85115217A EP 0184740 A2 EP0184740 A2 EP 0184740A2
Authority
EP
European Patent Office
Prior art keywords
methanol
glycerol
oil phase
transesterification
fatty acids
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP85115217A
Other languages
German (de)
French (fr)
Other versions
EP0184740A3 (en
EP0184740B1 (en
Inventor
Herbert Dr. Lepper
Lothar Friesenhagen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Priority to AT85115217T priority Critical patent/ATE61332T1/en
Publication of EP0184740A2 publication Critical patent/EP0184740A2/en
Publication of EP0184740A3 publication Critical patent/EP0184740A3/en
Application granted granted Critical
Publication of EP0184740B1 publication Critical patent/EP0184740B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/003Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fatty acids with alcohols
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11CFATTY ACIDS FROM FATS, OILS OR WAXES; CANDLES; FATS, OILS OR FATTY ACIDS BY CHEMICAL MODIFICATION OF FATS, OILS, OR FATTY ACIDS OBTAINED THEREFROM
    • C11C3/00Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom
    • C11C3/04Fats, oils, or fatty acids by chemical modification of fats, oils, or fatty acids obtained therefrom by esterification of fats or fatty oils

Definitions

  • the invention relates to a process for the preparation of fatty acid methyl ester mixtures by catalytic transesterification from natural fats and oils which contain free fatty acids.
  • Fatty acid methyl esters are of great technical importance as a starting material for the production of fatty alcohols and other oleochemical products such as ester sulfonates, fatty acid alkanolamides and soaps.
  • the industrial production of the fatty acid methyl esters takes place predominantly by catalytic transesterification (alcoholysis) of fatty acid triglyceride mixtures as they are present in the fats and oils of vegetable and animal origin.
  • fats and oils can be transesterified at 25 to 100 ° C. with a 0.5 to 1.0 molar excess of alcohol under normal pressure to give the corresponding fatty acid ester mixtures.
  • a corresponding method is described as the first stage of soap production in US Pat. No. 2,360,844. This alkali-catalyzed, pressure-free transesterification can be carried out without problems as long as fats and oils are used which are largely anhydrous and whose free fatty acid content is below 0.5% by weight (corresponding to an acid number of about 1).
  • fats and oils with a higher content of free fatty acids in the presence of alkali or zinc catalysts at 240 ° C. under a pressure of about 100 bar with a 7- to 8-molar excess of methanol can be added to the corresponding ones Fatty acid methyl esters are transesterified (Ullmann, Encyclopedia of Industrial Chemistry, 4th edition, Volume 11 (1976), page 432).
  • the unpressurized transesterification is characterized by a significantly lower methanol requirement and - because of the lower reaction temperatures - by a lower energy consumption.
  • the transesterification works under normal pressure without expensive pressure reactors. Due to the fact that there are almost always larger amounts of water and fatty acids in technical fats and oils, the unpressurized transesterification results in drying and a reduction in the acid number - for example by prior conversion of the free fatty acids into the corresponding alkyl or glycerol esters in the course of a pre-esterification reaction - in advance.
  • the pre-esterification of the acidic fats and oils can be carried out in the presence of alkaline catalysts at 240 ° C and 20 bar (Ullmann, Encyclopedia of Industrial Chemistry, 4th edition, Volume 11 (1976), page 432). This type of pre-esterification with methanol in turn requires the use of expensive pressure reactors.
  • the invention had for its object to facilitate the production of fatty acid methyl esters from such triglyceride starting materials that contain large amounts of water and free fatty acids.
  • both process stages should be able to be carried out at comparatively low temperatures and without the use of pressure reactors.
  • the excess alcohol required for the transesterification should be kept as low as possible, taking into account the necessary processing and cleaning steps.
  • it should enable the production of fatty acid methyl esters in an energy-saving and cost-effective manner, especially with starting materials of the type obtained as fats and oils of vegetable or animal origin.
  • stage a) of the process according to the invention the proportion of free fatty acids present in the triglyceride mixtures of the starting material is esterified with excess methanol in the presence of acidic esterification catalysts.
  • comparatively mild reaction conditions are chosen so that a transesterification of the triglycerides with methanol does not take place or does not take place to a significant extent.
  • the ratio between triglyceride and methanol is expediently chosen so that on the one hand there is a clear excess of methanol over the free acid to be esterified, and on the other hand a clean separation into an oil and a methanol phase is ensured at the end of the reaction.
  • 20 to 50 parts by volume of methanol are normally used per 100 parts by volume of starting material.
  • stage a The pre-esterification of stage a) is usually carried out at normal pressure.
  • Working with low overpressure can be advantageous in various cases. In this case, however, only pressures up to 5 bar come into consideration, for which no special pressure reactors are required.
  • all acidic, non-volatile esterification catalysts are suitable as catalysts for stage a), for example the corresponding systems based on Lewis acids, low-volatility inorganic acids and their acidic partial esters and heteropolyacids.
  • Alkyl, aryl or alkarylsulfonic acids such as e.g. Methanesulfonic acid, naphthalenesulfonic acid and dodecylbenzenesulfonic acid.
  • Sulfuric acid and glycerol monosulfuric acid may be mentioned as an example of low volatile inorganic acids and their partial esters.
  • Suitable heteropolyacids are the tungstic and molybdate phosphoric acids. These catalysts are generally used in amounts of 0.5 to 5 parts by weight per 100 parts by weight of starting material.
  • the reactants were heated together with the catalyst to the intended reaction temperature with vigorous stirring and then held at this temperature until the acid number of the oil phase had dropped to the desired value.
  • the acid number of the oil phase is preferably reduced to values below 1 in step a).
  • Process step a) can be carried out batchwise or continuously.
  • the components alcohol and oil can be carried out in cocurrent and in countercurrent.
  • reaction mixture is left at temperatures between 40 and 60 ° C. without further stirring.
  • a separation into an oil and a methanol phase occurs.
  • the two liquid phases are separated in a known manner.
  • the methanol phase which contains most of the water of reaction and practically all of the amount of catalyst, is worked up by distillation to recover the catalyst and the methanol.
  • the catalyst remains in the distillation residue, which can be used again as a catalyst additive in stage a) of the process according to the invention without further purification steps.
  • the oil phase resulting from step a) is mixed with the intended amount of glycerol-methanol mixture and the mixture obtained is stirred vigorously for 1 to 5 minutes. The mixture is then left to stand still until phase separation and the extracted oil phase is separated off. In order to separate the water of reaction and catalyst residues still present as far as possible, it has proven to be advantageous not to carry out the entire extraction in stage b) at normal temperature, but at 40 to 60.degree.
  • Step b) can be carried out in batch mode in a simple stirred tank.
  • erfi nd ungsgemä- SEN method are realized in a stirred tank cascade or in a equipped with static mixing elements column. It is also possible to continuously pass the oil phase and the glycerol-methanol mixture in countercurrent through an extraction column.
  • the deacidified and largely anhydrous triglycerides are subjected to the pressure-free alkali-catalyzed transesterification with methanol in a manner known per se.
  • the following conditions are expediently observed:
  • the transesterification is carried out with essentially anhydrous methanol.
  • the methanol is used in a 50 to 150 percent excess over the stoichiometric amount required for the transesterification.
  • Alkali metal hydroxides, in particular sodium and potassium hydroxide, and alkali metal alcoholates, in particular sodium methylate, are particularly suitable as catalysts.
  • the catalysts are used in amounts of 0.05 to 0.2 parts by weight per 100 parts by weight of triglyceride.
  • the mixture of triglyceride (oil phase), methanol and catalyst is heated to the intended reaction temperature with stirring.
  • the transesterification reaction takes place at sufficient speed even at 25 to 30 ° C. In general, however, it is preferred to carry out the transesterification reaction at a temperature of 5 0 to 100 ° C, in particular at reflux temperature.
  • the reaction mixture is allowed to stand without further stirring until the phases have separated.
  • the phases are then separated in a known manner.
  • the glycerol phase containing methanol is generally used as an extracting agent in stage b) of the process according to the invention before it is worked up to glycerol and methanol in a manner known per se.
  • the methyl ester phase is further processed in a manner known per se via appropriate purification and distillation steps to give the desired starting materials for organic syntheses.
  • the separated oil phase (204 kg; acid number 0.8; water content 0.34 percent by weight; methanol content 14.1 percent by weight) was 40.8 kg glycerol-methanol mixture from the alkali-catalyzed unpressurized transesterification (59, 0 percent by weight glycerol ; 28 , 1 percent by weight methanol; 12.8 percent by weight fat derivatives; 0.1 percent by weight free alkali) added.
  • the two-phase mixture was stirred for 10 minutes. After the stirring process had ended, the two phases were clearly separated in a few minutes. After draining off the glycerol phase, 196 kg of oil phase remained (acid number 0.4; water content 0.08 percent by weight; methanol content 10.6 percent by weight).
  • the extracted oil phase was refluxed with 35 liters (27.7 kg) of methanol and 0.3 kg of sodium methylate as the transesterification catalyst with stirring for 30 minutes.
  • the reaction mixture was then cooled to 50 ° C.
  • the methanol-containing glycerol phase which separated out was separated off.
  • the remaining crude coconut fatty acid methyl ester (188 kg) contained 0.4 weight percent bound glycerol, 0.02 weight percent water and 8.1 weight percent methanol; its acid number was 0.04.
  • Example 2 200 liters (174 kg) of coconut oil (acid number 15.1) were reacted with 60 liters (47.4 kg) of methanol in the presence of 1.6 kg of p-toluenesulfonic acid with stirring at 65 ° C.
  • the oil phase obtained (204 kg; acid number 0.8; water content 0.34 percent by weight) was fed directly to the unpressurized transesterification. To this end, the oil phase was heated to reflux with 36.51 (288 kg) of methanol and 0.3 kg of Na methylate with stirring for 30 minutes. After cooling to 50 ° C., the lower phase containing methanol and glycerol was separated off.
  • the crude coconut fatty acid methyl ester (18 6 kg) contained 2.3 weight percent bound glycerol, 0.09 weight percent water and 7.9 weight percent methanol; its acid number was 0.04.
  • This example shows that the catalyst used can be easily recovered from the methanol phase by pre-esterification by distilling off the methanol and the water of reaction. When the catalyst is reused, there is no appreciable impairment in activity.
  • Example 2 The methanol phase obtained in Example 2 was again evaporated and the residue was used for a further pre-esterification. Almost the same results as in Example 2 were obtained.
  • the following analytical values were determined for the oil phase: 0.33 percent by weight water; 15.5 weight percent methanol; Acid number 0.9.
  • the separated oil phase (204 kg) was at 50 to 55 ° C with 40.8 kg glycerol-methanol mixture from the alkali-catalyzed unpressurized transesterification (55.0 weight percent glycerol; 33.7 weight percent methanol; 11.2 weight percent fat derivatives; 0, 1 weight percent free alkali) stirred for 10 minutes. After renewed phase separation, the oil phase had an acid number of 0.5.
  • the oil phase (195 kg) was transesterified at 65 ° C. with the addition of 35 l (27.7 kg) of methanol and 0.3 kg of sodium methylate.
  • the raw coconut fatty acid methyl ester obtained (185 kg) contained 0.5 percent by weight glycerol, 0.02 percent by weight water and 7.6 percent by weight methanol; its acid number was 0.04.
  • Example 2 Analogously to Example 1, 200 liters (174 kg) of beef tallow (acid number 21) were pre-esterified with 60 liters (47.4 kg) of methanol in the presence of 1.6 kg of p-toluenesulfonic acid. The oil phase separated from the reaction mixture was extracted with 40.8 kg of glycerol-methanol mixture from a previous alkali-catalyzed pressure-free transesterification. The pre-esterified tallow had an acid number of 0.6 after separation from the glycerol-methanol phase.
  • Example 2 Analogously to Example 1, 200 liters (174 kg) of coconut oil (acid number 15.1) were reacted with 60 liters (47.4 kg) of methanol in the presence of 0.4 kg of 98% strength by weight sulfuric acid at 65 ° C. for 15 minutes.
  • the separated oil phase (206 kg; acid number 0.7; water content of 0.31 percent by weight; methanol content 11.3 weight percent) was added at 50 - 55 ° C 41.2 kg of glycerol-methanol mixture from the alkali-transesterification (57, 1 percent by weight Glycerin; 33.0 weight percent methanol; 9.8 weight percent fat derivatives; 0.1 weight percent free alkali) stirred for 10 minutes. After phase separation, 0.13% by weight of water and 11.6% by weight of methanol were found in the oil phase; the acid number was 0.2.
  • the oil phase (197 kg) was transesterified at 65 ° C. with the addition of 35 l (27.7 kg) of methanol and 0.3 kg of sodium methylate.
  • the thus obtained Kokosfettchuremethylester (188 kg) contained 0.5 weight percent glycerol, 0.2 percent by weight water, and 6, 1 weight percent methanol; the acid number was 0.04.
  • Example 6 was repeated with the modification that the oil phase obtained from the pre-esterification was fed directly to the alkali-catalyzed unpressurized transesterification without intermediate extraction with a glycerol-methanol mixture. In this procedure, a Obtained coconut fatty acid methyl ester containing 2 percent by weight bound glycerin.
  • Example 6 shows that the degree of conversion in the transesterification of the pre-esterified oil can be considerably improved if the pre-esterified oil is extracted with a glycerol-methanol mixture before the transesterification.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Fats And Perfumes (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Hydrogenated Pyridines (AREA)

Abstract

Fatty acid alkyl esters are produced by catalytic transesterification of natural fats and oils containing free fatty acids. In a preliminary esterifying step, the free fatty acids present are reacted with a C1-C4 alkanol (e.g., methanol) in the presence of an acidic esterification catalyst, at a temperature of about 50 DEG to 120 DEG C. and at substantially atmospheric pressure. The resulting reaction mixture is allowed to separate into two phases: (1) an alcohol phase containing the acidic esterification catalyst and part of the water of reaction and (2) an oil phase. These phases separately recovered. The oil phase is then extracted with an immiscible extractant, preferably comprising a mixture of glycerol and methanol, to remove residual water of reaction. In the final step the extracted oil phase is transesterified with a C1-C4 alkanol, e.g. methanol, in the presence of an aklali catalyst and at substantially atmospheric pressure.

Description

Die Erfindung betrifft ein Verfahren zur Herstellung von Fettsäuremethylestergemischen durch katalytische Umesterung aus natürlichen Fetten und ölen, die freie Fettsäuren enthalten.The invention relates to a process for the preparation of fatty acid methyl ester mixtures by catalytic transesterification from natural fats and oils which contain free fatty acids.

Fettsäuremethylester besitzen große technische Bedeutung als Ausgangsmaterial für die Herstellung von Fettalkoholen und anderen fettchemischen Produkten wie Estersulfonaten, Fettsäurealkanolamiden und Seifen. Die industrielle Herstellung der Fettsäuremethylester erfolgt überwiegend durch katalytische Umesterung (Alkoholyse) von Fettsäuretriglyceridgemischen, wie sie in den Fetten und ölen pflanzlichen und tierischen Ursprungs vorliegen.Fatty acid methyl esters are of great technical importance as a starting material for the production of fatty alcohols and other oleochemical products such as ester sulfonates, fatty acid alkanolamides and soaps. The industrial production of the fatty acid methyl esters takes place predominantly by catalytic transesterification (alcoholysis) of fatty acid triglyceride mixtures as they are present in the fats and oils of vegetable and animal origin.

Native Fette und öle enthalten fast immer beträchtliche Mengen freie Fettsäuren, wobei der Gehalt an freien Fettsäuren - je nach Ursprung des Materials und seiner Vorgeschichte - in einem weiten Bereich schwanken kann und fast immer oberhalb von 3 Gewichtsprozent liegt.Native fats and oils almost always contain considerable amounts of free fatty acids, whereby the content of free fatty acids - depending on the origin of the material and its history - can vary within a wide range and is almost always above 3 percent by weight.

Für die Umesterung von natürlich vorkommenden Fettsäuretriglyceriden mit Alkoholen stehen verschiedene Verfahren zur Verfügung. Die Wahl der Verfahrensbedingungen ist in beträchtlichem Ausmaß von der Menge der in den Triglyceriden vorhandenen freien Fettsäuren abhängig.Various processes are available for the transesterification of naturally occurring fatty acid triglycerides with alcohols. The choice of process conditions depends to a considerable extent on the amount of free fatty acids present in the triglycerides.

In Gegenwart von alkalischen Katalysatoren können Fette und öle bei 25 bis 100 °C mit einem 0,5- bis 1,0- molaren Überschuß an Alkohol unter Normaldruck zu den entsprechenden Fettsäureestergemischen umgeestert werden. Ein entsprechendes Verfahren ist als erste Stufe einer Seifenherstellung in der US-PS 2 360 844 beschrieben. Diese alkalikatalysierte drucklose Umesterung kann problemlos durchgeführt werden, solange man von Fetten und ölen ausgeht, die weitgehend wasserfrei sind und deren Gehalt an freien Fettsäuren unter 0,5 Gewichtsprozent (entsprechend einer Säurezahl von etwa 1) liegt.In the presence of alkaline catalysts, fats and oils can be transesterified at 25 to 100 ° C. with a 0.5 to 1.0 molar excess of alcohol under normal pressure to give the corresponding fatty acid ester mixtures. A corresponding method is described as the first stage of soap production in US Pat. No. 2,360,844. This alkali-catalyzed, pressure-free transesterification can be carried out without problems as long as fats and oils are used which are largely anhydrous and whose free fatty acid content is below 0.5% by weight (corresponding to an acid number of about 1).

Nach einem anderen Verfahren können auch Fette und öle mit einem höheren Gehalt an freien Fettsäuren in Gegenwart von Alkali- oder Zink-Katalysatoren bei 240 °C unter einem Druck von etwa 100 bar mit einem 7- bis 8-molaren Überschuß an Methanol zu den entsprechenden Fettsäuremethylestern umgeestert werden (Ullmann, Enzyklopädie der technischen Chemie, 4. Auflage, Band 11 (1976) , Seite 432).According to another method, fats and oils with a higher content of free fatty acids in the presence of alkali or zinc catalysts at 240 ° C. under a pressure of about 100 bar with a 7- to 8-molar excess of methanol can be added to the corresponding ones Fatty acid methyl esters are transesterified (Ullmann, Encyclopedia of Industrial Chemistry, 4th edition, Volume 11 (1976), page 432).

Gegenüber der Umesterung unter erhöhtem Druck zeichnet sich die drucklose Umesterung durch einen erheblich geringeren Methanolbedarf und - wegen der niedrigeren Reaktionstemperaturen - durch einen geringeren Energieaufwand aus. Darüber hinaus kommt die Umesterung unter Normaldruck ohne kostspielige Druckreaktoren aus. Aufgrund der Tatsache, daß in technischen Fetten und ölen fast immer größere Mengen an Wasser und Fettsäuren vorliegen, setzt die drucklose Umesterung eine Trocknung sowie eine Verringerung der Säurezahl - z.B. durch vorhergehende Umwandlung der freien Fettsäuren in die entsprechenden Alkyl- oder Glycerinester im Zuge einer Vorveresterungsreaktion - voraus.Compared to transesterification under increased pressure, the unpressurized transesterification is characterized by a significantly lower methanol requirement and - because of the lower reaction temperatures - by a lower energy consumption. In addition, the transesterification works under normal pressure without expensive pressure reactors. Due to the fact that there are almost always larger amounts of water and fatty acids in technical fats and oils, the unpressurized transesterification results in drying and a reduction in the acid number - for example by prior conversion of the free fatty acids into the corresponding alkyl or glycerol esters in the course of a pre-esterification reaction - in advance.

Die Vorveresterung der säurehaltigen Fette und öle kann in Gegenwart von alkalischen Katalysatoren bei 240 °C und 20 bar durchgeführt werden (Ullmann, Enzyklopädie der technischen Chemie, 4. Auflage, Band 11 (1976), Seite 432). Diese Art der Vorveresterung mit Methanol setzt wiederum die Verwendung von kostspieligen Druckreaktoren voraus.The pre-esterification of the acidic fats and oils can be carried out in the presence of alkaline catalysts at 240 ° C and 20 bar (Ullmann, Encyclopedia of Industrial Chemistry, 4th edition, Volume 11 (1976), page 432). This type of pre-esterification with methanol in turn requires the use of expensive pressure reactors.

Der Erfindung lag die Aufgabe zugrunde, die Herstellung von Fettsäuremethylestern aus solchen Triglycerid-Ausgangsmaterialien zu erleichtern, die größere Mengen Wasser und freie Fettsäuren enthalten. Auf Basis einer Kombination aus Vorveresterung der freien Fettsäuren und anschließender Umesterung sollten beide Verfahrensstufen bei vergleichsweise niederen Temperaturen und ohne Verwendung von Druckreaktoren durchgeführt werden können. Darüber hinaus sollte der bei der Umesterung erforderliche Alkoholüberschuß mit Rücksicht auf die notwendigen Aufarbeitungs- und Reinigungsschritte möglichst gering gehalten werden. Insgesamt sollte sie die Herstellung von Fettsäuremethylestern energiesparend und kostengünstig gerade auch mit solchen Ausgangsmaterialien ermöglichen, wie sie als Fette und öle pflanzlichen oder tierischen Ursprungs anfallen.The invention had for its object to facilitate the production of fatty acid methyl esters from such triglyceride starting materials that contain large amounts of water and free fatty acids. On the basis of a combination of pre-esterification of the free fatty acids and subsequent transesterification, both process stages should be able to be carried out at comparatively low temperatures and without the use of pressure reactors. In addition, the excess alcohol required for the transesterification should be kept as low as possible, taking into account the necessary processing and cleaning steps. Overall, it should enable the production of fatty acid methyl esters in an energy-saving and cost-effective manner, especially with starting materials of the type obtained as fats and oils of vegetable or animal origin.

Die Lösung dieser Aufgabe ist ein Verfahren zur Herstellung von Fettsäuremethylestern durch katalytische Umesterung von freie Fettsäuren enthaltenden natürlichen Fetten und ölen mit Methanol, das dadurch gekennzeichnet ist, daß man

  • a) in einer Vorveresterungsstufe die im Ausgangsmaterial vorhandenen freien Fettsäuren in Gegenwart von sauren Veresterungskatalysatoren bei 50 bis 120 °C und Drucken von Normaldruck bis 5 bar mit Methanol, das gegenüber den freien Fettsäuren im Überschuß vorhanden ist, verestert und die den Katalysator und einen Teil des Reaktionswassers enthaltende Alkoholphase abtrennt,
  • b) die verbleibende ölphase zur Entfernung des restlichen Reaktionswassers mit einem Glycerin-Methanol-Gemisch extrahiert und
  • c) die behandelte ölphase der alkalikatalysierten durcklosen Umesterung mit Methanol unterwirft.
The solution to this problem is a process for the production of fatty acid methyl esters by catalytic transesterification of natural fats and oils containing free fatty acids and methanol, which is characterized in that
  • a) in a pre-esterification stage, the free fatty acids present in the starting material in the presence of acidic esterification catalysts at 50 to 120 ° C and pressures from atmospheric pressure to 5 bar with methanol, which is present in excess of the free fatty acids, and which esterifies the catalyst and a part separating the alcohol phase containing water of reaction,
  • b) the remaining oil phase is extracted to remove the remaining water of reaction with a glycerol-methanol mixture and
  • c) the treated oil phase is subjected to the alkali-catalyzed pressure-free transesterification with methanol.

Als Ausgangsmaterial für das erfindungsgemäße Verfahren kommen praktisch alle Fette und öle pflanzlichen oder tierischen Ursprungs in Betracht, soweit ihr Gehalt an freien Fettsäuren nicht von Natur aus so gering ist, daß sie ohne Nachteil der alkalikatalysierten drucklosen Umesterung direkt zugeführt werden können. Zu den möglichen Ausgangsmaterialien zählen insbesondere Kokosöl, Palmkernöl, Olivenöl, Rapsöl, Baumwollsaatöl, Schmalzöl, Fischöl und Rindertalg. Die Säurezahl der natürlichen Fette und öle und damit ihr Gehalt an freien Fettsäuren kann in weiten Bereichen schwanken. So liegt beispielsweise die Säurezahl des handelsüblichen rohen Kokosöls in der Regel nicht über 20. Bei anderen Pflanzenölen liegt die Säurezahl guter Qualitäten unterhalb von 10; bei minderen Qualitäten können Werte von 20 bis 25 beobachtet werden. Technische Talge, die nach ihrer Säurezahl bewertet und gehandelt werden, besitzen - einem Gehalt an freien Fettsäuren von 1 bis 20 Gewichtsprozent entsprechend - Säurezahlen von etwa 1 bis 40, wobei gelegentlich auch noch höhere Werte auftreten können. In extremen Fällen kann die Säurezahl des Ausgangsmaterials für das erfindungsgemäße Verfahren Werte von 60 und darüber erreichen.Practically all fats and oils of vegetable or animal origin come into consideration as starting material for the process according to the invention, provided that their free fatty acid content is not inherently so low that they can be fed directly to the alkali-catalyzed unpressurized transesterification. Possible raw materials include in particular coconut oil, palm kernel oil, olive oil, rapeseed oil, cottonseed oil, lard oil, fish oil and beef tallow. The acid number of natural fats and oils and thus their free fatty acid content can vary widely. For example, the acid number of commercially available raw coconut oil is usually not above 20. For other vegetable oils, the acid number of good qualities is below 10; with lower qualities values from 20 to 25 can be observed. Technical tallows, which are valued and traded according to their acid number, have one Free fatty acid content from 1 to 20 percent by weight - acid numbers from about 1 to 40, although occasionally higher values can also occur. In extreme cases, the acid number of the starting material for the process according to the invention can reach values of 60 and above.

In der Stufe a) des erfindungsgemäßen Verfahrens wird der in den Triglyceridgemischen des Ausgangsmaterials vorhande Anteil an freien Fettsäuren in Gegenwart von sauren Veresterungskatalysatoren mit im Überschuß vorhandenem Methanol verestert. Dazu werden vergleichsweise milde Reaktionsbedingungen gewählt, so daß eine Umesterung der Triglyceride mit Methanol nicht oder nicht in wesentlichem Ausmaß stattfindet. Das Verhältnis zwischen Triglycerid und Methanol wird dabei zweckmäßigerweise so gewählt, daß einerseits ein deutlicher Methanolüberschuß über die zu veresternde freie Säure vorhanden ist, und daß andererseits am Ende der Reaktion eine saubere Trennung in eine öl- und eine Methanolphase gewährleistet ist. Zu diesem Zweck werden in der Stufe a) normalerweise auf 100 Volumenteile Ausgangsmaterial 20 bis 5o Volumenteile Methanol eingesetzt.In stage a) of the process according to the invention, the proportion of free fatty acids present in the triglyceride mixtures of the starting material is esterified with excess methanol in the presence of acidic esterification catalysts. For this purpose, comparatively mild reaction conditions are chosen so that a transesterification of the triglycerides with methanol does not take place or does not take place to a significant extent. The ratio between triglyceride and methanol is expediently chosen so that on the one hand there is a clear excess of methanol over the free acid to be esterified, and on the other hand a clean separation into an oil and a methanol phase is ensured at the end of the reaction. For this purpose, in step a), 20 to 50 parts by volume of methanol are normally used per 100 parts by volume of starting material.

Höhere Einsatzmengen Methanol haben einen positiven Einfluß auf die Geschwindigkeit und die Vollständigkeit der Veresterung der freien Fettsäuren in der Verfahrensstufe a), obwohl die Löslichkeit des Methanols in den natürlichen Triglyceriden begrenzt und jeweils für eine gegebene Reaktionstemperatur als konstant vorgegeben ist. Gleichwohl hat es sich gezeigt, daß eine Erhöhung der Menge des Methanols eine schnellere und vollständigere Veresterung der freien Fettsäuren bewirkt. Mit Rücksicht auf die Wirtschaftlichkeit des Verfahrens empfiehlt es sich jedoch, bei der Vorveresterung die Methanolmenge - wie angegeben - nach oben hin zu begrenzen, da die Rückgewinnung des überschüssigen Alkohols einen beträchtlichen Kostenfaktor darstellt.Higher amounts of methanol have a positive influence on the speed and completeness of the esterification of the free fatty acids in process step a), although the solubility of the methanol in the natural triglycerides is limited and is given as constant for a given reaction temperature. However, it has been shown that increasing the amount of methanol causes faster and more complete esterification of the free fatty acids. In view of the economic viability of the process, however, it is advisable to limit the amount of methanol - as stated - during the pre-esterification, since the Recovery of the excess alcohol is a significant cost factor.

Die Vorveresterung der Stufe a) wird in der Regel bei Normaldruck durchgeführt. Das Arbeiten bei geringem Überdruck kann in verschiedenen Fällen von Vorteil sein. Es kommen dann aber nur Drucke bis zu 5 bar in Betracht, zu deren Realisierung keine speziellen Druckreaktoren erforderlich sind.The pre-esterification of stage a) is usually carried out at normal pressure. Working with low overpressure can be advantageous in various cases. In this case, however, only pressures up to 5 bar come into consideration, for which no special pressure reactors are required.

Als Katalysatoren für die Stufe a) eignen sich im Prinzip alle sauren, nicht flüchtigen Veresterungskatalysatoren, beispielsweise die entsprechenden Systeme aur Basis von Lewis-Säuren, schwerflüchtige anorganische Säuren und ihre sauren Partialester sowie Heteropolysäuren. Besonders geeignet sind Alkyl-, Aryl- oder Alkarylsulfonsäuren wie z.B. Methansulfonsäure, Naphthalinsulfonsäure und Dodecylbenzolsulfonsäure. Als Beispiel für schwerflüchtige anorganische Säuren und deren Partialester seien Schwefelsäure und Glycerinmonoschwefelsäure genannt. Geeignete Heteropolysäuren sind die Wolframato- und Molybdatophosphorsäuren. Diese Katalysatoren kommen in der Regel in Mengen von 0,5 bis 5 Gewichtsteilen auf 100 Gewichtsteile Ausgangsmaterial zur Anwendung.In principle, all acidic, non-volatile esterification catalysts are suitable as catalysts for stage a), for example the corresponding systems based on Lewis acids, low-volatility inorganic acids and their acidic partial esters and heteropolyacids. Alkyl, aryl or alkarylsulfonic acids such as e.g. Methanesulfonic acid, naphthalenesulfonic acid and dodecylbenzenesulfonic acid. Sulfuric acid and glycerol monosulfuric acid may be mentioned as an example of low volatile inorganic acids and their partial esters. Suitable heteropolyacids are the tungstic and molybdate phosphoric acids. These catalysts are generally used in amounts of 0.5 to 5 parts by weight per 100 parts by weight of starting material.

Zur Durchführung der Vorveresterung wurden die Reaktionspartner zusammen mit dem Katalysator unter kräftigem Rühren auf die vorgesehene Reaktionstemperatur erhitzt und dann so lange bei dieser Temperatur gehalten, bis die Säurezahl der ölphase auf den gewünschten Wert abgesunken ist. Um in der Verfahrensstufe c) zu optimalen Ergebnissen zu kommen, vermindert man in der Stufe a) die Säurezahl der ölphase vorzugsweise auf Werte unterhalb von 1.To carry out the pre-esterification, the reactants were heated together with the catalyst to the intended reaction temperature with vigorous stirring and then held at this temperature until the acid number of the oil phase had dropped to the desired value. In order to achieve optimal results in process step c), the acid number of the oil phase is preferably reduced to values below 1 in step a).

Die Verfahrensstufe a) kann sowohl chargenweise als auch kontinuierlich durchgeführt werden. Bei kontinuierlicher Verfahrensweise können die Komponenten Alkohol und öl im Gleichstrom und im Gegenstrom geführt werden.Process step a) can be carried out batchwise or continuously. In the case of a continuous procedure, the components alcohol and oil can be carried out in cocurrent and in countercurrent.

Nach Beendigung der Reaktion beläßt man das Reaktionsgemisch ohne weiteres Rühren auf Temperaturen zwischen 40 und 60 °C. Dabei tritt eine Trennung in eine öl- und eine Methanolphase ein. Die beiden flüssigen Phasen werden auf bekannte Weise getrennt. Die Methanolphase, die den größten Teil des Reaktionswassers und praktisch die gesamte Katalysatormenge enthält, wird zur Rückgewinnung des Katalysators und des Methanols destillativ aufgearbeitet. Der Katalysator verbleibt im Destillationsrückstand, der ohne weitere Reinigungsschritte wieder als Katalysatorzusatz in der Stufe a) des erfindungsgemäßen Verfahrens eingesetzt werden kann.After the reaction has ended, the reaction mixture is left at temperatures between 40 and 60 ° C. without further stirring. A separation into an oil and a methanol phase occurs. The two liquid phases are separated in a known manner. The methanol phase, which contains most of the water of reaction and practically all of the amount of catalyst, is worked up by distillation to recover the catalyst and the methanol. The catalyst remains in the distillation residue, which can be used again as a catalyst additive in stage a) of the process according to the invention without further purification steps.

Für die Extraktion der ölphase in der Stufe b) des erfindungsgemäßen Verfahrens werden Glycerin-Methanol-Gemische eingesetzt, in denen das Gewichtsverhältnis von Glycerin : Methanol 1 : 0,25 bis 1 : 1,25 beträgt. Als besonders zweckmäßig hat es sich hier erwiesen, mit Glycerin-Methanol-Gemischen zu arbeiten, wie sie bei der alkalikatalysierten drucklosen Umesterung nach Stufe c) des erfindungsgemäßen Verfahrens als "Glycerinphase" anfallen und die im Regelfall die Zusammensetzung

  • 40 - 70 Gew.-% Glycerin,
  • 20 - 50 Gew.-% Methanol,
  • 5 - 15 Gew.-% Fettderivate (Seifen, Methylester),
  • 0,1 -0,2 Gew.-% freies Alkali
For the extraction of the oil phase in stage b) of the process according to the invention, glycerol-methanol mixtures are used in which the weight ratio of glycerol: methanol is 1: 0.25 to 1: 1.25. It has proven to be particularly expedient here to work with glycerol-methanol mixtures, such as those obtained in the alkali-catalyzed pressure-free transesterification according to stage c) of the process according to the invention as the "glycerol phase" and which, as a rule, the composition
  • 40-70% by weight glycerin,
  • 20-50% by weight of methanol,
  • 5 - 15% by weight of fat derivatives (soaps, methyl esters),
  • 0.1-0.2% by weight of free alkali

besitzen. Derartige Gemische können ohne vorausgehende Aufbereitung in der Verfahrensstufe b) eingesetzt werden. Zweckmäßigerweise werden für die Extraktion auf 100 Gewichtsteile ölphase 10 bis 30 Gewichtsteile Glycerin-Methanol-Gemisch eingesetzt.have. Such mixtures can be used without prior Processing can be used in process stage b). Expediently, 10 to 30 parts by weight of glycerol-methanol mixture are used for the extraction per 100 parts by weight of oil phase.

Zur Durchführung der Extraktion versetzt man die aus der Stufe a) hervorgegangene ölphase mit der vorgesehenen Menge Glycerin-Methanol-Gemisch und rührt die erhaltene Mischung 1 bis 5 Minuten lang kräftig durch. Danach läßt man das Gemisch bis zur Phasentrennung ruhig stehen und trennt die extrahierte Ölphase ab. Im Sinne einer möglichst weitgehenden Abtrennung von noch vorhandenem Reaktionswasser und Katalysatorresten hat es sich als vorteilhaft erwiesen, die gesamte Extraktion in der Stufe b) nicht bei Normaltemperatur, sondern bei 40 bis 60 °C vorzunehmen.To carry out the extraction, the oil phase resulting from step a) is mixed with the intended amount of glycerol-methanol mixture and the mixture obtained is stirred vigorously for 1 to 5 minutes. The mixture is then left to stand still until phase separation and the extracted oil phase is separated off. In order to separate the water of reaction and catalyst residues still present as far as possible, it has proven to be advantageous not to carry out the entire extraction in stage b) at normal temperature, but at 40 to 60.degree.

Die Stufe b) kann im Chargenbetrieb in einem einfachen Rührbehälter durchgeführt werden. In kontinuierlicher Arbeitsweise kann dieser Teilschritt des erfindungsgemä- ßen Verfahrens in einer Rührkesselkaskade oder in einer mit statischen Mischelementen ausgestatteten Kolonne verwirklicht werden. Es ist auch möglich, die ölphase und das Glycerin-Methanol-Gemisch im Gegenstrom kontinuierlich durch eine Extraktionskolonne zu führen.Step b) can be carried out in batch mode in a simple stirred tank. In continuous operation of this part of the step may erfi nd ungsgemä- SEN method are realized in a stirred tank cascade or in a equipped with static mixing elements column. It is also possible to continuously pass the oil phase and the glycerol-methanol mixture in countercurrent through an extraction column.

In der abschließenden Stufe c) des erfindungsgemäßen Verfahrens werden die entsäuerten und weitgehend wasserfreien Triglyceride in an sich bekannter Weise der drucklosen alkalikatalysierten Umesterung mit Methanol unterworfen. Zweckmäßigerweise werden dabei folgende Bedingungen eingehalten: Die Umesterung wird mit im wesentlichen wasserfreiem Methanol durchgeführt. In der Regel wird das Methanol in einem 50 bis 150 prozentigen Überschuß über die für die Umesterung erforderliche stöchiometrische Menge eingesetzt. Als Katalysatoren kommen vor allem Alkalimetallhydroxide, insbesondere Natrium- und Kaliumhydroxyd, und Alkalimetallalkoholate, insbesondere Natriummethylat, in Betracht. Bei der Bemessung der Katalysatormenge ist der in dem betreffenden Triglycerid noch vorhandene Restgehalt an freien Fettsäuren zu berücksichtigen. Über die für die Neutralisation der freien Fettsäuren benötigte Menge hinaus kommen die Katalysatoren in Mengen von 0,05 bis 0,2 Gewichtsteilen pro 100 Gewichtsteile Triglycerid zur Anwendung.In the final stage c) of the process according to the invention, the deacidified and largely anhydrous triglycerides are subjected to the pressure-free alkali-catalyzed transesterification with methanol in a manner known per se. The following conditions are expediently observed: The transesterification is carried out with essentially anhydrous methanol. As a rule, the methanol is used in a 50 to 150 percent excess over the stoichiometric amount required for the transesterification. Alkali metal hydroxides, in particular sodium and potassium hydroxide, and alkali metal alcoholates, in particular sodium methylate, are particularly suitable as catalysts. When measuring the amount of catalyst, the residual free fatty acid content still present in the triglyceride in question must be taken into account. In addition to the amount required for the neutralization of the free fatty acids, the catalysts are used in amounts of 0.05 to 0.2 parts by weight per 100 parts by weight of triglyceride.

Das Gemisch aus Triglycerid (Ölphase), Methanol und Katalysator wird unter Rühren auf die vorgesehene Reaktionstemperatur erwärmt. Die Umesterungsreaktion verläuft bereits bei 25 bis 30 °C mit ausreichender Geschwindigkeit. Im allgemeinen wird es jedoch vorgezogen, die Umesterungsreaktion bei Temperaturen von 50 bis 100 °C, insbesondere bei Rückflußtemperatur, durchzuführen.The mixture of triglyceride (oil phase), methanol and catalyst is heated to the intended reaction temperature with stirring. The transesterification reaction takes place at sufficient speed even at 25 to 30 ° C. In general, however, it is preferred to carry out the transesterification reaction at a temperature of 5 0 to 100 ° C, in particular at reflux temperature.

Wenn der gewünschte Umesterungsgrad erreicht ist, läßt man das Reaktionsgemisch ohne weiteres Rühren stehen, bis sich die Phasentrennung vollzogen hat. Anschließend werden die Phasen in bekannter Weise getrennt. Die Methanol enthaltende Glycerinphase wird in der Regel in der Stufe b) des erfindungsgemäßen Verfahrens als Extraktionsmittel verwendet, bevor sie in an sich bekannter Weise zu Glycerin und Methanol aufgearbeitet wird. Die Methylesterphase wird in an sich bekannter Weise über entsprechende Reinigungs- und Destillationsschritte zu den gewünschten Ausgangsmaterialien für organische Synthesen weiterverarbeitet.When the desired degree of transesterification has been reached, the reaction mixture is allowed to stand without further stirring until the phases have separated. The phases are then separated in a known manner. The glycerol phase containing methanol is generally used as an extracting agent in stage b) of the process according to the invention before it is worked up to glycerol and methanol in a manner known per se. The methyl ester phase is further processed in a manner known per se via appropriate purification and distillation steps to give the desired starting materials for organic syntheses.

Beispiel 1example 1

In einem 400 1-Rührbehälter wurden 200 1 (174 kg) Kokosöl (Säurezahl 15,1), 60 1 (47,4 kg) Methanol und 1,6 kg p-Toluolsulfonsäure unter Rühren 15 Minuten lang zum Rückflußkochen erhitzt. Das Reaktionsgemisch wurde ohne weiteres Rühren auf etwa 50 °C abgekühlt, wobei eine saubere Trennung in eine öl- und eine Methanolphase eintrat.In a 400 liter stirred container, 200 liters (174 kg) of coconut oil (acid number 15.1), 60 liters (47.4 kg) of methanol and 1.6 kg of p-toluenesulfonic acid were heated to reflux with stirring for 15 minutes. The reaction mixture was cooled to about 50 ° C. without further stirring, with a clean separation into an oil and a methanol phase.

Der abgetrennten ölphase (204 kg; Säurezahl 0,8; Wassergehalt 0,34 Gewichtsprozent; Methanolgehalt14,1 Gewichtsprozent) wurden bei 50 bis 55 °C 40,8 kg Glycerin-Methanol-Gemisch aus der alkalikatalysierten drucklosen Umesterung (59,o Gewichtsprozent Glycerin;28,1 Gewichtsprozent Methanol;12,8 Gewichtsprozent Fettderivate; 0,1 Gewichtsprozent freies Alkali)zugegeben. Die zweiphasige Mischung wurde 10 Minuten lang gerührt. Nach Beendigung des Rührvorganges erfolgte in wenigen Minuten eine klare Trennung der beiden Phasen. Nach dem Ablassen der Glycerinphase verblieben 196 kg ölphase (Säurezahl 0,4; Wassergehalt 0,08 Gewichtsprozent; Methanolgehalt 10,6 Gewichtsprozent).The separated oil phase (204 kg; acid number 0.8; water content 0.34 percent by weight; methanol content 14.1 percent by weight) was 40.8 kg glycerol-methanol mixture from the alkali-catalyzed unpressurized transesterification (59, 0 percent by weight glycerol ; 28 , 1 percent by weight methanol; 12.8 percent by weight fat derivatives; 0.1 percent by weight free alkali) added. The two-phase mixture was stirred for 10 minutes. After the stirring process had ended, the two phases were clearly separated in a few minutes. After draining off the glycerol phase, 196 kg of oil phase remained (acid number 0.4; water content 0.08 percent by weight; methanol content 10.6 percent by weight).

Die extrahierte ölphase wurde mit 35 1 (27,7 kg) Methanol und 0,3 kg Natriummethylat als Umesterungskatalysator unter Rühren 30 Minuten lang zum Rückflußkochen erhitzt. Danach wurde das Reaktionsgemisch auf 50 °C abgekühlt. Die sich abscheidende methanolhaltige Glycerinphase wurde abgetrennt. Der verbleibende rohe Kokosfettsäuremethylester (188 kg) enthielt 0,4 Gewichtsprozent gebundenes Glycerin, 0,02 Gewichtsprozent Wasser und 8,1 Gewichtsprozent Methanol; seine Säurezahl betrug 0,04.The extracted oil phase was refluxed with 35 liters (27.7 kg) of methanol and 0.3 kg of sodium methylate as the transesterification catalyst with stirring for 30 minutes. The reaction mixture was then cooled to 50 ° C. The methanol-containing glycerol phase which separated out was separated off. The remaining crude coconut fatty acid methyl ester (188 kg) contained 0.4 weight percent bound glycerol, 0.02 weight percent water and 8.1 weight percent methanol; its acid number was 0.04.

Der geringe Gehalt an gebundenem Glycerin läßt erkennen, daß die Umesterung mit einem sehr hohen Umsetzungsgrad verlaufen ist. Bezieht man diesen Wert auf den Gehalt an gebundenem Glycerin im eingesetzten Kokosöl (13,2 Gewichtsprozent), so ergibt sich, daß 97 % des gebundenen Glycerins bei der Umesterung freigesetzt wurden und im Rohmethylester nur noch 3 % vorhanden sind.The low content of bound glycerol shows that the transesterification has taken place with a very high degree of conversion. If this value is related to the content of bound glycerin in the coconut oil used (13.2 percent by weight), it follows that 97% of the bound glycerin were released during the transesterification and only 3% are still present in the crude methyl ester.

Vergleichsversuch 1Comparative experiment 1

Wie in Beispiel 1 wurden 200 1 (174 kg) Kokosöl (Säurezahl 15,1) mit 60 1 (47,4 kg) Methanol in Gegenwart von 1,6 kg p-Toluolsulfonsäure unter Rühren bei 65 °C umgesetzt. Die erhaltene Ölphase (204 kg; Säurezahl 0,8; Wassergehalt 0,34 Gewichtsprozent) wurde direkt der drucklosen Umesterung zugeführt. Hierzu wurde die ölphase mit 36,51 (288 kg) Methanol und 0,3 kg Na-Methylat unter Rühren 30 Minuten lang zum Rückflußkochen erhitzt. Nach dem Abkühlen auf 50 °C wurde die Methanol und Glycerin enthaltende untere Phase abgetrennt. Der rohe Kokosfettsäuremethylester ( 186 kg) enthielt 2,3 Gewichtsprozent gebundenes Glycerin, 0,09 Gewichtsprozent Wasser und 7,9 Gewichtsprozent Methanol; seine Säurezahl betrug 0,04.As in Example 1, 200 liters (174 kg) of coconut oil (acid number 15.1) were reacted with 60 liters (47.4 kg) of methanol in the presence of 1.6 kg of p-toluenesulfonic acid with stirring at 65 ° C. The oil phase obtained (204 kg; acid number 0.8; water content 0.34 percent by weight) was fed directly to the unpressurized transesterification. To this end, the oil phase was heated to reflux with 36.51 (288 kg) of methanol and 0.3 kg of Na methylate with stirring for 30 minutes. After cooling to 50 ° C., the lower phase containing methanol and glycerol was separated off. The crude coconut fatty acid methyl ester (18 6 kg) contained 2.3 weight percent bound glycerol, 0.09 weight percent water and 7.9 weight percent methanol; its acid number was 0.04.

Im vorliegenden Fall, d.h. ohne die im Beispiel 1 beschriebene Extraktion der ölphase mit einem Glycerin-Methanol-Gemisch nach der Vorveresterung, ist die drucklose alkalikatalysierte Vorveresterung nur unvollständig verlaufen, wie der relativ hohe Wert für gebundenes Glycerin anzeigt. Von dem in den Glyceriden des Ausgangs- öls gebundenen Glycerin wurden nur ca. 83 % freigesetzt.In the present case, i.e. Without the extraction of the oil phase with a glycerol-methanol mixture after the pre-esterification described in Example 1, the pressure-free alkali-catalyzed pre-esterification was only incomplete, as the relatively high value for bound glycerol indicates. Only about 83% of the glycerin bound in the glycerides of the starting oil was released.

Beispiel 2Example 2

Die in Beispiel 1 nach der Vorveresterung abgetrennte Methanolphase (21,3 kg) wurde unter einem Druck von 20 mbar bei 100 °C von Methanol und Wasser befreit. Bei der Analyse des Rückstandes wurden folgende Werte gefunden: 7,4 Gewichtsprozent Schwefel; 0,3 Gewichtsprozent Wasser; Säurezahl 131,9; Verseifungszahl 277,9.The methanol phase (21.3 kg) separated after the pre-esterification in Example 1 was freed of methanol and water under a pressure of 20 mbar at 100 ° C. The following values were found in the analysis of the residue: 7.4 percent by weight sulfur; 0.3 weight percent water; Acid number 131.9; Saponification number 277.9.

Der Rückstand wurde mit 60 1 (47,5 kg) Methanol (Wassergehalt 0,1 Gewichtsprozent) aufgenommen und mit 200 1 (174 kg) Kokosöl (Säurezahl 15,1) 15 Minuten lang bei 65 °C gerührt. Nach dem Abkühlen auf 50 °C wurden die beiden entstandenen Phasen getrennt. Die Analyse der erhaltenen ölphase (210 kg) ergab folgende Werte: 0,29 Gewichtsprozent Wasser,15,0 Gewichtsprozent Methanol; Säurezahl 0,8.The residue was taken up in 60 liters (47.5 kg) of methanol (water content 0.1 percent by weight) and stirred with 200 liters (174 kg) of coconut oil (acid number 15.1) at 65 ° C. for 15 minutes. After cooling to 50 ° C, the two phases formed were separated. The analysis of the oil phase obtained (210 kg) gave the following values: 0.29% by weight of water, 15.0% by weight of methanol; Acid number 0.8.

Dieses Beispiel zeigt, daß sich der eingesetzte Katalysator nach der Vorveresterung aus der Methanolphase leicht durch Abdestillieren des Methanols und des Reaktionswassers wiedergewinnen läßt. Bei der Wiederverwendung des Katalysators ist keine nennenswerte Beeinträchtigung der Aktivität festzustellen.This example shows that the catalyst used can be easily recovered from the methanol phase by pre-esterification by distilling off the methanol and the water of reaction. When the catalyst is reused, there is no appreciable impairment in activity.

Beispiel 3Example 3

Die im Beispiel 2 angefallenede Methanolphase wurde wiederum eingedampft und der Rückstand für eine weitere Vorveresterung eingesetzt. Dabei wurden annähernd die gleichen Ergebnisse wie in Beispiel 2 erhalten. Für die ölphase wurden folgende Analysenwerte ermittelt: 0,33 Gewichtsprozent Wasser; 15,5 Gewichtsprozent Methanol; Säurezahl 0,9.The methanol phase obtained in Example 2 was again evaporated and the residue was used for a further pre-esterification. Almost the same results as in Example 2 were obtained. The following analytical values were determined for the oil phase: 0.33 percent by weight water; 15.5 weight percent methanol; Acid number 0.9.

Beispiel 4Example 4

Analog Beispiel 1 wurden 200 1 (174 kg) Kokosöl (Säurezahl 15,1) mit 60 1 (47,4 kg) Methanol in Gegenwart von 0,8 kg Methansulfonsäure bei 65 °C umgesetzt.Analogously to Example 1, 200 liters (174 kg) of coconut oil (acid number 15.1) were reacted with 60 liters (47.4 kg) of methanol in the presence of 0.8 kg of methanesulfonic acid at 65 ° C.

Die abgetrennte ölphase (204 kg) wurde bei 50 bis 55 °C mit 40,8 kg Glycerin-Methanol-Gemisch aus der alkalikatalysierten drucklosen Umesterung (55,0 Gewichtsprozent Glycerin; 33,7 Gewichtsprozent Methanol; 11,2 Gewichtsprozent Fettderivate; 0,1 Gewichtsprozent freies Alkali) 10 Minuten lang gerührt. Die ölphase hatte nach der erneuten Phasentrennung eine Säurezahl von 0,5.The separated oil phase (204 kg) was at 50 to 55 ° C with 40.8 kg glycerol-methanol mixture from the alkali-catalyzed unpressurized transesterification (55.0 weight percent glycerol; 33.7 weight percent methanol; 11.2 weight percent fat derivatives; 0, 1 weight percent free alkali) stirred for 10 minutes. After renewed phase separation, the oil phase had an acid number of 0.5.

Die ölphase ( 195 kg) wurde unter Zugabe von 35 1 (27,7 kg) Methanol und 0,3 kg Natriummethylat bei 65 °C umgeestert. Der dabei erhaltene rohe Kokosfettsäuremethylester ( 185 kg) enthielt 0,5 Gewichtsprozent Glycerin, 0,02 Gewichtsprozent Wasser und 7,6 Gewichtsprozent Methanol; seine Säurezahl betrug 0,04.The oil phase (195 kg) was transesterified at 65 ° C. with the addition of 35 l (27.7 kg) of methanol and 0.3 kg of sodium methylate. The raw coconut fatty acid methyl ester obtained (185 kg) contained 0.5 percent by weight glycerol, 0.02 percent by weight water and 7.6 percent by weight methanol; its acid number was 0.04.

Beispiel 5Example 5

Analog Beispiel 1 wurden 200 1 ( 174 kg) Rindertalg (Säurezahl 21) mit 60 1 (47,4 kg) Methanol in Gegenwart von 1,6 kg p-Toluolsulfonsäure vorverestert. Die aus dem Reaktionsgemisch abgetrennte ölphase wurde mit 40,8 kg Glycerin-Methanol-Gemisch einer vorangegangenen alkalikatalysierten drucklosen Umesterung extrahiert. Der vorveresterte Talg hatte nach der Abtrennung von der Glycerin-Methanol-Phase eine Säurezahl von 0,6.Analogously to Example 1, 200 liters (174 kg) of beef tallow (acid number 21) were pre-esterified with 60 liters (47.4 kg) of methanol in the presence of 1.6 kg of p-toluenesulfonic acid. The oil phase separated from the reaction mixture was extracted with 40.8 kg of glycerol-methanol mixture from a previous alkali-catalyzed pressure-free transesterification. The pre-esterified tallow had an acid number of 0.6 after separation from the glycerol-methanol phase.

Die Umesterung der Ölphase ( 192 kg) unter Zugabe von 30 1 (23,7 kg) Methanol und 0,3 kg Natriummethylat bei 65 °C ergab 185 kg Talg-Fettsäuremethylester mit 0,4 Gewichtsprozent gebundenem Glycerin, 0,02 Gewichtsprozent Wasser, 6,1 Gewichtsprozent Methanol und Säurezahl 0,03.The transesterification of the oil phase (192 kg) with the addition of 30 l (23.7 kg) of methanol and 0.3 kg of sodium methylate at 65 ° C. gave 185 kg of tallow fatty acid methyl ester with 0.4% by weight bound glycerol, 0.02% by weight percent water, 6.1 percent by weight methanol and acid number 0.03.

Beispiel 6Example 6

Analog Beispiel 1 wurden 200 1 (174 kg) Kokosöl (Säurezahl 15,1) mit 60 1 (47,4 kg) Methanol in Gegenwart von 0,4 kg 98gewichtsprozentiger Schwefelsäure 15 Minuten lang bei 65 °C zur Reaktion gebracht.Analogously to Example 1, 200 liters (174 kg) of coconut oil (acid number 15.1) were reacted with 60 liters (47.4 kg) of methanol in the presence of 0.4 kg of 98% strength by weight sulfuric acid at 65 ° C. for 15 minutes.

Die abgetrennte ölphase (206 kg; Säurezahl 0,7; Wassergehalt 0,31 Gewichtsprozent; Methanolgehalt 11,3 Gewichtsprozent) wurde bei 50 - 55 °C mit 41,2 kg Glycerin-Methanol-Gemisch aus der alkalikatalysierten Umesterung (57,1 Gewichtsprozent Glycerin;33,0 Gewichtsprozent Methanol; 9,8 Gewichtsprozent Fettderivate; 0,1 Gewichtsprozent freies Alkali) 1o Minuten lang gerührt. Nach der Phasentrennung wurden in der ölphase 0,13 Gewichtsprozent Wasser und11,6 Gewichtsprozent Methanol festgestellt; die Säurezahl betrug 0,2.The separated oil phase (206 kg; acid number 0.7; water content of 0.31 percent by weight; methanol content 11.3 weight percent) was added at 50 - 55 ° C 41.2 kg of glycerol-methanol mixture from the alkali-transesterification (57, 1 percent by weight Glycerin; 33.0 weight percent methanol; 9.8 weight percent fat derivatives; 0.1 weight percent free alkali) stirred for 10 minutes. After phase separation, 0.13% by weight of water and 11.6% by weight of methanol were found in the oil phase; the acid number was 0.2.

Die ölphase ( 197 kg) wurde unter Zugabe von 35 1 (27,7 kg) Methanol und 0,3 kg Natriummethylat bei 65 °C umgeestert. Der dabei erhaltene Kokosfettsäuremethylester (188 kg) enthielt 0,5 Gewichtsprozent Glycerin, 0,2 Gewichtsprozent Wasser und 6,1 Gewichtsprozent Methanol; die Säurezahl betrug 0,04.The oil phase (197 kg) was transesterified at 65 ° C. with the addition of 35 l (27.7 kg) of methanol and 0.3 kg of sodium methylate. The thus obtained Kokosfettsäuremethylester (188 kg) contained 0.5 weight percent glycerol, 0.2 percent by weight water, and 6, 1 weight percent methanol; the acid number was 0.04.

Vergleichsversuch 2Comparative experiment 2

Beispiel 6 wurde mit der Abwandlung wiederholt, daß die aus der Vorveresterung erhaltene ölphase ohne zwischengeschaltete Extraktion mit Glycerin-Methanol-Gemisch direkt der alkalikatalysierten drucklosen Umesterung zugeführt wurde. Bei dieser Verfahrensweise wurde ein Kokosfettsäuremethylester erhalten, der 2 Gewichtsprozent gebundenes Glycerin enthielt.Example 6 was repeated with the modification that the oil phase obtained from the pre-esterification was fed directly to the alkali-catalyzed unpressurized transesterification without intermediate extraction with a glycerol-methanol mixture. In this procedure, a Obtained coconut fatty acid methyl ester containing 2 percent by weight bound glycerin.

Ein Vergleich mit Beispiel 6 zeigt, daß der Umsetzungsgrad bei der Umesterung des vorveresterten öls beträchtlich verbessert werden kann, wenn das vorveresterte öl vor der Umesterung mit einem Glycerin-Methanol-Gemisch extrahiert.A comparison with Example 6 shows that the degree of conversion in the transesterification of the pre-esterified oil can be considerably improved if the pre-esterified oil is extracted with a glycerol-methanol mixture before the transesterification.

Claims (9)

1. Verfahren zur Herstellung von Fettsäuremethylestern durch katalytische Umesterung von freie Fettsäuren enthaltenden natürlichen Fetten und ölen mit Methanol, dadurch gekennzeichnet, daß man a) in einer Vorveresterung die im Ausgangsmaterial vorhandenen freien Fettsäuren in Gegenwart von sauren Veresterungskatalysatoren bei 50 bis 120 °C und Drucken von Normaldruck bis 5 bar mit Methanol, das gegenüber den freien Fettsäuren im Überschuß vorhanden ist, verestert und die den Katalysator und einen Teil des Reaktionswassers enthaltende Alkoholphase abtrennt, b) die verbleibende ölphase zur Entfernung des restlichen Reaktionswassers mit einem Glycerin-Methanol-Gemisch extrahiert und c) die behandelte ölphase der alkalikatalysierten drucklosen Umesterung mit Methanol unterwirft. 1. A process for the preparation of fatty acid methyl esters by catalytic transesterification of natural fats and oils containing free fatty acids with methanol, characterized in that a) in a pre-esterification the free fatty acids present in the starting material in the presence of acidic esterification catalysts at 50 to 120 ° C and pressures from normal pressure to 5 bar with methanol, which is present in excess of the free fatty acids, and which esterified the catalyst and a part separating the alcohol phase containing water of reaction, b) the remaining oil phase is extracted to remove the remaining water of reaction with a glycerol-methanol mixture and c) the treated oil phase is subjected to the alkali-catalyzed unpressurized transesterification with methanol. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man in der Stufe a) auf 100 Volumenteile Ausgangsmaterial 20 bis 50 Volumenteile Methanol einsetzt.2. The method according to claim 1, characterized in that 20 to 50 volumes of methanol are used in step a) for 100 volumes of starting material. 3. Verfahren nach den Ansprüchen 1 und 2, dadurch gekennzeichnet, daß man in der Stufe a) bei Normaldruck arbeitet.3. Process according to claims 1 and 2, characterized in that one works in step a) at normal pressure. 4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man in der Stufe a) als Katalysatoren aliphatische und/oder aromatische Sulfonsäuren einsetzt.4. Process according to claims 1 to 3, characterized in that aliphatic and / or aromatic sulfonic acids are used as catalysts in stage a). 5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß man in der Stufe a) die Säurezahl der ölphase auf Werte unterhalb von 1 vermindert.5. Process according to claims 1 to 4, characterized in that in step a) the acid number of the oil phase is reduced to values below 1. 6. Verfahren nach den Ansprüchen 1 bis 5, dadurch gekennzeichnet, daß man in der Stufe b) Glycerin-Methanol-Gemische verwendet, in denen das Gewichtsverhältnis von Glycerin : Methanol 1 : 0,25 bis 1 : 1,25 beträgt.6. Process according to claims 1 to 5, characterized in that in step b) glycerol-methanol mixtures are used in which the weight ratio of glycerol: methanol is 1: 0.25 to 1: 1.25. 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, daß das verwendete Glycerin-Alkohol-Gemisch aus der alkalikatalysierten drucklosen Umesterung der ölphase stammt.7. The method according to claim 6, characterized in that the glycerol-alcohol mixture used comes from the alkali-catalyzed pressure-free transesterification of the oil phase. 8. Verfahren nach den Ansprüchen 1 bis 7, dadurch gekennzeichnet, daß man in der Stufe b) auf 100 Volumenteile Ölphase 10 bis 30 Volumenteile Glycerin-Methanol-Gemisch einsetzt.8. Process according to claims 1 to 7, characterized in that 10 to 30 parts by volume of glycerol-methanol mixture are used in step b) for 100 parts by volume of oil phase. 9. Verfahren nach den Ansprüchen 1 bis 8, dadurch gekennzeichnet, daß man die Stufe c) bei 50 bis 100 °C durchführt.9. Process according to claims 1 to 8, characterized in that stage c) is carried out at 50 to 100 ° C.
EP85115217A 1984-12-08 1985-11-30 Process for the preparation of methyl esters of fatty acids Expired - Lifetime EP0184740B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85115217T ATE61332T1 (en) 1984-12-08 1985-11-30 PROCESS FOR THE PREPARATION OF FATTY ACID METHYL ESTERS.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3444893 1984-12-08
DE19843444893 DE3444893A1 (en) 1984-12-08 1984-12-08 METHOD FOR PRODUCING FATTY ACID METHYL ESTERS

Publications (3)

Publication Number Publication Date
EP0184740A2 true EP0184740A2 (en) 1986-06-18
EP0184740A3 EP0184740A3 (en) 1987-09-09
EP0184740B1 EP0184740B1 (en) 1991-03-06

Family

ID=6252300

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85115217A Expired - Lifetime EP0184740B1 (en) 1984-12-08 1985-11-30 Process for the preparation of methyl esters of fatty acids

Country Status (13)

Country Link
US (1) US4652406A (en)
EP (1) EP0184740B1 (en)
JP (1) JPH0662502B2 (en)
AT (1) ATE61332T1 (en)
BR (1) BR8506119A (en)
CA (1) CA1261870A (en)
DE (2) DE3444893A1 (en)
ES (1) ES8606242A1 (en)
GB (1) GB2168701B (en)
MX (1) MX162267A (en)
MY (1) MY101291A (en)
TR (1) TR25060A (en)
ZA (1) ZA859371B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707563A1 (en) * 1987-03-10 1988-09-22 Klaus Dr Ing Scharmer Process for the alcoholysis of fatty acid glycerides and device for carrying out the process
WO1991015452A1 (en) * 1990-04-05 1991-10-17 Lindquist Carl Johan Process for the production of fatty acid alkyl esters
AT399336B (en) * 1993-07-14 1995-04-25 Martin Mag Dr Mittelbach METHOD FOR PRODUCING FATTY ACID ALKYL ESTERS
EP1308498A1 (en) * 2001-11-06 2003-05-07 Cognis Deutschland GmbH & Co. KG Method for the production of fatty acid esters from non-deacidified fats and oils
US7256301B2 (en) 2002-04-12 2007-08-14 Energea Umwelttechnologie Gmbh Method and system for the esterification of fatty acids
WO2009123369A1 (en) 2008-04-01 2009-10-08 Sk Chemicals Co., Ltd. Method for preparing fatty acid alkyl ester using fatty acid
WO2010053258A2 (en) 2008-11-07 2010-05-14 에스케이케미칼 주식회사 Method and apparatus for preparing alkyl ester fatty acid using fatty acid
WO2011008058A2 (en) 2009-07-17 2011-01-20 한국과학기술원 Method for producing fatty acid alkyl esters using microorganisms having oil-producing ability
WO2012054946A1 (en) 2010-10-28 2012-05-03 Theodor Wimmer Method for producing fatty acid esters of lower alcohols
CN103013678A (en) * 2011-09-20 2013-04-03 中国石油化工股份有限公司 Method for reducing biodiesel crude product acid value, and biodiesel preparation method
WO2015012538A1 (en) 2013-07-22 2015-01-29 에스케이케미칼 주식회사 Method for preparing fatty acid alkyl ester using fat
EP2358851B2 (en) 2008-11-17 2018-01-10 Basf Se Use of methanesulfonic acid for producing fatty acid esters

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1987007632A1 (en) * 1986-06-11 1987-12-17 Bio-Energy Technology Ltd. Bio-fuel production
US6262022B1 (en) 1992-06-25 2001-07-17 Novartis Ag Pharmaceutical compositions containing cyclosporin as the active agent
CA2083346A1 (en) * 1991-12-13 1993-06-14 Eric G. Lundquist A catalyzed esterification process
DE4209779C1 (en) * 1992-03-26 1993-07-15 Oelmuehle Leer Connemann Gmbh & Co., 2950 Leer, De
DK0642332T3 (en) 1992-05-13 1997-06-16 Sandoz Ltd Ophthalmic preparations containing cyclosporin
EP1142568A1 (en) 1992-09-25 2001-10-10 Novartis AG Pharmaceutical compositions containing cyclosporins
BR9807528A (en) 1997-01-30 2000-03-14 Novartis Ag Oil-free pharmaceutical compositions containing cyclosporine a
DE19732578C2 (en) * 1997-07-29 2000-08-24 Aventis Res & Tech Gmbh & Co Use of sulfonated aromatic polyether ketone cation exchangers and sulfonated polyphenylene sulfide cation exchangers as catalysts
DE19810440C1 (en) * 1998-03-11 1999-09-23 Dhw Deutsche Hydrierwerke Gmbh Process for the production of unsaturated fatty alcohols from lauric oils
ATA16992000A (en) 2000-10-05 2001-12-15 Michael Dr Koncar METHOD FOR PRODUCING FATTY ACID ALKYL ESTERS
US6965044B1 (en) 2001-07-06 2005-11-15 Iowa State University Research Foundation Method of converting free fatty acids to fatty acid methyl esters with small excess of methanol
US20060042158A1 (en) * 2004-08-26 2006-03-02 Lee John H Fuel products from plant or animal lipids
US7619104B2 (en) * 2005-04-04 2009-11-17 Renewable Products Development Laboratories, Inc. Process for producing biodiesel or fatty acid esters from multiple triglyceride feedstocks
EP1897865B1 (en) * 2005-06-27 2011-06-08 Tokyo Institute Of Technology Processes for producing higher fatty acid esters
US7622600B1 (en) * 2006-01-06 2009-11-24 Redland Industries, Inc. System and method for the continuous production of bio-diesel
US7828978B2 (en) 2006-01-11 2010-11-09 Doug Geier Simultaneous synthesis and purification of a fatty acid monoester biodiesel fuel
US7951967B2 (en) 2006-04-28 2011-05-31 Sk Chemicals Co., Ltd. Method and apparatus for preparing fatty acid alkyl ester using fatty acid
WO2008016330A2 (en) * 2006-08-01 2008-02-07 Sie Hendery @ Hendery Bio formula to substitute diesel fuel
US20100130763A1 (en) * 2006-12-06 2010-05-27 Southern Illinois University Carbondale Processes for the production of fatty acid alkyl esters
US20080289248A1 (en) * 2007-05-23 2008-11-27 Southern Illinois University Carbondale Immobilized esterification catalysts for producing fatty acid alkyl esters
WO2008071040A1 (en) 2006-12-15 2008-06-19 China Petroleum & Chemical Corporation A procss for preparing biodiesel
US8500828B2 (en) 2006-12-15 2013-08-06 China Petroleum & Chemical Corporation Process for preparing a bio-diesel
JP2008260819A (en) * 2007-04-11 2008-10-30 National Institute Of Advanced Industrial & Technology Method for producing bio-diesel fuel
US20080282606A1 (en) * 2007-04-16 2008-11-20 Plaza John P System and process for producing biodiesel
US20100242346A1 (en) * 2007-09-19 2010-09-30 Best Energies, Inc Processes for the esterification of free fatty acids and the production of biodiesel
US20090187035A1 (en) * 2008-01-22 2009-07-23 Cargill, Incorporated Process for production of fatty acid alkyl esters
US20090247785A1 (en) * 2008-03-31 2009-10-01 The University Of Connecticut Methods and systems for pretreatment of an oil stream
FR2929621A1 (en) * 2008-04-08 2009-10-09 Arkema France Esterifying free fatty acid, useful to prepare bio-diesel, comprises providing a fatty substance comprising free fatty acid, adding alcohol and methane sulfonic acid, conducting esterification reaction, and recovering the fatty substance
WO2009139884A1 (en) * 2008-05-14 2009-11-19 Ethox Chemicals, Llc Natural butters reconstituted by transesterification with glycerin and its use in consmetics applications
US8742150B2 (en) * 2008-05-14 2014-06-03 Council Of Scientific & Industrial Research Castor oil fatty acid based estolide esters and their derivatives as potential lubricant base stocks
MX2011006179A (en) 2008-12-08 2014-04-25 Initio Fuels Llc Single step transesterification of feedstock using a gaseous catalyst.
WO2010148652A1 (en) 2009-06-26 2010-12-29 中国石油化工股份有限公司 Diesel composition and process for improving oxidation stability of biodiesel
MY151440A (en) * 2009-10-29 2014-05-30 Malaysian Palm Oil Board Mpob A method of converting free fatty acid (ffa) from oil to methyl ester
CN102851122A (en) * 2011-06-30 2013-01-02 中国石油化工股份有限公司 Method for preparation of fatty acid ester
US9328054B1 (en) 2013-09-27 2016-05-03 Travis Danner Method of alcoholisis of fatty acids and fatty acid gyicerides
AU2015227367A1 (en) * 2014-03-04 2016-09-22 Basf Se Method for degumming and esterification of an oil
ES2585706B1 (en) * 2016-04-21 2017-08-14 Soluciones Industriales Extremeñas Sll Improved procedure for the refining and continuous esterification of any fatty material of vegetable or animal origin, specially designed for animal by-products of category 1 and 2
ES2660207B8 (en) * 2016-09-21 2019-01-10 Bio Oils Huelva S L High efficiency process for the production of alkyl esters of fatty acids by acid catalysis and treatment procedure
FR3059328B1 (en) * 2016-11-25 2018-11-16 Arkema France ACIDIC COMPOSITION FOR THE TREATMENT OF FATTY ACIDS
MY192473A (en) 2016-11-25 2022-08-23 Arkema France Acid composition for processing fatty acids
CN108977281A (en) * 2018-07-05 2018-12-11 浙江恒翔化工有限公司 A method of methyl esters is prepared using high acid value poor oil rouge
US11591545B2 (en) * 2018-10-10 2023-02-28 Basf Se Method of producing biodiesel
EP4132900A1 (en) * 2020-04-07 2023-02-15 Basf Se Energy efficient biodiesel production from natural or industrial waste oil

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2383599A (en) * 1942-10-17 1945-08-28 Colgate Palmolive Peet Co Treating fatty glycerides
US2383601A (en) * 1943-04-28 1945-08-28 Colgate Palmolive Peet Co Treating fats and fatty oils
US4164506A (en) * 1977-03-17 1979-08-14 Kao Soap Co., Ltd. Process for producing lower alcohol esters of fatty acids
EP0127104A1 (en) * 1983-05-30 1984-12-05 Henkel Kommanditgesellschaft auf Aktien Process for the preparation of fatty-acid esters of short chain aliphatic alcohols from free fatty-acid-containing fats and/or oils

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US22751A (en) * 1859-01-25 Ball furniture-caster
US2360844A (en) * 1941-11-26 1944-10-24 Du Pont Preparation of detergents
US2486444A (en) * 1947-07-08 1949-11-01 Baker Castor Oil Co Process of producing esters

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2383599A (en) * 1942-10-17 1945-08-28 Colgate Palmolive Peet Co Treating fatty glycerides
US2383601A (en) * 1943-04-28 1945-08-28 Colgate Palmolive Peet Co Treating fats and fatty oils
US4164506A (en) * 1977-03-17 1979-08-14 Kao Soap Co., Ltd. Process for producing lower alcohol esters of fatty acids
EP0127104A1 (en) * 1983-05-30 1984-12-05 Henkel Kommanditgesellschaft auf Aktien Process for the preparation of fatty-acid esters of short chain aliphatic alcohols from free fatty-acid-containing fats and/or oils

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3707563A1 (en) * 1987-03-10 1988-09-22 Klaus Dr Ing Scharmer Process for the alcoholysis of fatty acid glycerides and device for carrying out the process
WO1991015452A1 (en) * 1990-04-05 1991-10-17 Lindquist Carl Johan Process for the production of fatty acid alkyl esters
AT399336B (en) * 1993-07-14 1995-04-25 Martin Mag Dr Mittelbach METHOD FOR PRODUCING FATTY ACID ALKYL ESTERS
EP1308498A1 (en) * 2001-11-06 2003-05-07 Cognis Deutschland GmbH & Co. KG Method for the production of fatty acid esters from non-deacidified fats and oils
US7256301B2 (en) 2002-04-12 2007-08-14 Energea Umwelttechnologie Gmbh Method and system for the esterification of fatty acids
WO2009123369A1 (en) 2008-04-01 2009-10-08 Sk Chemicals Co., Ltd. Method for preparing fatty acid alkyl ester using fatty acid
WO2010053258A2 (en) 2008-11-07 2010-05-14 에스케이케미칼 주식회사 Method and apparatus for preparing alkyl ester fatty acid using fatty acid
EP2358851B2 (en) 2008-11-17 2018-01-10 Basf Se Use of methanesulfonic acid for producing fatty acid esters
WO2011008058A2 (en) 2009-07-17 2011-01-20 한국과학기술원 Method for producing fatty acid alkyl esters using microorganisms having oil-producing ability
US9322004B2 (en) 2009-07-17 2016-04-26 Korea Advanced Institute Of Science And Technology Method of producing fatty acid alkyl ester using microorganisms having ability to produce oil
WO2012054946A1 (en) 2010-10-28 2012-05-03 Theodor Wimmer Method for producing fatty acid esters of lower alcohols
CN103013678A (en) * 2011-09-20 2013-04-03 中国石油化工股份有限公司 Method for reducing biodiesel crude product acid value, and biodiesel preparation method
CN103013678B (en) * 2011-09-20 2014-12-31 中国石油化工股份有限公司 Method for reducing biodiesel crude product acid value, and biodiesel preparation method
WO2015012538A1 (en) 2013-07-22 2015-01-29 에스케이케미칼 주식회사 Method for preparing fatty acid alkyl ester using fat
US9938487B2 (en) 2013-07-22 2018-04-10 Sk Chemicals Co., Ltd. Method for preparing fatty acid alkyl ester using fat

Also Published As

Publication number Publication date
ES549666A0 (en) 1986-04-16
GB8528953D0 (en) 1986-01-02
DE3582022D1 (en) 1991-04-11
TR25060A (en) 1992-09-22
GB2168701A (en) 1986-06-25
DE3444893A1 (en) 1986-06-12
ATE61332T1 (en) 1991-03-15
CA1261870A (en) 1989-09-26
JPS61140544A (en) 1986-06-27
MX162267A (en) 1991-04-19
ZA859371B (en) 1986-07-30
EP0184740A3 (en) 1987-09-09
ES8606242A1 (en) 1986-04-16
US4652406A (en) 1987-03-24
EP0184740B1 (en) 1991-03-06
MY101291A (en) 1991-09-05
GB2168701B (en) 1988-11-30
BR8506119A (en) 1986-08-26
JPH0662502B2 (en) 1994-08-17

Similar Documents

Publication Publication Date Title
EP0184740B1 (en) Process for the preparation of methyl esters of fatty acids
EP0127104B1 (en) Process for the preparation of fatty-acid esters of short chain aliphatic alcohols from free fatty-acid-containing fats and/or oils
EP0192035B1 (en) Process for the pre-esterification of free fatty acids in raw fats and/or oils
EP1183225B1 (en) Method for producing fatty acid esters of monovalent alkyl alcohols
DE4209779C1 (en)
AT399336B (en) METHOD FOR PRODUCING FATTY ACID ALKYL ESTERS
EP1339817B1 (en) Method for the production of fatty acid esters
AT502218B1 (en) PROCESS FOR PREPARING CARBONIC ACID ALKYL ESTERS
DE3020612A1 (en) METHOD FOR PRODUCING LOW FATTY ACID ALKYLESTERS
EP0523767B1 (en) Process for the production of methyle or ethyle esters from fatty acids and glycerine by transesterification of oils or greases
WO2002028811A1 (en) Method for producing fatty acid alkyl esters
EP0200982B1 (en) Process for the catalytic interesterification of fatty-acid glycerides with lower alkanols
EP0769042B1 (en) Unsaturated fatty substances with improved cold behaviour
EP0150794A2 (en) Process for the production of mixtures of C6-C10 fatty acids
DE19600025A1 (en) Preparation of fatty acids with low acid values, useful as precursors for esterification reactions
DE19908978A1 (en) Production of fatty acid methyl esters from triglycerides and fatty acids, used e.g. as biodiesel, comprises carrying out both reactions simultaneously and continuously in the same reactor to increase gross reaction speed
WO2002038529A1 (en) Method for the production of fatty acid esters of lower alcohols
AT397966B (en) Process for the preparation of fatty acid esters of lower monohydric alcohols
EP0000916B1 (en) Process for the production of fatty acid nitriles and glycerine from glycerides, in particular from natural fats and/or oils
DE10038456A1 (en) Process for the production of sterols
AT412280B (en) CLEANED FATTY ACID ALKYLESTER WITH LOW SULFUR CONTENT AND METHOD FOR THE PRODUCTION THEREOF
DE4436517C1 (en) Fatty acid methyl or ethyl ester and glycerol prepn. with min. soap formation
DE19626458C5 (en) Process for the preparation of esters of the low volatility alcohols trismethylolpropane, trismethylolethane and pentaerythritol with native fatty acids
DE19620523C1 (en) Prodn. of fatty acid mono-ester based fuel
EP1308498B1 (en) Method for the production of fatty acid esters from non-deacidified fats and oils

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE FR IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR IT LI NL SE

17P Request for examination filed

Effective date: 19870925

17Q First examination report despatched

Effective date: 19890329

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR IT LI NL SE

REF Corresponds to:

Ref document number: 61332

Country of ref document: AT

Date of ref document: 19910315

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3582022

Country of ref document: DE

Date of ref document: 19910411

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19931020

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19931026

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19931103

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19931110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19931117

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19931130

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940105

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19941130

Ref country code: CH

Effective date: 19941130

Ref country code: BE

Effective date: 19941130

Ref country code: AT

Effective date: 19941130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19941201

EAL Se: european patent in force in sweden

Ref document number: 85115217.3

BERE Be: lapsed

Owner name: HENKEL K.G.A.A.

Effective date: 19941130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19950601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19950731

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19950801

EUG Se: european patent has lapsed

Ref document number: 85115217.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST