EP0162203B1 - Procédé et dispositif d'adaptation du comportement de la caractéristique d'une tige d'actionnement - Google Patents

Procédé et dispositif d'adaptation du comportement de la caractéristique d'une tige d'actionnement Download PDF

Info

Publication number
EP0162203B1
EP0162203B1 EP85102283A EP85102283A EP0162203B1 EP 0162203 B1 EP0162203 B1 EP 0162203B1 EP 85102283 A EP85102283 A EP 85102283A EP 85102283 A EP85102283 A EP 85102283A EP 0162203 B1 EP0162203 B1 EP 0162203B1
Authority
EP
European Patent Office
Prior art keywords
adaptation
control element
slope
final control
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP85102283A
Other languages
German (de)
English (en)
Other versions
EP0162203A2 (fr
EP0162203A3 (en
Inventor
Cornelius Dipl.-Ing. Peter
Claus Dipl.-Ing. Ruppmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Priority to AT85102283T priority Critical patent/ATE49458T1/de
Publication of EP0162203A2 publication Critical patent/EP0162203A2/fr
Publication of EP0162203A3 publication Critical patent/EP0162203A3/de
Application granted granted Critical
Publication of EP0162203B1 publication Critical patent/EP0162203B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections

Definitions

  • the invention relates to a method for controlling the amount or mass of air sucked in by adapting a characteristic curve of the continuously operating actuator of the internal combustion engine in conjunction with controlling or regulating the speed of an internal combustion engine when idling via an electromechanical actuator.
  • an idle speed controller is supplied with certain information about the current operating state of the internal combustion engine, for example pressure in the intake manifold, actual speed, a desired target speed for idling and other peripherally usable operating state information, such as throttle valve position, position of a bypass valve, on which the idle charge control system in particular attacks and / or, also instead of the pressure in the intake pipe, information about the intake air quantity or air mass.
  • certain information about the current operating state of the internal combustion engine for example pressure in the intake manifold, actual speed, a desired target speed for idling and other peripherally usable operating state information, such as throttle valve position, position of a bypass valve, on which the idle charge control system in particular attacks and / or, also instead of the pressure in the intake pipe, information about the intake air quantity or air mass.
  • the idle speed controller can determine an electrical manipulated variable as a setpoint, for example an air volume signal Q solI or an air mass signal mSoll, and feed it to an idle actuator (LL actuator), which converts the air mass setpoint, for example, into an opening cross-section (of the valve in the bypass mentioned earlier) .
  • LL actuator idle actuator
  • Idle actuators usually work in the adjustment of the opening cross-section, via which the internal combustion engine is supplied with the required amount of air, as an electromagnetic converter and can in this case be designed as a winding rotary actuator (EWD) or as a magnetic part for valve actuation.
  • EWD winding rotary actuator
  • the idle actuator When the idle actuator is cold, the actuator winding takes up a larger current at a given duty cycle; there is a larger deflection and a corresponding mismatch. Similar negative relationships result from considerable battery voltage fluctuations, as is very common in internal combustion engines. Therefore, in order to have the least possible mismatch in the actuator area, the idle actuator, in order to correctly convert the electrical manipulated variable supplied to it into the opening cross section, must be constructed in a complex manner and have a characteristic curve that is as reproducible as possible.
  • One of the objects of the present invention is therefore to provide a device for adapting an actuator characteristic curve which fulfills the condition that the actuation setpoint supplied to the actuator is substantially the same as the actual size resulting from the action of the actuator including peripheral influences on the idle speed controller with an idle speed controller characteristic curve, that the air quantity or air mass setpoint at the output of the idle speed controller is essentially the same as the air quantity or air mass supplied to or drawn by the internal combustion engine.
  • a procedure for solving the task is for the designated contracting states Federal Republic of Germany, Great Britain and France (DE, GB, FR) already known from the unpublished European patent application 84 108 796.8 (EP-A 136 449) with the priority of September 21, 1981.
  • a method for adapting the characteristic curve of a continuously operating actuator of the internal combustion engine in connection with a control or regulation of the speed of an internal combustion engine when idling is presented via an electromechanical actuator.
  • the control variable supplied to the actuator is corrected multiplicatively or by summation with the aid of stored values, and an adapted electrical control variable for the actuator is thus obtained.
  • the multiplicative or summation correction of the control variable makes it possible to adapt the offset or the slope of the actuator characteristic curve to the prevailing conditions with the aid of the above-mentioned stored values.
  • These stored values are obtained from an additional control circuit, which is activated under certain operating conditions, compares the target air quantity or mass specified by the control variable with the measured value of the air mass or quantity, and changes the stored values in the sense of a lower control deviation. The changed values are stored for further use for the correction described above.
  • GB-2 084 353 a mathematical method from the motor vehicle area is known which corrects an electrical control signal of an injection valve in its time length additively and multiplicatively.
  • the directly influenced quantity is the amount of petrol injected, while the quantity measured is lambda.
  • the correction variables are not determined by means of a target / actual comparison, but from a measurement of lambda.
  • the method according to the invention with the features of claim 1 and the device according to the invention with the characterizing features of the first device claim for the named states Austria and Italy have the advantage that the adaptation to the (possibly changing under certain influencing factors) characteristic of the actuator and the inclusion and, in so far, the regulation of other disturbance variables takes place in such a way that there is an effective independence from the actuator characteristic curve, so that it is no longer necessary to construct the actuator used in each case, applied to the idle charge control, i.e. the idle actuator, in a particularly complex manner .
  • the invention makes it possible to work with simpler actuator designs, with air mass measurement being completely independent of the height at which the internal combustion engine is located and the air quantity measurement being drastically reduced as a function of height.
  • the invention further ensures independence from the leakage air, so that engine settings are no longer required and, moreover, the inventive adaptation, which takes place during the entire control operation, does not influence the actual idle charge control.
  • the supplemented method according to the invention with the characterizing features of the main claim for the designated contracting states Federal Republic of Germany, Great Britain and France has the advantage that incorrect adaptations, which can possibly take place through a gradient adaptation that takes place several times in succession, are avoided by initially always following a gradient adaptation a successful offset adaptation must only take place before a new slope adaptation is released.
  • the offset integrator always runs, so it is released, when the throttle valve is closed, the slope integrator is not running and a specified blocking time has expired.
  • the slope integrator is only meaningfully enabled if the current actual air volume is greater than the value stored when the throttle valve is opened, plus a definable air volume.
  • the invention is basically suitable for adapting any actuator characteristic curves, but is used in the following for a preferred exemplary embodiment, applied to the actuator behavior in the idle charge control (LFR) for an internal combustion engine, and explains in more detail that there is also a preferred area of application for the present invention .
  • LFR idle charge control
  • FIG. 1 shows, in the form of a block diagram, an idle charge control with idle speed controller and the idle speed controller controlled by this and an intermediate characteristic adaptation block interposed in accordance with a feature of the present invention
  • FIG. 2 likewise predominantly in the form of a block diagram the device for characteristic curve adaptation in greater detail
  • 3 in the form of a diagram, the actuator characteristic air quantity or air mass over the electrical manipulated variable T and the effects of the adaptation according to the invention on the course of the characteristic curve.
  • the adaptation to the characteristic curve of the idle controller then present at the respective point in time and the leakage air take place according to a specific strategy which has the aim of an additive and / or multiplicative intervention in the setpoint output by the (idle speed) controller .
  • the otherwise necessary and usual basic setting of the leakage air is eliminated with an additional bypass (also over the service life).
  • the idle speed controller with 10 and the actuator controlled by it via the system for adapting the characteristic curve 11 is referred to as an idle actuator with 12.
  • the idle actuator acts on the opening cross section in the intake manifold of an internal combustion engine 13, in particular by correspondingly enlarging or reducing a bypass cross section or by motorized adjustment of the throttle valve.
  • the air that ultimately contains the internal combustion engine 13 is composed of the air through the actuator or the air that the actuator passes through due to its actuation, and a leakage air residual quantity flowing, for example, via the throttle valve.
  • the characteristic curve adaptation according to the invention in block 11 converts the target air quantity Q target or m target output by idle speed controller 10 into an electrical manipulated variable r in such a way that an air quantity (or air mass) is set with idle actuator 12 which, together with the leakage air, produces the desired intake air quantity Q is (or air mass m) is obtained.
  • the adaptation takes place. doing this slowly after checking the operating status.
  • block 11 - adaptation and adjuster - represents a proportional element with amplification 1 and thus has no influence on the stability.
  • each integrator 11 is assigned release elements, the offset integrator 11 a release element FC1 and the slope integrator 12 a release element FG2.
  • the slope integrator 12 intervenes on the setpoint output by the idle speed controller 10 in a multiplicative manner via a multiplier M with a predetermined one level multiplier factor, while the offset correction from the output of the integrator I1 takes place additively at a summation point S1.
  • Both integrators 11 and 12 are supplied with an air quantity difference signal ⁇ Q from a second summation or comparison point S2, which corresponds to the deviation of the target size (target air quantity Q target or target air mass m target ) from the actual value (air quantity Q is or air mass m is ).
  • the data Q ist can be derived from an air flow meter in the intake pipe or can be obtained in another known manner.
  • the desired relationship Q ist Q Soll (or based on the air mass, which will not be repeated in the following) can therefore be achieved by changing two parameters, namely by varying the offset K1 and by varying the slope K2.
  • the integrators 11 and 12 are each followed by summation points S3 and S4, to which initial values K10 for the offset and K20 for the slope are supplied.
  • this integrator For the intervention by the integrator 12, which affects multiplicatively a change in the characteristic curve (change in slope) and therefore has a significantly greater effect on the electrical output manipulated variable T as an input signal for the idle actuator, this integrator is only released if the throttle valve has a predetermined time period T2, which, for example, can be 100 ms, is closed, the following relationship applies to T2 whereby it is possible to hide overshoot behavior and a corresponding fault introduction of the air flow meter, and furthermore Q Soll is greater than the last value Q Soll before the throttle valve is opened.
  • T2 time period
  • Q Soll is greater than the last value Q Soll before the throttle valve is opened.
  • the operating point is then shifted by offset, as indicated by arrow A, it is obvious that the second step of the multiplicative gradient intervention (arrow B) must not be carried out in a working point which is below the offset working point, since in this case, the result is the reverse, that is to say the undesired effect.
  • the slope adaptation always takes place in working points above the offset working point.
  • the conditions for the release block FG2 of the slope integrator 12 are additionally designed such that the slope is only adapted for air flow rates that are greater than, for example, a minimum air flow rate, such as results for the clear idle case.
  • the procedure is preferably such that the instantaneous Q target or m target values are stored at the moment the throttle valve is opened, for which purpose a memory block SB is provided, to which a throttle valve signal DK and the Q target value are supplied; this storage then corresponds to the latter operating point, at which the offset integrator 11 has adapted.
  • a memory block SB is provided, to which a throttle valve signal DK and the Q target value are supplied; this storage then corresponds to the latter operating point, at which the offset integrator 11 has adapted.
  • it is then checked in each case whether the now requested air volume value (Q target ; m target ) is greater than the value last saved and only then can the release be carried out; the block comparing the two setpoints is designated VG in FIG. 2.
  • This condition can alternatively be replaced by the consideration that a slope adaptation can always be enabled when the current speed is above a certain speed, for example the following condition is met n> n LL + 500 min -1 because assumed can be that at higher speed, an operating point is taken on the characteristic that is above the idle point, so that you are on the correct section of the characteristic.
  • n> n LL + 500 min -1 because assumed can be that at higher speed, an operating point is taken on the characteristic that is above the idle point, so that you are on the correct section of the characteristic.
  • Such a case of increased speed occurs, for example, after a gas surge or in overrun.
  • this consideration should only apply in the alternative and that the storage of the setpoints before opening the throttle valve has absolute priority.
  • a further summation point S4 is provided, at which an air quantity Q o is subtracted from the target quantity Q Soll .
  • This measure serves to optimize the work area.
  • the value of 0 should be 0 should not be greater than the minimum target air quantity Q target that occurs, so that the quantity reaching the multiplier M after the summation point S4 is preferably always greater than O.
  • This addition with a negative value of Q o makes it possible to set the pivot point of the curve or characteristic as close as possible to the working point.
  • the offset integrator 11 is also simultaneously traced in accordance with a specific calculation rule, as a result of which it is possible to rotate the characteristic curve around the last working point Q sp and not around 0 0 . In the most favorable case (if T 1 is very large), the number of required integration steps can be reduced to one step in this way.
  • an additional function circuit block SB is provided according to FIG. 2, which can also take over the functions of the two integrators that lock against one another and the input signals from the output of the memory block SB (via the comparator VG) with respect to the value Q sp stored when the throttle valve was last opened and the output signals of the two integrators and / or the enable circuits assigned to them.
  • the function block then preferably acts on the release circuits with corresponding output signals and thereby ensures that, in accordance with the measures mentioned above, the offset generator is always released via its release element FG1 when this corresponds to the above-mentioned condition, with correspondingly additionally required input signals being supplied and the slope integrator is only released if the current Q actual value is greater, but at least the same as the value stored when the throttle valve is opened and a definable air volume, because the slope adaptation quickly results in a relatively strong intervention in the output manipulated variable, which can only be approved if the stated condition is met.
  • the function block FB is designed in such a way that it interlocks the releases of the offset integrator and the slope integrator, so that it is prevented that changes in the slope are strongly adapted without the base point or pivot point of the characteristic curve being intermittently adjusted due to an offset adaptation undergoes an adjustment. It has already been pointed out above that the invention is particularly suitable for implementation using computer circuits, microprocessors, small computers and the like. is suitable, with the last-mentioned measures in particular representing conditions which are or the like through appropriate program design when using a microprocessor. indicate well and have it processed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electrotherapy Devices (AREA)
  • Radio Transmission System (AREA)
  • Feedback Control In General (AREA)
  • Fluid-Damping Devices (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Glass Compositions (AREA)
  • Chairs Characterized By Structure (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Claims (8)

1. Procédé en liaison avec une commande ou bien une régulation de la vitesse de rotation d'un moteur à combustion interne au ralenti, par l'intermédiaire d'un organe de réglage électromécanique, afin de contrôler la quantité ou la masse d'air aspirée au moyen d'une adaptation d'un tracé de courbes caractéristiques de l'organe de réglage du moteur à combustion interne fonctionnant en continu, par conversion de la grandeur de commande (QSoll, mSoll) amenée de la sortie du dispositif de commande ou bien du régulateur à l'organe de réglage (12, LL-S), en une grandeur électrique de réglage adaptée (τ) pour l'organe de réglage, en ce que la grandeur de commande (Qsoll, msoll) est combinée par multiplication et/ou par addition avec au moins une valeur mémorisée (11, I2) influençant le décalage et/ou la pente de la courbe caractéristique de l'organe de réglage, les valeurs mémorisées représentant un signal de sortie d'un circuit de réglage, lequel est activé dans des conditions de fonctionnement déterminées et qui, à partir d'une comparaison de la grandeur de commande (QSoll, mSoll) avec une valeur de mesure réelle du dispositif de mesure de la masse d'air ou de la quantité d'air, produit le signal de sortie avec lequel au moins une des valeurs mémorisées (11, I2) est modifiée dans le sens d'un écart de réglage plus réduit, la valeur ainsi modifiée étant mémorisée lorsque prend fin la condition de fonctionnement déterminée.
2. Procédé selon la revendication 1, caractérisé en ce que les valeurs (I1, I2) sont mémorisées dans des intégrateurs et, en fonction de différentes conditions de fonctionnement (ralenti, etc.) du moteur à combustion interne, sont libérées pour influencer la grandeur électrique de réglage (T) pour l'organe de réglage.
3. Procédé selon une des revendications 1 ou 2, caractérisé en ce que les constantes de temps des intégrateurs (I1, I2) pour l'adaptation de décalage et pour l'adaptation de pente, sont si grandes que l'adaptation de la courbe caractéristique est en conséquence si longue que la régulation de la vitesse de rotation au ralenti proprement dite, n'est pas influencée.
4. Procédé selon une ou plusieurs des revendications 1 à 3, caractérisé en ce que l'intégration de pente (12) ne fonctionne que lorsque la quantité réelle d'air (QIst) est supérieure ou égale à la dernière valeur de quantité d'air (Qsp) mémorisée lors de l'ouverture du clapet d'étranglement, augmentée d'une quantité d'air susceptible d'être fixée (AQ).
5. Procédé selon une ou plusieurs des revendications 1 à 4, caractérisé en ce qu'un verrouillage réciproque de l'adaptation de décalage et de l'adaptation de pente se produit, en ce sens qu'après chaque adaptation de pente, a tout d'abord lieu une adaptation de décalage couronnée de succès (QSoll = QIst) avant qu'une nouvelle adaptation de pente soit déclenchée.
6. Procédé selon une ou plusieurs des revendications 1 à 5, caractérisé en ce que pour chaque adaptation de pente, l'intégrateur de décalage (I1) est simultanément entraîné de façon que la rotation de la courbe caractéristique respectivement provoquée par l'adaptation de pente s'effectue autour du dernier point de fonctionnement respectif (valeur Qsp mémorisée lors de la dernière ouverture du clapet d'étranglement).
7. Dispositif en liaison avec un dispositif de commande ou de régulation pour la régulation de la vitesse de rotation d'un moteur à combustion interne au ralenti, par l'intermédiaire d'un organe électromécanique de réglage, afin de contrôler la quantité ou la masse d'air aspirée, pour la mise en oeuvre d'un procédé selon une des revendications 1 à 3, grâce à des moyens pour une adaptation du tracé d'une courbe caractéristique de l'organe de réglage du moteur à combustion interne fonctionnant en continu, par conversion de la grandeur de commande (QSoll, mSoll) amenée à l'organe de réglage (12, LL-S) à partir de la sortie du régulateur, en une grandeur électrique de réglage adaptée (τ) pour l'organe de réglage, en ce que la grandeur de commande (QSoll, mSoll) est combinée par multiplication et/ou par addition avec au moins une valeur (I1, I2) en provenance d'une mémoire et influençant de décalage et/ou la pente de la courbe caractéristique de l'organe de réglage, les valeurs mémorisées représentant un signal de sortie d'un circuit de réglage, lequel est activé des conditions de fonctionnement déterminées et produit, à partir d'une comparaison de la grandeur de commande (QSoll, mSoll) avec une valeur réelle mesurée par le dispositif de mesure de la quantité d'air ou de la masse d'air, ce signal de sortie avec lequel au moins une des valeurs mémorisées (I1, 12) est modifiée dans le sens d'un écart de réglage plus réduit, la valeur ainsi modifiée étant mémorisée lorsque prend fin la condition de fonctionnement déterminée.
8. Dispositif selon la revendication 7, caractérisé en ce qu'il est prévu des moyens de verrouillage supplémentaires (FB) qui provoquent une action ou une rétro-action réciproque entre l'intégration de décalage et l'intégrateur de pente.
EP85102283A 1984-04-21 1985-03-01 Procédé et dispositif d'adaptation du comportement de la caractéristique d'une tige d'actionnement Expired - Lifetime EP0162203B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT85102283T ATE49458T1 (de) 1984-04-21 1985-03-01 Verfahren und vorrichtung zur adaption eines stellglied-kennlinienverlaufs.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19843415183 DE3415183A1 (de) 1984-04-21 1984-04-21 Verfahren und vorrichtung zur adaption eines stellglied-kennlinienverlaufs
DE3415183 1984-04-21

Publications (3)

Publication Number Publication Date
EP0162203A2 EP0162203A2 (fr) 1985-11-27
EP0162203A3 EP0162203A3 (en) 1988-01-07
EP0162203B1 true EP0162203B1 (fr) 1990-01-10

Family

ID=6234216

Family Applications (1)

Application Number Title Priority Date Filing Date
EP85102283A Expired - Lifetime EP0162203B1 (fr) 1984-04-21 1985-03-01 Procédé et dispositif d'adaptation du comportement de la caractéristique d'une tige d'actionnement

Country Status (5)

Country Link
EP (1) EP0162203B1 (fr)
JP (1) JPS60224950A (fr)
AT (1) ATE49458T1 (fr)
AU (1) AU577843B2 (fr)
DE (2) DE3415183A1 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3439927A1 (de) * 1984-06-30 1986-01-09 Bosch Gmbh Robert Verfahren und vorrichtung zur adaptiven stoergroessenaufschaltung bei reglern
DE3429351C2 (de) * 1984-08-09 1994-06-23 Bosch Gmbh Robert Verfahren und Einrichtung zur Steuerung und/oder Regelung der Leerlaufdrehzahl einer Brennkraftmaschine
JP2553162Y2 (ja) * 1986-06-27 1997-11-05 日産自動車株式会社 能動型サスペンシヨン
DE3621555A1 (de) * 1986-06-27 1988-01-07 Hella Kg Hueck & Co Vorrichtung zum einstellen der fahrgeschwindigkeit eines kraftfahrzeugs
JPH0718371B2 (ja) * 1986-11-24 1995-03-06 三菱電機株式会社 内燃機関の回転数制御装置
DE3744222A1 (de) * 1987-12-24 1989-07-06 Bosch Gmbh Robert Verfahren und einrichtung zur beeinflussung der luftzumessung bei einer brennkraftmaschine, insbesondere im leerlauf und schubbetrieb
JP2559480B2 (ja) * 1988-11-07 1996-12-04 株式会社日立製作所 電子式弁開度制御装置
DE3926031C1 (en) * 1989-08-07 1990-11-29 Robert Bosch Gmbh, 7000 Stuttgart, De Adapting characteristic working of adjuster - limiting signal affecting base point of characteristic curve to predetermined min. value
DE4029537A1 (de) * 1990-09-18 1992-03-19 Bosch Gmbh Robert Verfahren und vorrichtung zur steuerung und/oder regelung einer betriebsgroesse einer brennkraftmaschine
DE69122110T2 (de) * 1991-06-26 1997-03-06 Nippon Denso Co Beschleunigungsschlupfregelvorrichtung für fahrzeuge
JP2762350B2 (ja) * 1995-06-23 1998-06-04 株式会社ゼクセル ディーゼルエンジンのアイドル回転制御装置及び方法
DE10217596B4 (de) * 2001-04-20 2006-07-13 Honda Giken Kogyo K.K. Regelsystem für eine Drosselventil-Aktuatorvorrichtung
JP4450228B2 (ja) * 2005-10-28 2010-04-14 株式会社デンソー エンジン制御装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2084353A (en) * 1980-09-25 1982-04-07 Bosch Gmbh Robert Automatic control of the air-fuel ratio in ic engines
EP0136449A2 (fr) * 1983-09-21 1985-04-10 Robert Bosch Gmbh Procédé et dispositif d'adaptation de courbes de réglage

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4108127A (en) * 1977-04-01 1978-08-22 Autotronic Controls, Corp. Modulated throttle bypass
JPS5498424A (en) * 1978-01-19 1979-08-03 Nippon Denso Co Ltd Air supply controller for engine
US4437340A (en) * 1981-11-23 1984-03-20 Ford Motor Company Adaptive air flow meter offset control
DE3238189A1 (de) * 1982-10-15 1984-04-19 Robert Bosch Gmbh, 7000 Stuttgart Leerlauf-regelsystem fuer eine brennkraftmaschine
JP2503384B2 (ja) * 1983-04-07 1996-06-05 三菱自動車工業株式会社 エンジンの制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2084353A (en) * 1980-09-25 1982-04-07 Bosch Gmbh Robert Automatic control of the air-fuel ratio in ic engines
EP0136449A2 (fr) * 1983-09-21 1985-04-10 Robert Bosch Gmbh Procédé et dispositif d'adaptation de courbes de réglage

Also Published As

Publication number Publication date
EP0162203A2 (fr) 1985-11-27
JPH0574698B2 (fr) 1993-10-19
AU577843B2 (en) 1988-10-06
JPS60224950A (ja) 1985-11-09
EP0162203A3 (en) 1988-01-07
AU4079985A (en) 1985-10-24
ATE49458T1 (de) 1990-01-15
DE3415183A1 (de) 1985-10-31
DE3575330D1 (de) 1990-02-15

Similar Documents

Publication Publication Date Title
DE3739244C2 (fr)
DE19502150C1 (de) System zur Regelung der Aufladung einer Brennkraftmaschine
EP0364522B1 (fr) Procede et dispositif pour le reglage d'une soupape de degazage d'un reservoir
EP0162203B1 (fr) Procédé et dispositif d'adaptation du comportement de la caractéristique d'une tige d'actionnement
DE4140527C2 (de) Regelvorrichtung für das Luft/Brennstoff-Verhältnis für einen Verbrennungsmotor
EP1427929A1 (fr) Procede et dispositif pour actionner au moins un turbocompresseur de moteur a combustion interne
DE3539395A1 (de) Verfahren und einrichtung zur adaption der gemischsteuerung bei brennkraftmaschinen
WO1992005354A1 (fr) Procede et dispositif pour la commande et/ou la regulation d'une grandeur caracteristique d'un moteur a combustion interne
EP1481153B1 (fr) Procede de commande d'un moteur a combustion interne
DE10243268A1 (de) Verfahren zum Regeln der Aufladung einer Brennkraftmaschine
EP0136449B1 (fr) Procédé et dispositif d'adaptation de courbes de réglage
DE3439927C2 (fr)
DE4015293A1 (de) System zur regelung eines betriebsparameters einer brennkraftmaschine eines kraftfahrzeugs
DE10332608B3 (de) Verfahren zum Regeln einer Brennkraftmaschine sowie eine Vorrichtung zum Regeln einer Brennkraftmaschine
DE19812843B4 (de) Verfahren zur Ladedruckregelung einer Brennkraftmaschine
DE4214880C2 (de) Regelvorrichtung einer Abgasrückführung
DE102004054321B4 (de) Regelvorrichtung für variables Ventilbetätigungssystem
DE4041875C2 (fr)
EP0473914B1 (fr) Système de régulation d'un actuateur dans un moteur à combustion
DE102018106849A1 (de) Verfahren und Regelkreis zum Bestimmen einer Stellgröße zum Einstellen eines Saugrohrdrucks
DE102006008051B3 (de) Adaptives Positionierverfahren eines Stellglieds
EP0178485B1 (fr) Dispositif de régulation de la pression de charge d'un moteur à combustion
DE3521551A1 (de) Verfahren zur steuerung und/oder regelung von betriebskenngroessen einer brennkraftmaschine
DE19739827A1 (de) Verfahren und Vorrichtung zur Steuerung einer Betriebsgröße eines Kraftfahrzeugs
DE4126900C2 (de) Steuervorrichtung für eine Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19850301

AK Designated contracting states

Designated state(s): AT DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT DE FR GB IT

17Q First examination report despatched

Effective date: 19880511

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT DE FR GB IT

REF Corresponds to:

Ref document number: 49458

Country of ref document: AT

Date of ref document: 19900115

Kind code of ref document: T

ET Fr: translation filed
REF Corresponds to:

Ref document number: 3575330

Country of ref document: DE

Date of ref document: 19900215

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

GBPC Gb: european patent ceased through non-payment of renewal fee
26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950208

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950316

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960301

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19961129

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19980326

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990301

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19991230

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020101