EP0173673B1 - Mauerstein für die Errichtung von aufgehendem Mauerwerk, sowie Verfahren und Vorrichtung zur Herstellung solcher Mauersteine - Google Patents

Mauerstein für die Errichtung von aufgehendem Mauerwerk, sowie Verfahren und Vorrichtung zur Herstellung solcher Mauersteine Download PDF

Info

Publication number
EP0173673B1
EP0173673B1 EP85890176A EP85890176A EP0173673B1 EP 0173673 B1 EP0173673 B1 EP 0173673B1 EP 85890176 A EP85890176 A EP 85890176A EP 85890176 A EP85890176 A EP 85890176A EP 0173673 B1 EP0173673 B1 EP 0173673B1
Authority
EP
European Patent Office
Prior art keywords
chambers
building block
section
brickwork
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85890176A
Other languages
English (en)
French (fr)
Other versions
EP0173673A2 (de
EP0173673A3 (en
Inventor
Friedrich Frühwald
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BATIWE-BETEILIGUNGS-GESELLSCHAFT M.B.H.
Original Assignee
Batiwe-Beteiligungs-Gesellschaft Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Batiwe-Beteiligungs-Gesellschaft Mbh filed Critical Batiwe-Beteiligungs-Gesellschaft Mbh
Publication of EP0173673A2 publication Critical patent/EP0173673A2/de
Publication of EP0173673A3 publication Critical patent/EP0173673A3/de
Application granted granted Critical
Publication of EP0173673B1 publication Critical patent/EP0173673B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/42Walls having cavities between, as well as in, the elements; Walls of elements each consisting of two or more parts, kept in distance by means of spacers, at least one of the parts having cavities
    • E04B2/44Walls having cavities between, as well as in, the elements; Walls of elements each consisting of two or more parts, kept in distance by means of spacers, at least one of the parts having cavities using elements having specially-designed means for stabilising the position; Spacers for cavity walls
    • E04B2/48Walls having cavities between, as well as in, the elements; Walls of elements each consisting of two or more parts, kept in distance by means of spacers, at least one of the parts having cavities using elements having specially-designed means for stabilising the position; Spacers for cavity walls by filling material with or without reinforcements in small channels in, or in grooves between, the elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B13/00Feeding the unshaped material to moulds or apparatus for producing shaped articles; Discharging shaped articles from such moulds or apparatus
    • B28B13/02Feeding the unshaped material to moulds or apparatus for producing shaped articles
    • B28B13/0215Feeding the moulding material in measured quantities from a container or silo
    • B28B13/023Feeding the moulding material in measured quantities from a container or silo by using a feed box transferring the moulding material from a hopper to the moulding cavities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B7/00Moulds; Cores; Mandrels
    • B28B7/0097Press moulds; Press-mould and press-ram assemblies
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0208Non-undercut connections, e.g. tongue and groove connections of trapezoidal shape

Definitions

  • the invention relates to a brick for the erection of rising masonry, which consists of at least two sections of different density, but preferably the same material composition, with the separation between the two sections essentially parallel to the masonry level, and a method and an apparatus for producing a such a brick.
  • the walls, and especially the outer walls of buildings, especially those for residential purposes, should be such that there are pleasant living conditions inside the building and energy-saving heating is possible.
  • the bricks used for the construction of such structures should therefore meet certain conditions with regard to thermal and acoustic insulation.
  • the vapor diffusion resistance should have a certain course so that unwanted moisture penetration of the masonry is prevented.
  • the walls should have a certain heat storage capacity, so that with fluctuating outside temperatures, temperature compensation is achieved inside the building and the temperature prevailing inside the building can be kept constant in the desired manner over a certain time.
  • Constructions are also known in which two or more separately produced layers are connected to one another, for example by adhesive bonding, at least one of the layers representing a heat-insulating layer.
  • constructions have the major disadvantage that when the insulating layer is attached to the outside, as a result the large temperature difference between the inside and outside under the effect of steam diffusion, an undesirable moisture accumulation in the masonry takes place within the insulating layer. If, on the other hand, the insulating layer is attached to the inside, such masonry has no heat storage capacity at all, so there is no complete balancing and temperature-regulating effect.
  • a brick has already become known from AT-A-267 147, which consists of at least two mutually parallel sections which are formed from pressure-resistant clay and from highly porous clay.
  • This known brick is designed as a solid brick, thus has no chambers or the like in any of the sections. on. With this known brick, the porosity of the sections consisting of porous clay improves the insulating effect, but optimum values are not achieved here.
  • a brick which is composed of two sections, one of which consists of brick material and the other of concrete.
  • the section made of brick material has bores, the load-bearing section made of concrete is provided with chambers of large cross-section, which partly run from top to bottom, partly do not extend over the entire height of the brick.
  • the staggered arrangement of these known bricks in rows arranged one above the other creates a convection flow of air in these chambers, as a result of which heat is transported and thermal insulation is significantly reduced.
  • Such an undesirable convection flow also arises in the bores of the section consisting of brick material, which bores form continuous channels over the height of the rising masonry.
  • Another disadvantage of this known brick is that it cannot be produced in a single operation, since the brick material has to be fired, while the concrete must not be exposed to the high temperatures that occur during firing.
  • the present invention has for its object to provide a brick for the erection of masonry, which has optimal properties in terms of heat and sound insulation, heat storage capacity and vapor diffusion, can be easily manufactured in a single operation and allows easy erection of masonry .
  • the invention proposes, starting from a brick of the type described above, that only in the section of lower density delimiting the outside of the masonry, several rows of slot-shaped chambers running from top to bottom running parallel to each other are provided, whereas the Inside of the masonry delimiting section of greater density is formed without continuous chambers.
  • the slit-shaped chambers provided in the lower-density section result in an optimal thermal insulation effect of this section, whereby a convection flow is provided by the arrangement of the chambers in several rows and by the slit-shaped design of these chambers largely prevented becomes.
  • the air in the chambers therefore does not move and thus represents an optimal heat insulator, in contrast to air exposed to a convection flow, via which heat is transported.
  • this section not only has the required load-bearing capacity, but also acts as a heat store, as a result of which fluctuating outside temperatures are compensated for. This section also provides the necessary sound insulation.
  • the chambers preferably have, at least in part, an arcuate cross section.
  • the volume of the chambers is increased compared to straight chambers without an increase in the width of the chambers, which would bring about an undesirable increase in convection and thus a reduction in the heat-insulating effect.
  • the cross section of the chambers is expedient, at least in the central region, in the direction.
  • the masonry plane extending width of the stone bounded by arcs, preferably the arcs of chambers arranged adjacent in the direction perpendicular to the inside of the brick have a common center.
  • the advantage is achieved that the webs arranged between the circular arc-shaped chambers have the same width everywhere, that is to say the distance between the chambers is the same everywhere, which results in optimal thermal insulation values.
  • the cross section of the chamber is smaller in the area adjoining the upper cover surface than in the rest of the area.
  • one section has a density between 500 and 700 kg / m 3 and the other section has a density between 800 and 1200 kg / m 3 .
  • the properties of the stone can be varied within certain limits and adapted to the respective requirements.
  • the production of the brick according to the invention can be carried out in a simple manner in that, according to the invention, two masses of different density forming the brick are poured into an open-top mold at the same time, but at a lateral distance, and are then allowed to harden.
  • the separation between the two masses can be achieved at the desired location of the brick, without it being necessary, a partition or the like at the separation point to be inserted into the mold which would have to be removed later.
  • the method according to the invention has the further advantage that a homogeneous brick is produced when the method is used, since the two masses partially flow into one another at the point of separation of the two sections.
  • the device according to the invention for producing the bricks is essentially characterized by at least one open casting mold, the side walls of which have a shape corresponding to the side walls of the brick, and by a filling device arranged above the casting mold (s), the two compartments for holding the masses of different densities has which compartments are provided in their bottom area with side-by-side outlet openings, an intermediate container being optionally provided between the filling device and the mold.
  • the filling device or the intermediate container is located above a casting mold or several casting molds and the outlet openings are opened, then the masses of different densities simultaneously enter the filling mold (s) and fill them out, with the dimensions being filled during the casting process approximately always are at the same level, so that a separation of the two masses is ensured in the desired range.
  • webs are connected to at least part of the casting mold, preferably with an arcuate cross section.
  • the cross section of these webs is preferably smaller in the region of one end of the webs than in the rest of the region, as a result of which the aforementioned reduction in the cross section of the chambers is achieved in the region adjoining the upper cover surface of the brick.
  • a plurality of casting molds can be combined to form a unit, the filling device or the intermediate container being arranged such that it can be moved above this unit of casting molds.
  • Fig. 1 shows a brick according to the invention in a horizontal section along the line 1-1 in Fig. 2 and Fig. 2 shows the brick according to Fig. 1 in a vertical section along the line 11-11 in Fig. 1.
  • Fig. 3 shows schematically in side view an inventive device for producing a stone according to the invention.
  • Fig. 4 shows a section along the line IV-IV in Fig. 3 through four molds combined into one unit.
  • Fig. 5 shows a section along the line VV in Fig. 3.
  • Fig. 6 shows a perspective view of a device for compressing the masses poured into the molds and Fig. 7 also shows a perspective view of the filling device of the device according to the invention .
  • the brick according to the invention consists of two sections of different densities, namely a section 1 of higher density and a section 2 of lower density. Both sections preferably have the same material composition and consist, for example, of concrete, but production using clay is also conceivable.
  • the dividing line between the two sections is indicated schematically by the dash-dotted line 3, whereby, however, as the manufacturing method explained in more detail later, there is no exact dividing line, rather the two sections of different densities are separated within a certain range. However, this does not matter, since an exact separation between the two sections is not important for the brick according to the invention.
  • the section 1 of greater density is arranged inside in the production of rising masonry by means of the brick according to the invention and forms a storage part which stores the heat and ensures the required sound insulation.
  • the bulk density of this section is between 800 and 1200 kg / m 3 .
  • only grooves 4 adjacent to the inside 5 of the brick are provided. These grooves 4 serve to facilitate the production of channels on the inside of the masonry for the accommodation of installation lines.
  • the section 1 has large mortar pockets 6, which effectively interrupt the longitudinal sound conduction, but at the same time bring about additional thermal insulation in the area of the construction joint, especially when using light mortar.
  • the section 2 of lower density which brings about the thermal insulation, has chambers 7 which partially run in the form of a circular arc, the circular arcs (radii r, to r 4 ) having a common center. This results in an equidistant formation of the chambers 7 also in the area of the arcs.
  • the concave side of the chambers 7 faces the inside 5 of the brick, which results in the aforementioned reflection of the high-frequency sources causing the energy transport in the direction of the interior of the room.
  • the section 2 of lower density has lugs 8 and recesses 9 on the side surfaces for centering with adjacent building blocks.
  • the cross section of the chambers in the region adjoining the upper cover surface 20 is smaller at 7 ′ than in the rest of the region.
  • the thickness of the chambers is reduced from about 8 mm to about 3 mm. This makes it possible to guide the chambers 7 up to the upper cover surface 20, although mortar penetration into the chambers, which would impair the insulating effect thereof, is largely avoided.
  • the stone according to the invention is produced in casting molds, for example, as can be seen from FIG. 4, four casting molds 10 are combined to form a unit 11 which, as can be seen from FIG. 3, is placed on a flat bottom surface 12.
  • four casting molds 10 can also be combined to form a unit, and it is of course also possible to produce only a single stone in a single casting mold 10 during each filling process.
  • the two masses of different densities required for the production of the stone according to the invention are filled into a filling device 12, which is shown in perspective in FIG. 7.
  • the filling device 12 has two filling openings 13, 14 which are separated from one another by a wall 15 and into which the two masses of different densities are filled.
  • the masses of different densities filled into the filling openings 13, 14 are distributed over three outlet openings 16, 17, 18 in such a way that the dimension of lower density emerges through the two outer outlet openings 16, 18 the middle outlet opening 17, however, the mass of greater density.
  • Crosspieces 19, which separate the outlet openings 16, 17, 18, ensure that the masses do not immediately mix with one another when they emerge from the openings 16, 17, 18.
  • the filling device 12 is located above an intermediate container 20, so that after opening a flap 21 which closes the outlet openings 16, 17, 18 and is not shown in FIG. 7, the masses of different densities are filled into the intermediate container.
  • the intermediate container 20 has no bottom and is located above a table 22 which prevents the filled-in mass from escaping.
  • the flap 21 is closed.
  • the intermediate container 20 is moved along rails 23 until it is above the four casting molds 10 combined into one unit. It is then caused by a vibrator, not shown, that the intermediate container 20 is completely emptied into the casting molds 10, which are combined to form a unit 11.
  • the intermediate container 20 After the intermediate container 20 has been emptied, it is pushed back into its starting position below the filling device 12. A stamp 25 is then lowered, for example by means of a hydraulic cylinder 26, which causes the masses of different densities filled into the casting molds 10 to be compressed.
  • webs 27 are fixed to the side walls of the casting molds, which extend in the upper region of the casting molds from one side wall to the opposite side wall, but are provided with recesses 28 below this uppermost region. These webs 27 serve to produce the chambers 7, the interruptions between the individual chambers being produced where the recesses 28 are provided, since the filled-in masses can pass through these recesses.
  • the plunger 25 is lowered so far during the compression of the filled masses that the surface of the compressed mass lying against the plunger is below the upper limit of the recess 28.
  • the area of the webs above the recesses 28 thus only serves to enable the webs 27 to be fixed to the side walls of the casting molds 10.
  • the four casting molds 10 combined into a unit 11 are raised by means of a lifting device 29 (see FIG. 5), the unit being guided along rails 30.
  • the stones removed from the surface and resting on the surface 24 can now be removed and left to dry.
  • the cross section of the webs 27 is smaller at the lower end adjacent to the support surface 24 than in the rest of the region, so that the regions 7 ′ of reduced cross section of the chambers 7 are formed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)

Description

  • Die Erfindung betrifft einen Mauerstein für die Errichtung von aufgehendem Mauerwerk, der aus wenigstens zwei Abschnitten verschiedener Dichte, jedoch vorzugsweise gleicher Materialzusammensetzung, besteht, wobei die Trennung zwischen den beiden Abschnitten im wesentlichen parallel zur Mauerwerksebene verläuft, sowie ein Verfahren und eine Vorrichtung zur Herstellung eines solchen Mauersteines.
  • Die Mauern, und zwar vor allem die Außenmauern von Bauwerken, insbesondere von solchen für Wohnzwecke, sollen so beschaffen sein, daß im Inneren des Bauwerkes angenehme Wohnverhältnisse herrschen und eine energiesparende Beheizung möglich ist. Die für die Errichtung solcher Bauwerke verwendeten Mauersteine sollen daher bestimmte Bedingungen hinsichtlich der Wärme- und Schalldämmung erfüllen. Weiters soll der Dampfdiffusionswiderstand einen bestimmten Verlauf aufweisen, damit eine unerwünschte Durchfeuchtung des Mauerwerkes verhindert wird. Außerdem sollen die Mauern ein bestimmtes Wärmespeichervermögen besitzen, sodaß bei schwankenden Außentemperaturen ein Temperaturausgleich im Inneren des Bauwerkes erzielt wird und über eine gewisse Zeit die im Inneren Bauwerkes herrschende Temperatur in erwünschter Weise konstant gehalten werden kann.
  • Es sind bereits Mauersteine für die Errichtung von aufgehendem Mauerwerk bekannt, bei welchen beispielsweise durch die Anordnung von Luftkammern günstige Werte hinsichtlich der Wärmedämmung erzielt werden. Diese Mauersteine bewirken jedoch keine ausreichende Schalldämmung und ergeben keine optimalen Werte hinstichtlich des Wärmespeichervermögens.
  • Es sind auch Konstruktionen bekannt, bei welchen zwei oder mehrere gesondert hergestellt Schichten miteinander, beispielsweise durch Kleben, verbunden werden, wobei zumindest eine der Schichten eine wärmeisolierende Schicht darstellt. Abgesehen davon, daß die Errichtung von Mauerwerk mittels derartiger Konstruktionen umständlich und zeitraubend ist und eine sichere Verbindung zwischen den einzelnen Schichten nicht immer gewährleistet ist, weisen solche Konstruktionen den wesentlichen Nachteil auf, daß dann, wenn die isolierende Schicht an der Außenseite angebracht ist, infolge der großen Temperaturdifferenz zwischen Innenseite und Außenseite unter der Wirkung der Dampfdiffusion einer unerwünschte Feuchtigkeitsanreicherung im Mauerwerk innerhalb der Isolierschicht erfolgt. Wird hingegen die Isolierschicht an der Innenseite angebracht, so weist ein solches Mauerwerk überhaupt kein Wärmespeichervermögen auf, es fehlt daher die ausgleichende und temperaturregelnde Wirkung vollkommen.
  • Aus der AT-A-267 147 ist bereits ein Mauerstein bekannt geworden, der aus wenigstens zwei zueinander parallel verlaufenden Abschnitten besteht, welche aus druckfestem Ton und aus hochporösem Ton gebildet sind. Dieser bekannte Mauerstein ist als Vollziegel ausgebildet, weist somit in keinem der Abschnitte Kammern od.dgl. auf. Bei deisem bekannten Mauerstein wird zwar durch die Porosität der aus porösem Ton bestehenden Abschnitte die Dämmwirkung verbessert, optimale Werte werden jedoch hiebei nicht erzielt.
  • Aus der FR-A 852 731 ist ein Mauerstein bekannt geworden, der aus zwei Abschnitten zusammengesetzt ist, von welchen der eine aus Ziegelmaterial und der andere aus Beton besteht. Der aus Ziegelmaterial bestehende Abschnitt weist Bohrungen auf, der tragende, aus Beton bestehende Abschnitt ist mit Kammern großen Querschnittes versehen, welche teilweise von oben nach unten durchlaufen, teilweise sich nicht über die ganze Höhe des Mauersteines erstrekken. Durch versetzt Anordnung dieser bekannten Mauersteine in übereinander angeordneten Reihen entsteht in diesen Kammern eine Konvektionsströmung der Luft, wodurch ein Wärmetransport erfolgt und die Wärmedämmung wesentlich verringert wird. Eine solche unerwünschte Konvektionsströmung entsteht auch in den Bohrungen des aus Ziegelmaterial bestehenden Abschnittes, welche Bohrungen über die Höhe des aufgehenden Mauerwerkes durchgehende Kanäle bilden.
  • Ein weiterer Nachteil dieses bekannten Mauersteines besteht darin, daß eine Herstellung desselben in einem einzigen Arbeitsvorgang nicht möglich ist, da das Ziegelmaterial gebrannt werden muß, der Beton hingegen den beim Brennen auftretenden hohen Temperaturen nich ausgesetzt werden darf.
  • Die vorliegende Erfindung hat sich zur Aufgabe gestellt, einen Mauerstein für die Errichtung von aufgehendem Mauerwerk zu schaffen, welcher hinsichtlich Wärme- und Schalldämmung, Wärmespeicherkapazität und Dampfdiffusion optimale Eigenschaften besitzt, einfach in einem einheitlichen Arbeitsvorgang hergestellt werden kann und eine einfache Errichtung von aufgehendem Mauerwerk ermöglicht. Zur Lösung dieser Aufgabe schlägt die Erfindung, ausgehend von einem Mauerstein der eingangs beschriebenen Art, vor, daß lediglich im die Außenseite des Mauerwerks begrenzenden Abschnitt geringerer Dichte mehrere zueinander etwa parallel verlaufende Reihen von von oben nach unten durchlaufenden schlitzförmigen Kammern vorgesehen sind, wogegen der die Innenseite des Mauerwerks begrenzende Abschnitt größerer Dichte ohne durchlaufende Kammern ausgebildet ist. Durch die im Abschnitt geringerer Dichte vorgesehenen, in mehreren etwa parallel verlaufenden Reihen angeordneten, von oben nach unten durchlaufenden schlitzförmigen Kammern ergibt sich eine optimale wärmedämmende Wirkung dieses Abschnittes, wobei durch die Anordnung der Kammern in mehreren Reihen und durch die schlitzförmige Ausbildung dieser Kammern eine Konvektionsströmung weitgehend unterbunden wird. Die in den Kammern befindliche Luft bewegt sich somit nicht und stellt dadurch einen optimalen Wärmeisolater dar, im Gegensatz zu einer einer Konvektionsströmung ausgesetzten Luft, über welche ein Wärmetransport erfolgt. Dadurch, daß der Abschnitt größerer Dichte ohne durchlaufende Kammern ausgebildet ist, weist dieser Abschnitt nicht nur die erforderliche Tragfähigkeit auf, sondern wirkt als Wärmespeicher, wodurch schwankende Außentemperaturen ausgeglichen werden. Außerdem bewirkt dieser Abschnitt die erforderliche Schalldämmung.
  • Vorzugsweise weisen die Kammern zumindest teilweise einen bogenförmigen Querschnitt auf. Dadurch wird das Volumen der Kammern gegenüber gerade verlaufenden Kammern vergrößert, ohne daß eine Vergrößerung der Breite der Kammern erfolgt, welche eine unerwünschte Erhöhung der Konvektion und damit Verringerung der wärmedämmenden Wirkung mit sich bringen würde.
  • Zweckmäßig ist der Querschnitt der Kammern zumindest im mittleren Bereich der sich in Richtung. der Mauerwerksebene erstreckenden Breite des Steines von Kreisbögen begrenzt, wobei vorzugsweise die Kreisbögen von in Richtung senkrecht zur Innenseite des Mauersteines benachbart angeordneten Kammern einen gemeinsamen Mittelpunkt haben. Im letzteren Fall wird der Vorteil erzielt, daß die zwischen den kreisbogenförmig verlaufenden Kammern angeordneten Stege überall dieselbe Breite besitzen, der Abstand zwischen den Kammern also überall gleich groß ist, wodurch sich optimale wärmedämmende Werte ergeben.
  • Vorteilhaft ist es, wenn die konkave Seite der Kammern der Innenseite des Mauersteines zugewendet ist, da sich dann ein optimaler Wärmedurchlaßwiderstand des erfindungsgemäßen Mauersteines aus folgenden Gründen ergibt:
  • In einem Isolator erfolgt der Energietransport fast ausschließlich durch hochfrequente elastische Wellen, die sogenannten Photonen. Diese Photonen können sich in einem homogenen Material ungehindert geradlinig ausbreiten, werden jedoch durch den Einbau von Grenzflächen abgelenkt. Trifft eine Welle auf eine solche durch eine luftgefüllte Kammer gebildete Grenzfläche auf, so erfährt diese Welle zum Teil eine Reflexion und zum eil eine Brechung. Diejenigen Wellen, deren Einfallswinkel größer als der Winkel der Totalreflexion ist, werden totalreflektiert. Daraus ergibt sich, daß der Neigungswinkel der Grenzfläche, also der die Kammer begrenzenden Wände, gegenüber der Richtung der einfallenden Welle dafür maßgebend ist, ob und in welchem Maße eine Reflexion dieser Welle stattfindet. Berechnungen haben nun ergeben, daß durch die erfindungsgemäße Ausbildung der Luftkammern ein Großteil der auftreffenden, den Wärmeenergietransport bewerkstelligenden Wellen totalreflektiert wird, so daß sich auch dadurch eine ganz wesentliche Verbesserung der Wärmedämmung ergibt.
  • Gemäß einem weiteren Merkmal der Erfindung ist der Querschnitt der Kammer im an die obere Deckfläche angrenzenden Bereich kleiner als im übrigen Bereich. Diese Ausführungsform ergibt den Vorteil, daß die Kammern über die ganze Höhe des Mauersteines durchlaufend ausgebildet sind, so daß ihre Wirkung hinsichtlich Wärmedämmung groß ist, daß jedoch das Eindringen von Mörtel bei der Herstellung des Mauerwerkes in die Kammern weitgehend unterbunden wird, da durch den kleineren Querschnitt der Mörtel kaum in das Innere der Kammern eindringen kann.
  • Es hat sich als zweckmäßig herausgestellt, wenn der eine Abschnitt eine Dichte zwischen 500 und 700 kg/m3 und der andere Abschnitt eine Dichte zwischen 800 und 1200 kg/m3 aufweist. Durch Veränderung der Dichte innerhalb der angegebenen Bereich können die Eigenschaften des Steines innerhalb gewisser Grenzen variiert und den jeweiligen Erfordernissen angepaßt werden.
  • Die Herstellung des erfindungsgemäßen Mauersteines kann auf einfache Weise dadurch durchgeführt werden, daß erfindungsgemäß in eine oben offene Form gleichzeitig, jedoch in seitlichem Abstand, zwei den Mauerstein bildende Massen verschiedener Dichte eingegossen und anschließend aushärten gelassen werden. Durch Wahl entsprechender Mengen der beiden Massen und der Stellen, wo diese Massen in die Gießform eingegossen werden, kann die Trennung zwischen den beiden Massen an der gewünschten Stelle des Mauersteines erzielt werden, ohne daß er erforderlich ist, an der Trennstelle eine Trennwand od. dgl. in die Form einzusetzen, welche später wieder entfernt werden müßte. Das erfindungsgemäße Verfahren weist, abgesehen von der Einfachheit, den weiteren Vorteil auf, daß bei Anwendung des Verfahrens ein homogener Mauerstein hergestellt wird, da die beiden Massen an der Trennstelle der beiden Abschnitte teilweise ineinanderfließen.
  • Die erfindungsgemäße Vorrichtung zur Herstellung der Mauersteine ist im wesentlichen gekennzeichnet durch wenigstens eine offene Gießform, deren Seitenwände eine den Seitenwänden des Mauersteines entsprechende Gestalt aufweisen, und durch eine oberhalb der Gießform(en) angeordnete Fülleinrichtung, die zwei Abteile für die Aufnahme der Massen verschiedener Dichte aufweist, welche Abteile in ihrem Bodenbereich mit nebeneinander angeordneten Austrittsöffnungen versehen sind, wobei gegebenenfalls zwischen der Fülleinrichtung und der Form ein Zwischenbehälter vorgesehen ist. Befinden sich die Fülleinrichtung oder der Zwischenbehälter oberhalb einer Gießform oder mehrerer Gießformen und werden die Austrittsöffnungen freigegeben, so gelangen die Massen verschiedener Dichte gleichzeitig in die Gießform(en) und füllen diese aus, wobei bei entsprechender Dimensionierung während des Gießvorganges sich die eingefüllten Massen etwa immer auf demselben Niveau befinden, so daß eine Trennung der beiden Massen im gewünschten Bereich gewährleistet ist.
  • Um die Kammern in dem die geringere Dichte aufweisenden Abschnitt herzustellen, sind erfindungsgemäß mit wenigstens einem Teil der Gießform, vorzugsweise im Querschnitt bogenförmige, Stege verbunden. Der Querschnitt dieser Stege ist hiebei vorzugsweise im Bereich des einen Endes der Stege kleiner als im übrigen Bereich, wodurch die bereits erwähnte Verkleinerung des Querschnitts der Kammern im an die obere Deckfläche des Mauersteines angrenzenden Bereich erzielt wird.
  • Um eine rationelle Herstellung der Mauersteine zu ermöglichen, können gemäß einem weiteren Merkmal der Erfindung mehrere Gießformen zu einer Einheit zusammengefaßt sein, wobei die Fülleinrichtung oder der Zwischenbehälter oberhalb dieser Einheit von Gießformen verfahrbar angeordnet ist.
  • In der Zeichnung ist die Erfindung an Hand von Ausführungsbeispielen schematisch veranschaulicht. Fig. 1 zeigt einen erfindungsgemäßen Mauerstein in einem Horizontalschnitt nach der Linie 1-1 in Fig. 2 und Fig. 2 stellt den Mauerstein nach Fig. 1 in einem Vertikalschnitt nach der Linie 11-11 in Fig. 1 dar. Fig. 3 zeigt schematisch in Seitenanschicht eine erfindungsgemäße Vorrichtung zur Herstellung eines erfindungsgemäßen Steines. Fig. 4 zeigt einen Schnitt nach der Linie IV-IV in Fig. 3 durch vier zu einer Einheit zusammengefaßte Gießformen. Fig. 5 stellt einen Schnitt nach der Linie V-V in Fig. 3 dar. Fig. 6 zeigt in perspektiver Darstellung eine Einrichtung um Verdichten der in die Gießformen eingefüllten Massen und Fig. 7 stellt, gleichfalls in perspektiver Darstellung, die Fülleinrichtung der erfindungsgemäßen Vorrichtung dar.
  • Der erfindungsgemäße Mauerstein besteht aus zwei Abschnitten verschiedener Dichte, nämlich aus einem Abschnitt 1 größere Dichte und aus einem Abschnitt 2 geringerer Dichte. Beide Abschnitte weisen vorzugsweise dieselbe Materialzusammensetzung auf und bestehen beispielsweise aus Beton, jedoch ist auch eine Herstellung unter Verwendung von Lehm denkbar. Die Trennlinie zwischen den beiden Abschnitten ist schematisch durch die strichpunktierte Linie 3 angedeutet, wobei jedoch, wie die später noch näher erläuterte Herstellungsweise erkennen läßt, keine exakte Trennlinie entsteht, vielmehr die Trennung der beiden Abschnitte verschiedener Dichte innerhalb eines gewissen Bereiches stattfindet. Dies spielt jedoch keine Rolle, da es beim erfindungsgemäßen Mauerstein auf eine exakte Trennung zwischen den beiden Abschnitten nicht ankommt.
  • Der Abschnitt 1 größerer Dichte ist bei der Herstellung von aufgehendem Mauerwerk mittels des erfindungsgemäßen Mauersteines innen angeordnet und bildet einen Speicherteil, welcher die Wärme speichert und die erforderliche Schalldämmung gewährleistet. Die Rohdichte dieses Abschnittes beträgt zwischen 800 und 1200 kg/m3. In diesem Abschnitt sind lediglich der Innenseite 5 des Mauersteines benachbarte Nuten 4 vorgesehen. Diese Nuten 4 dienen dazu, die Herstellung von Kanälen an der Innenseite des Mauerwerkes für die Unterbringung von Installationsleitungen zu erleichtern. Seitlich weist derAbschnitt 1 große Mörteltaschen 6 auf, die die Schallängsleitung wirksam unterbrechen, gleichzeitig aber auch vor allem bei Verwendung von Leichtmörteln eine zusätzliche Wärmedämmung im Bereich der Arbeitsfuge bewirken.
  • Der Abschnitt 2 geringerer Dichte, welche die Wärmedämmung bewirkt, weist Kammern 7 auf, die teilweise kreisbogenförmig verlaufen, wobei die Kreisbögen (Radien r, bis r4) einen gemeinsamen Mittelpunkt haben. Dadurch ergibt sich eine äquidistante Ausbildung der Kammern 7 auch im Bereich der Kreisbögen.
  • Die konkave Seite der Kammern 7 ist der Innenseite 5 des Mauersteines zugewendet, wodurch sich die bereits erwähnte Reflexion der den Energietransport bewirkenden hochfrequenten Quellen in Richtung zum Rauminneren ergibt.
  • Der Abschnitt 2 geringerer Dichte weist an den Seitenflächen Nasen 8 und Ausnehmungen 9 zur Zentrierung mit benachbarten Bausteinen auf.
  • Wie aus Fig. 2 hervorgeht, ist der Querschnitt der Kammern im an die Obere Deckfläche 20 angrenzenden Bereich bei 7' kleiner als im übrigen Bereich. Die Dicke der Kammern ist dortvon etwa 8 mm auf ca 3 mm verringert. Dadurch wird es möglich, die Kammern 7 bis zur oberen Deckfläche 20 zu führen, wobei dennoch ein Eindringen von Mörtel in die Kammern, welches die Isolierwirkung derselben beeinträchtigen würden, weitgehend vermieden wird.
  • Die Herstellung des erfindungsgemäßen Steines erfolgt in Gießformen, wobei beispielsweise, wie aus Fig. 4 ersichtlicht ist, vier Gießformen 10 zu einer Einheit 11 zusammengefaßt sind, welche, wie aus Fig. 3 hervorgeht, auf einer ebenen Bodenfläche 12 abgestellt ist. Es können aber auch mehr als vier Gießformen zu einer Einheit zusammegefaßt sein und es ist selbstverständlich auch möglich, bei jedem Füllvorgang nur einen einzigen Stein in einer einzigen Gießform 10 herzustellen.
  • Die für die Herstellung des erfindungsgemäßen Steines benötigten beiden Massen verschiedener Dichte werden in eine Fülleinrichtung 12 eingefüllt, die in Fig. 7 in perspektiver Darstellung gezeigt ist. Die Fülleinrichtung 12 weist in ihrem oberen Bereich zwei Einfüllöffnungen 13, 14 auf, die durch eine Wand 15 voneinander getrennt sind und in die die beiden Massen verschiedener Dichte eingefüllt werden. Durch entsprechende Formgebung mehrerer im Inneren der Fülleinrichtung 12 vorgesehener Trennwände werden die in die Einfüllöffnungen 13, 14 eingefüllten Massen verschiedener Dichte derart auf drei Austrittsöffnungen 16, 17, 18 verteilt, daß durch die beiden äußeren Austrittsöffnungen 16, 18 die Mass geringerer Dichte austritt, durch die mittlere Austrittsöffnung 17 hingegen die Masse größerer Dichte. Stege 19, welche die Austrittsöffnungen 16, 17, 18 voneinander trennen, gewährleisten, daß die Massen sich beim Austreten aus den Öffnungen 16, 17, 18 nicht sofort miteinander mischen.
  • Die Fülleinrichtung 12 befindet sich oberhalb eines Zwischenbehälters 20, so daß nach Öffnen einer die Austrittsöffnungen 16, 17, 18 verschließenden, in Fig. 7 nicht dargestellten Klappe 21 die Massen verschiedener Dichte in den Zwischenbehälter eingefüllt werden. Der Zwischenbehälter 20 weist keinen Boden auf und befindet sich oberhalb eines Tisches 22, der ein Austreten der eingefüllten Massen verhindert. Sobald das Volumen der im Zwischenbehälter befindlichen Massen für die Füllung der vier zu einer Einheit 11 zusammengefaßten Gießformen 10 ausreicht (siehe Fig. 4), wird die Klappe 21 verschlossen. Im Anschluß daran wird der Zwischenbehälter 20 entlang von Schienen 23 verschoben, bis er sich oberhalb der vier zu einer Einheit zusammengefaßten Gießformen 10 befindet. Hierauf wird durch einen nicht dargestellten Rüttler bewirkt, daß sich der Zwischenbehälter 20 vollständig in die zu einer Einheit 11 zusammengefaßten Gießformen 10 entleert. Nach Entleeren des Zwischenbehälters 20 wird dieser in seine Ausgangsposition unterhalb der Fülleinrichtung 12 zurückgeschoben. Hierauf wird ein Stempel 25 beispielsweise mittels eines Hydraulikzylinders 26 abgesenkt, welcher eine Verdichtung der in die Gießformen 10 eingefüllten Massen verschiedener Dichte bewirkt.
  • Wie aus den Fig. 4 und 6 hervorgeht, sind an den Seitenwänden der Gießformen 10 Stege 27 fixiert, welche sich im oberen Bereich der Gießformen von einer Seitenwand zur gegenüberliegenden Seitenwand erstrecken, unterhalb dieses obersten Bereiches jedoch mit Ausnehmungen 28 versehen sind. Diese Stege 27 dienen zur Herstellung der Kammern 7, wobei dort, wo die Ausnehmungen 28 vorgesehen sind, die Unterbrechungen zwischen den einzelnen Kammern hergestellt werden, da über diese Ausnehmungen die eingefüllten Massen hindurchtreten können. Der Stempel 25 wird beim Verdichten der eingefüllten Massen so weit abgesenkt, daß die am Stempel anliegende Fläche der verdichteten Massen sich unterhalb der oberen Begrenzung der Ausnehmung 28 befindet. Der Bereich der Stege oberhalb der Ausnehmungen 28 dient somit lediglich dazu, eine Fixierung der Stege 27 an den Seitenwänden der Gießformen 10 zu ermöglichen.
  • Nach dem Verdichten der in die Gießformen 10 eingefüllten Massen werden die vier zu einer Einheit 11 zusammengefaßten Gießformen 10 mittels einer Hebevorrichtung 29 (siehe Fig. 5) angehoben, wobei die Einheit entlang von Schienen 30 geführt ist. Die dadurch entformten, auf der Fläche 24 aufruhenden Steine können nun abstransportiert und trocknen gelassen werden.
  • Der Querschnitt der Stege 27 ist am unteren, der Auflagefläche 24 benachbarten Ende kleiner als im übrigen Bereich, damit die Bereiche 7' verringerten Querschnittes der Kammern 7 gebildet werden.

Claims (11)

1. Mauerstein für die Errichtung von aufgehendem Mauerwerk, der aus wenigstens zwei Abschnitten (1, 2) verschiedener Dichte, jedoch vorzugsweise gleicher Materialzusammensetzung, besteht, wobei die Trennung (3) zwischen den beiden Abschnitten im wesentlichen parallel zur Mauerwerksebene verläuft, dadurch gekennzeichnet, daß lediglich im die Außenseite des Mauerwerks begrenzenden Abschnitt (2) geringerer Dichte mehrere zueinander etwa parallel verlaufende Reihen von oben nach unten durchlaufenden schlitzförmigen Kammern (7) vorgesehen sind, wogegen der die Innenseite des Mauerwerks begrenzende Abschnitt (1) größere Diche ohne durchlaufende kammern ausgebildet ist.
2. Mauerstein nach Anspruch 1, dadurch gekennzeichnet, daß die Kammern (7) zumindest im mittleren Bereich der sich in Richtung der Mauerwerksebene erstreckenden Breite des Steines einen bogenförmigen Querschnitt aufweisen.
3. Mauerstein nach Anspruch 2, dadurch gekennzeichnet, daß der Querschnitt der Kammern (7) zumindest teilweise von Kreisbögen begrenzt ist, wobei vorzugsweise die Kreisbögen von in Richtung senkrecht zur Innenseite (5) des Mauersteines benachbart angeordneten Kammern (7) einen gemeinsamen Mittelpunkt haben.
4. Mauerstein nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die konkave Seite der Kammern (7) der Innenseite (5) des Mauersteines zugewendet ist.
5. Mauerstein nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Querschnitt der Kammern (7) im an die obere Deckfläche (20) angrenzenden Bereich (7') kleiner ist als im übrigen Bereich.
6. Mauerstein nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der eine Abschnitt (2) eine Dichte zwischen 500 und 700 kg/m3 und der andere Abschnitt (1) eine Dichte zwischen 800 und 1200 kg/m3 aufweist.
7. Verfahren zur Herstellung von Mauersteinen nach einem der Ansprüche 1 bis 6, dadurch gekenneichnet, daß in eine oben offene Gießform gleichzeitig, jedoch in seitlichem Abstand, zwei den Mauerstein bildende Massen verschiedener Dichte eingegossen und anschließend aushärten gelassen werden.
8. Vorrichtung zur Herstellung von Mauersteinen nach einem der Ansprüche 1 bis 6, gekennzeichnet durch wenigstens eine oben offene Gießform (10), deren Seitenwände eine den Seitenwänden des Mauersteines entsprechende Gesalt aufweisen, und durch eine oberhalb der Gießform(en) angeordnete Fülleinrichtung (12), die zwei Abteile (13, 14) für die Aufnahme von Massen verschiedener Dichte aufweist, welche Abteile in ihrem Bodenbereich mit nebeneinander angeordneten Austrittsöffnungen versehen sind, wobei gegebenenfalls zwischen der Fülleinrichtung (12) und der Gießform bzw. den Gießformen (10) ein Zwischenbehälter (20) vorgesehen ist.
9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß mit wenigstens einem Teil der Gießform (10), vorzugsweise im Querschnitt bogenförmige, Stege (27) zur Bildung der Kammern (7) verbunden sind.
10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, daß der Querschnitt der Stege (27) im Bereich des einen Endes der Stege kleiner ist als im übrigen Bereich.
11. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß mehrere Gießformen (10) zu einer einheit (11) zusammengefaßt sind, und daß die Fülleinrichtung (12) oder der Zwischenbehälter (20) oberhalb dieser Einheit von Gießformen (10) verfahrbar angeordnet ist.
EP85890176A 1984-08-30 1985-08-08 Mauerstein für die Errichtung von aufgehendem Mauerwerk, sowie Verfahren und Vorrichtung zur Herstellung solcher Mauersteine Expired - Lifetime EP0173673B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT0278384A AT381531B (de) 1984-08-30 1984-08-30 Mauerstein fuer die errichtung von aufgehendem mauerwerk, sowie verfahren und vorrichtung zur herstellung solcher mauersteine
AT2783/84 1984-08-30

Publications (3)

Publication Number Publication Date
EP0173673A2 EP0173673A2 (de) 1986-03-05
EP0173673A3 EP0173673A3 (en) 1988-10-12
EP0173673B1 true EP0173673B1 (de) 1991-02-06

Family

ID=3540220

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85890176A Expired - Lifetime EP0173673B1 (de) 1984-08-30 1985-08-08 Mauerstein für die Errichtung von aufgehendem Mauerwerk, sowie Verfahren und Vorrichtung zur Herstellung solcher Mauersteine

Country Status (3)

Country Link
EP (1) EP0173673B1 (de)
AT (1) AT381531B (de)
DE (1) DE3581679D1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2351016B1 (es) * 2007-12-18 2011-11-18 Fantini Scianatico, S.P.A. Ladrillo de tierra cocida modular de altas características termoaislantes, termohigrométricas y fonoaislantes.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE820801C (de) * 1948-10-19 1951-11-12 Oswald Koenig Kunststein, insbesondere Baustein und Vorrichtung zu seiner Herstellung
DE860709C (de) * 1951-06-28 1952-12-22 Karl Ellwanger Mauerstein mit Durchlochungen

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR852731A (fr) * 1938-10-22 1940-03-01 Moe:llon de construction composite, en ciment et en brique ou mâchefer et son application à la construction d'habitations
BE656513A (fr) * 1964-12-02 1965-06-02 Acec Dispositif discriminateur d'amplitude
AT267147B (de) * 1965-07-20 1968-12-10 Tonwerk Fritzens Tonbaustein und Verfahren zu seiner Herstellung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE820801C (de) * 1948-10-19 1951-11-12 Oswald Koenig Kunststein, insbesondere Baustein und Vorrichtung zu seiner Herstellung
DE860709C (de) * 1951-06-28 1952-12-22 Karl Ellwanger Mauerstein mit Durchlochungen

Also Published As

Publication number Publication date
DE3581679D1 (de) 1991-03-14
EP0173673A2 (de) 1986-03-05
AT381531B (de) 1986-10-27
EP0173673A3 (en) 1988-10-12
ATA278384A (de) 1986-03-15

Similar Documents

Publication Publication Date Title
DE202018100177U1 (de) Schalungsvorrichtung zur Herstellung von Betonstützen, insbesondere zur Herstellung von Teile einer Mauer bildenden vertikalen Betonstützen
DE102004033535A1 (de) Platte
EP0173673B1 (de) Mauerstein für die Errichtung von aufgehendem Mauerwerk, sowie Verfahren und Vorrichtung zur Herstellung solcher Mauersteine
EP0173674B1 (de) Hohlblockstein für die Errichtung von aufgehendem Mauerwerk, sowie Giessform zur Herstellung des Hohlblocksteines
DE3201832A1 (de) Hohlbaustein und darauf aufgebautes baukastensystem
DE2719860A1 (de) Mauerstein, insbesondere ziegel
DE29623096U1 (de) Vorrichtung zum Herstellen von Verbundleichtziegeln und damit gefertigter Verbundleichtziegel
EP0010238A1 (de) Montageblock für den Hochbau mit Aussparungen zum Einfügen von Isoliermaterial, sowie Verfahren zum Herstellen und Verwendung eines derartigen Montageblockes
DE3013520C2 (de) Gasbetonelement aus im Block druckdampfgehärteter Gasbetonmasse mit Aussparungen
DE3432925C2 (de)
DE1659120A1 (de) Schalungshohlblockstein
DE3408311A1 (de) Hohlblockstein und verfahren seiner herstellung
DE2939832A1 (de) Wandbaustein
EP3456895B1 (de) Mit betonstützen versehene mauer und verfarhen zur herstelung einer solchen mauer
DE4103754A1 (de) Wand aus formsteinen
AT239500B (de) Deckenfüllstein aus gebranntem Ton od. dgl.
DE3310074A1 (de) Hohlblockstein
DE2712152A1 (de) Mauerwerk
DE3432442A1 (de) Hohlblockstein und verfahren seiner herstellung
DE4425474A1 (de) Stein für den Aufbau von Gebäudewänden
DE2018919A1 (de) Hohlblockstein mit isolierender Zwischenschicht
DE8618642U1 (de) Bausatz für ein Schalenmauerwerk
DE2804460A1 (de) Vorrichtung zur herstellung von dachziegeln
DE8610651U1 (de) Schalungsstein
EP3828357A1 (de) Mauerstein mit mehreckigem dämmmaterialkörper und verfahren zur herstellung eines mauersteins

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE CH DE FR GB IT LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BATIWE-BETEILIGUNGS-GESELLSCHAFT M.B.H.

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): BE CH DE FR GB IT LI SE

16A New documents despatched to applicant after publication of the search report
17P Request for examination filed

Effective date: 19890310

17Q First examination report despatched

Effective date: 19890828

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19910206

Ref country code: BE

Effective date: 19910206

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19910206

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
REF Corresponds to:

Ref document number: 3581679

Country of ref document: DE

Date of ref document: 19910314

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970716

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970717

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19970731

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970804

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980831

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980808

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990601

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST