EP0157927B1 - Elektronisches Bauteil, insbesondere für eine Chip-Induktivität - Google Patents

Elektronisches Bauteil, insbesondere für eine Chip-Induktivität Download PDF

Info

Publication number
EP0157927B1
EP0157927B1 EP84115156A EP84115156A EP0157927B1 EP 0157927 B1 EP0157927 B1 EP 0157927B1 EP 84115156 A EP84115156 A EP 84115156A EP 84115156 A EP84115156 A EP 84115156A EP 0157927 B1 EP0157927 B1 EP 0157927B1
Authority
EP
European Patent Office
Prior art keywords
core part
chip inductance
inductance according
recess
electrical contact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP84115156A
Other languages
English (en)
French (fr)
Other versions
EP0157927A1 (de
Inventor
Lothar Ingenieur Grad. Autenrieth
Kurt Dilp.-Physiker Marth
Josef Ingenieur Schindler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0157927A1 publication Critical patent/EP0157927A1/de
Application granted granted Critical
Publication of EP0157927B1 publication Critical patent/EP0157927B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/29Terminals; Tapping arrangements for signal inductances
    • H01F27/292Surface mounted devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/02Fixed inductances of the signal type  without magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • H01F2017/048Fixed inductances of the signal type  with magnetic core with encapsulating core, e.g. made of resin and magnetic powder

Definitions

  • the present invention relates to a chip inductor with a solid core part with a vertical prismatic three-dimensional shape, in particular cuboids or cubes, consisting of ferromagnetic or electrically non-conductive material, in particular ferrite, ceramic or plastic, with electrical contact surfaces arranged on preferably separate side surfaces of the core part and with one serving as a winding space hollow cylindrical recess in which a winding carrier including the winding is accommodated.
  • Chip inductors are smaller than conventional wired inductors, can be manufactured with less effort and are more suitable for use in automatic assembly machines for printed circuit boards.
  • the known chip inductors are partly manufactured using layer technology or equipped with rectangular or cylindrical wire-wound magnetic cores.
  • a carrier is coated with a magnetic layer and a conductor track formed into a coil is applied to this layer, the partial inductance produced in this way being combined with further partial inductances to form a stack, depending on the desired inductance.
  • Numerous methods are known for through-contacting the ends of the coils.
  • chip inductors are characterized by their space-saving design, can be soldered directly to printed circuit boards and do not require any additional wires as connection elements.
  • a disadvantage is their complicated manufacture due to the layering technique. Variations in the layer thickness of the magnetic layer that are unavoidable in production cause undesirable fluctuations in the L and Q values of the inductors. Silver or a silver-palladium alloy, for example, must be used as the material for the coil conductor tracks and a high ohmic resistance of the conductor tracks must be accepted. Since the conductor tracks are embedded in the magnetic layer, magnetic saturation occurs due to the closed magnetic circuit, even at low values; the DC bias properties of the chip inductance are consequently deteriorated. In addition, the number of coil turns cannot be selected to any desired height and therefore no inductance of any desired value can be set.
  • EP-A-25605 shows a chip inductance of the type mentioned at the outset, that is to say an inductance equipped with a solid core part.
  • the core part of this inductance is provided with a blind hole and an opening arranged centrally in the bottom of the blind hole, into which an isolated, i.e. is not glued in one piece with the core part of the roll core by means of its pin.
  • the electrodes are brought up to the edge of the blind hole and contacted there with the winding ends.
  • EP-A-79 659 shows a chip inductance with two core parts, one being designed as a balancing element and the other as a roller core, which is connected in one piece to a base designed with contact feet.
  • GB-A-567963 describes a well-known shell core consisting of a cover part and a core part with a slug connected in one piece to this core part.
  • DE-OS 3 225 782 AI also shows a chip inductor equipped with a ferrite roll core, in which the wound roll core is embedded in a rectangular potting, against the one end face of which the ends of strip-shaped connecting elements lie, the other ends of which are electrically connected conductive, solderable layers of the end faces of the roller core flanges are contacted.
  • the outer connection elements require two additional processing steps interrupted by a casting process, namely first the contacting with the outer end faces of the ferrite roller core and finally, after casting, the final flanging in the direction parallel to the corresponding end faces of the Potting created cuboid.
  • the present invention is based on the object, e.g. to provide chip inductance of the type mentioned at the outset which can be used as an HF choke, which can be produced only with little effort and can be largely shielded, can be contacted without impairing the quality, and i. u. optionally both small and large inductors with high quality enabled.
  • the invention provides for a chip inductor according to the preamble of claim 1 that the recess is a hollow cylindrical, which surrounds a slug connected in one piece to the core part and serving as a support for the winding, that the side surfaces of the electrical contact surfaces Core part are connected to the recess via open-edge channels and that the ends of the winding are guided through the channels to the electrical contact surfaces and are contacted with them.
  • the solid core part consists of electrically non-conductive material such as ceramic or plastic, it is suitable, for example, for the production of so-called Air coils in chip design.
  • Air coils in chip design When using ferromagnetic materials for the core part, this is preferably used to create RF choke chips, transformer chips, etc.
  • a magnetic closure of the chip inductance can be brought about by covers made of ferromagnetic material, which is applied to the side surface of the core part formed with the recess.
  • the required magnetic closure can also be achieved by a cover made of cast resin, which is mixed with carbonyl iron or ferrite powder, which fills the free space in the channels and the recess.
  • the solid core part 1 shown in Fig. 1 for a chip inductance e.g. HF choke or transformer, depending on the inductance to be created, consists of a ferromagnetic material, in particular ferrite, or, if e.g. an air coil in chip design is to be manufactured from electrically non-conductive material, in particular ceramic or plastic.
  • the core part 1 itself has a vertical prismatic spatial shape, preferably a cube or cuboid shape. Vertical prismatic spatial shapes with pentagonal and polygonal floor plans are also conceivable.
  • a winding 16 shown in FIG. 2 serves a hollow cylindrical recess 2 which surrounds a slug 10.
  • the hollow cylindrical recess 2 can be replaced by a slot-free, exclusively blind hole-like recess.
  • the end face 11 of the slug 10 can, according to FIGS. 1 to 3, be level with the recessed side face of the core part 1 or, as shown in FIGS. 4 and 6, set back with respect to the end edge of the recess 2.
  • the core part also has a e.g. Circular disk-shaped cover 14 (see FIG. 4) or the rectangular cover 15 shown in FIG. 5.
  • the free end faces of the covers 14 and 15 are preferably flat to the recessed side surface of the core part 1.
  • the side surface carrying the cover 15 together with the end surface 11 of the slug 10 can be set back by the amount of the cover thickness relative to the edge regions 21 of this side surface.
  • the cover is also designed as a solid core part, and that both core parts form what are known as shell core halves, which, depending on the desired air gap, have corresponding slug end faces 11. Arranged in pairs and mirror images on top of each other, this results in cores with excellent magnetic closure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Coils Or Transformers For Communication (AREA)

Description

  • Die vorliegende Erfindung betrifft eine Chip-Induktivität mit einem massiven Kernteil mit senkrechter prismatischer Raumform, insbesondere Quader oder Würfel, bestehend aus ferromagnetischem oder elektrisch nichtleitendem Werkstoff, insbesondere Ferrit, Keramik oder Kunststoff, mit an bevorzugt getrennten Seitenflächen des Kernteils angeordneten elektrischen Kontaktflächen und mit einer als Wickelraum dienenden hohlzylindrischen Aussparung, in der ein Wickelträger samt Wicklung untergebracht ist.
  • Chip-Induktivitäten sind im Vergleich zu üblichen bedrahteten Induktivitäten kleiner, mit geringerem Aufwand herstellbar und für den Einsatz in Bestückungsautomaten für Leiterplatten geeigneter. Die bekannten Chip-Induktivitäten sind teils in Schichttechnik hergestellte oder mit rechteckigen oder zylinderförmigen drahtbewickelten magnetischen Kernen ausgerüstet.
  • Zur Fertigung der Chip-Induktivität in Schichttechnik wird ein Träger mit einer magnetischen Schicht beschichtet und auf diese Schicht eine zu einer Spule geformte Leiterbahn aufgebracht, wobei - je nach gewünschter Induktivität - die so gefertigte Teilinduktivität mit weiteren Teilinduktivitäten zu einem Stapel zusammengefaßt wird. Zur Durchkontaktierung der Enden der Spulen sind zahlreiche, hier nicht näher erläuterte Verfahren bekannt.
  • Diese Chip-Induktivitäten zeichnen sich durch ihre raumsparende Bauweise aus, sind unmittelbar mit gedruckten Leiterplatten verlötbar und erfordern keine zusätzlichen Drähte als Anschlußelemente.
  • Nachteilig ist ihre durch die Schichttechnik bedingte, komplizierte Herstellung. In der Fertigung unvermeidbare Schichtdicken-Schwankungen der magnetischen Schicht verursachen unerwünschte Schwankungen der L- und Q-Werte der Induktivitäten. Als Werkstoff für die Spulen-Leiterbahnen muß beispielsweise Silber oder eine Silber-Palladium-Legierung verwendet und ein hoher ohmscher Widerstand der Leiterbahnen in Kauf genommen werden. Da die Leiterbahnen in die magnetische Schicht eingebettet sind, tritt, verursacht durch den geschlossenen Magnetkreis, bereits bei geringen Werten eine magnetische Sättigung ein; die Gleichstrom-Vormagnetisierungseigenschaften der Chip-Induktivität sind folglich verschlechtert. Auch ist die Anzahl der Spulenwindungen nicht beliebig hoch wählbar und damit keine beliebig hohe Induktivität einstellbar.
  • Eine Chip-Induktivität der eingangs genannten Art, also eine mit einem massiven Kernteil ausgerüstete Induktivität zeigt die EP-A-25605. Das Kernteil dieser Induktivität ist mit einem Sackloch und einer mittig im Sacklochboden angeordneten Durchbrechung versehen, in die ein vereinzelter, d.h. nicht in einem Stück mit dem Kernteil gefertigter Rollenkern mittels seines Zapfens eingeklebt ist. Die Elektroden sind bei dieser Ausführung an den Sacklochrand herangeführt und dort mit den Wickelenden kontaktiert.
  • Das Einkleben des Rollenkerns führt abgesehen vom erheblichen Arbeitsaufwand zu beträchtlichen Schwankungen hinsichtlich der erforderlichen zentrischen Ausrichtung des Rollenkerns im Kernteil. Diese Ausführung bietet darüberhinaus nur einen beschränkten Wickelraum und erfordert zudem einen preßtechnisch nicht leicht herstellbaren Rollenkern. Da der Rollenkern zwei an seinen Wickelträger angeformte Flanschenden aufweist, ist eine Bewicklung des Wickelträgers nur in einer Lage möglich, in welcher der Rollenkern in räumlichen Abstand zum Kernteil angeordnet ist. Eine einstückige Verbindung des Rollenkerns mit dem Kernteil scheidet folglich aus.
  • Die EP-A-79 659 zeigt eine Chip-Induktivität mit zwei Kernteilen, wobei das eine als Abgleichelement und das andere als Rollenkern gestaltet ist, der mit einem mit Kontaktfüßen ausgestalteten Sockel einstückig verbunden ist.
  • Die GB-A-567963 beschreibt einen hinlänglich bekannten Schalenkern bestehend aus einem Deckelteil und einem Kernteil mit einem einstükkig mit diesem Kernteil verbundenen Butzen.
  • Die DE-OS 3 225 782 AI zeigt darüberhinaus eine mit einem Ferrit-Rollenkern ausgerüstete Chip-Induktivität, bei welcher der bewickelte Rollenkern in einen quaderförmigen Verguß eingebettet ist, gegen dessen eine Stirnfläche die Enden streifenförmiger Anschlußelemente anliegen, die mit ihren anderen Enden mit elektrisch leitenden, lötfähigen Schichten der Stirnflächen der Rollenkernflansche kontaktiert sind.
  • Als nachteilig erweist sich bei dieser Ausführung, daß die äußeren Anschlußelemente zwei zusätzlich durch einen Gießvorgang unterbrochene Bearbeitungsschritte erfordern, nämlich zuerst die Kontaktierung mit den äußeren Stirnflächen des Ferrit-Rollenkerns und schließlich nach erfolgtem Verguß die abschließende Umbördelung in Richtung parallel zu den entsprechenden Stirnflächen des durch Verguß geschaffenen Quaders.
  • Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine z.B. als HF-Drossel einsetzbare Chip-Induktivität der eingangs genannten Art zu schaffen, die nur mit geringem Aufwand herstellbar ist und weitgehend geschirmt werden kann, ohne Beeinträchtigung der Güte kontaktierbar ist und i. u. wahlweise sowohl kleine als auch große Induktivitäten mit hoher Güte ermöglicht.
  • Zur Lösung dieser Aufgabe sieht die Erfindung bei einer Chip-Induktivität gemäß Oberbegriff des Anspruches 1 vor, daß die Aussparung eine hohlzylindrische ist, die einen einstückig mit dem Kernteil verbundenen und als Träger der Wicklung dienenden Butzen umschließt, daß die die elektrischen Kontaktflächen tragenden Seitenflächen des Kernteils über randoffene Kanäle mit der Aussparung verbunden sind und daß die Enden der Wicklung durch die Kanäle zu den elektrischen Kontaktflächen geführt und mit diesen kontaktiert sind.
  • Falls das massive Kernteil aus elektrisch nichtleitendem Werkstoff wie Keramik oder Kunststoff besteht, eignet es sich z.B. zur Herstellung sog. Luftspulen in Chip-Bauweise. Bei Verwendung ferromagnetischer Werkstoffe für das Kernteil, dient dieses bevorzugt zur Schaffung von HF-Drossel-Chips, Übertrager-Chips usw.
  • Ein magnetischer Schluß der Chip-Induktivität läßt sich durch Abdeckungen aus ferromagnetischem Material bewirken, die auf die mit der Aussparung ausgebildete Seitenfläche des Kernteiles aufgebracht wird.
  • Der erforderliche magnetische Schluß ist auch durch eine Abdeckung aus Gießharz erreichbar, das mit Carbonyleisen- oder Ferritpulver vermischt ist, das den freien Raum in den Kanälen und der Aussparung ausfüllt.
  • Die Erfindung wird nachstehend anhand von Ausführungsbeispielen näher erläutert. Es zeigt:
    • Fig. 1 ein massives Kernteil nach der Erfindung in perspektivischer und teils geschnittener Ansicht,
    • Fig. 2 in der Darstellung nach Fig. 1 ein Kernteil nach Fig. 1 mit eingesetzter elektrischer Wicklung,
    • Fig. 3 in der Darstellung nach Fig. 1 eine HF-Drossel mit einem zweiten Ausführungsbeispiel eines Kernteils,
    • Fig. 4 in der Darstellung nach Fig. 1 ein weiteres Ausführungsbeispiel einer HF-Drossel mit gegenüber Fig. 1 bis 3 abgewandeltem Kernteil,
    • Fig. 5 gleichfalls in der Darstellung nach Fig. 1 ein weiteres Ausführungsbeispiel einer HF-Drossel mit gegenüber Fig. 1 bis 4 unterschiedlichem Kernteil.
  • In den Figuren sind dabei gleiche Teile mit gleichen Bezugszeichen bezeichnet.
  • Das in Fig. 1 dargestellte massive Kernteil 1 für eine Chip-Induktivität, z.B. HF-Drossel oder Übertrager, besteht je nach zu schaffender Induktivität aus einem ferromagnetischen Werkstoff, insbesondere Ferrit, oder, falls z.B. eine Luftspule in Chip-Bauweise gefertigt werden soll, aus elektrisch nichtleitendem Werkstoff, insbesondere Keramik oder Kunststoff. Das Kernteil 1 an sich besitzt eine senkrechte prismatische Raumform, bevorzugt eine Würfel- oder Quaderform. Denkbar sind auch senkrechte prismatische Raumformen mit fünf- und mehreckigem Grundriß.
  • Als Wickelraum für eine z.B. in Fig. 2 gezeigte Wicklung 16 dient eine hohlzylindrische Aussparung 2, die einen Butzen 10 umschließt. Insbesondere für Kernteile aus Keramik oder Kunststoff, wie sie bevorzugt für Luftspulen zum Einsatz gelangen, kann die hohlzylindrische Aussparung 2 durch eine butzenfreie, ausschließlich sacklochartige Aussparung ersetzt sein.
  • Einander gegenüberliegende Seitenflächen des Kernteils 1 sind mit elektrisch leitenden Kontaktflächen 3 bedeckt, die beispielsweise im sog. Nikkel-Carbonyl-Verfahren auf diese Seitenflächen niedergeschlagen und mit hochschmelzendem Lot überzogen sind. Zur Heranführung der Wickelenden 17, 18 der Wicklung 16 an die Kontaktflächen 3 sind von den Kontaktflächen 3 zur Aussparung 2 führende randoffene Kanäle 4, 5 vorgesehen. Die Kontaktflächen 3, die bevorzugt die jeweils gesamten Seitenflächen bedecken, übergreifen zweckmäßigerweise die Stirnkanten 6, 7 zu den benachbarten Seitenflächen und bedecken die Randflächen 8, 9 dieser Seitenflächen. Hierdurch wird, z.B. bei spiegelbildlicher Anordnung eines zweiten Kernteils, auf dem ersten die Verbindung der beiden Kernteile erleichtert und zusätzlich durch die in die Kanäle 4, 5 hineinreichenden, lötfähigen Kontaktschichten 3 die Kontaktierung 19 der Wickelenden 17, 18 mit den Kontaktschichten 3 erleichtert.
  • Zur selbsttätigen Richtungserkennung, d. h. zur Identifizierung der Chip-Position oder -Richtung, wie sie beim Einsatz dieser Chips für Bestükkungsautomaten z.B. für gedruckte Leiterplatten vorteilhaft ist, sind - wie in Fig. 3 dargestellt ist - entsprechende Stirnkanten 12, 13 des Kernteils 1 abgeschrägt. Hierdurch ist eine sichere Erkennung der Chip-Richtung und Positionierung der Anschlüsse in Bezug auf die Leiterplatte möglich.
  • Die Stirnfläche 11 des Butzens 10 kann gemäss Fig. 1 bis 3 mit der ausgesparten Seitenfläche des Kernteils 1 plan oder, wie dies in Fig. 4 und 6 gezeigt ist, gegenüber der Stirnkante der Aussparung 2 zurückgesetzt sein. In den beiden letztgenannten Fällen besitzt das Kernteil zusätzlich einen z.B. kreisscheibenförmigen Deckel 14 (siehe Fig. 4) bzw. den in Fig. 5 dargestellten, rechteckförmigen Deckel 15. Die freien Stirnflächen der Deckel 14 bzw. 15 sind dabei bevorzugt plan zur ausgesparten Seitenfläche des Kernteils 1. Zu diesem Zweck kann - wie dies in Fig. 5 dargestellt ist - die den Deckel 15 tragende Seitenfläche samt Stirnfläche 11 des Butzens 10 gegenüber den Randbereichen 21 dieser Seitenfläche um den Betrag der Deckeldicke zurückgesetzt sein.
  • Welche Deckelart letztlich gewählt wird, hängt bei Kernteilen und Deckeln aus Ferrit im wesentlichen von den an den magnetischen Schluß gestellten Anforderungen ab. Denkbar ist auch - wie dies in Fig. 3 bzw. zusätzlich zum Deckel 15 Fig. 5 zeigt - eine Einbettung der Wicklung 16 bzw. ein Ausgießen der Aussparung 2 samt Kanälen 4, 5 mit Vergußmasse, insbesondere Epoxidharz, das zur Erzeugung bzw. Erhöhung der magnetischen Schirmwirkung der Chip-Induktivität mit Carbonyleisen- oder Ferritpulver gemischt ist.
  • Denkbar im Rahmen vorliegender Erfindung ist i.ü., daß auch der Deckel quasi als massives Kernteil ausgebildet ist, und daß beide Kernteile sog. Schalenkernhälften bilden, die je nach gewünschtem Luftspalt entsprechend zurückgesetzte Butzen-Stirnflächen 11 aufweisen. Jeweils paarweise und spiegelbildlich übereinander angeordnet, ergeben sich so Kerne mit ausgezeichnetem magnetischen Schluß.

Claims (11)

1. Chip-Induktivität mit einem massivem Kernteil (1) mit senkrechter prismatischer Raumform, insbesondere Quader oder Würfel, bestehend aus ferromagnetischem oder elektrisch nichtleitendem Werkstoff, insbesondere Ferrit, Keramik oder Kunststoff, mit an bevorzugt getrennten Seitenflächen des Kernteils angeordneten elektrischen Kontaktflächen (3) und mit einer als Wickelraum dienenden hohlzylindrischen Aussparung (2), in der ein Wickelträger samt Wicklung untergebracht ist, dadurch gekennzeichnet, daß die Aussparung (2) eine hohlzylindrische ist, die einen einstückig mit dem Kernteil (1) verbundenen und als Träger der Wicklung dienenden Butzen (10) umschließt, daß die die elektrischen Kontaktflächen (3) tragenden Seitenflächen des Kernteils (1) über randoffene Kanäle (4, 5) mit der Aussparung (2) verbunden sind und daß die Enden (17, 18) der Wicklung (16) durch die Kanäle (4, 5) zu den elektrischen Kontaktflächen (3) geführt und mit diesen kontaktiert sind.
2. Chip-Induktivität nach Anspruch 1, dadurch gekennzeichnet, daß die elektrischen Kontaktflächen (3) bevorzugt die gesamten Flächen einander gegenüberliegender Seitenflächen des Kernteils (1) bedecken.
3. Chip-Induktivität nach Anspruch 1 und 2, dadurch gekennzeichnet, dass die elektrischen Kontaktflächen (3) die Stirnkanten (6, 7) zu benachbarten Seitenflächen des Kernteils (1) übergreifen.
4. Chip-Induktivität nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß sich die elektrischen Kontaktflächen (3) teilweise in die Kanäle (4, 5) hineinerstrecken.
5. Chip-Induktivität nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß die elektrischen Kontaktflächen (3) mit einer lötfähigen Schicht bedeckt sind.
6. Chip-Induktivität nach Anspruch 1, dadurch gekennzeichnet, daß zur Richtungserkennung entsprechende Stirnkanten des massiven Kernteils (1) abgeschrägt sind.
7. Chip-Induktivität nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß die Stirnfläche (11) des Butzens (10) gegenüber der Stirnkante der Aussparung (2) zurückgesetzt ist, und daß die Butzen-Stirnfläche (11) und Aussparung (2) mit einem kreisscheibenförmigen Deckel (14) bedeckt sind, der zur ausgesparten Seitenfläche des Kernteils (1) vorzugsweise plan ist.
8. Chip-Induktivität nach Anspruch 1 bis 7, dadurch gekennzeichnet, daß die mit der Aussparung (2) versehene Seitenfläche des Kernteils (1) und die Stirnfläche (11) des Butzens (10) gegenüber den Randflächen (21) dieser Seitenfläche zurückgesetzt sind, und daß diese Seitenfläche mit einem Deckel (15) bedeckt ist.
9. Chip-Induktivität nach Anspruch 7 bis 8, dadurch gekennzeichnet, daß der Deckel (14,15) aus Ferrit, Keramik oder Kunststoff besteht.
10. Chip-Induktivität nach Anspruch 1, dadurch gekennzeichnet, daß die Wicklung (16) und ggf. die Wicklungsenden (17, 18) in Vergußmasse (20), insbesondere Epoxidharz, eingegossen sind.
11. Chip-Induktivität nach Anspruch 10, dadurch gekennzeichnet, daß die Vergußmasse (20) mit Carbonyleisen- oder Ferritpulver versetzt ist.
EP84115156A 1984-03-23 1984-12-11 Elektronisches Bauteil, insbesondere für eine Chip-Induktivität Expired EP0157927B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3410811 1984-03-23
DE3410811 1984-03-23

Publications (2)

Publication Number Publication Date
EP0157927A1 EP0157927A1 (de) 1985-10-16
EP0157927B1 true EP0157927B1 (de) 1989-03-22

Family

ID=6231462

Family Applications (1)

Application Number Title Priority Date Filing Date
EP84115156A Expired EP0157927B1 (de) 1984-03-23 1984-12-11 Elektronisches Bauteil, insbesondere für eine Chip-Induktivität

Country Status (4)

Country Link
US (1) US4717901A (de)
EP (1) EP0157927B1 (de)
JP (1) JPS60214510A (de)
DE (1) DE3477438D1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188918U (de) * 1987-05-27 1988-12-05
JPH0729612Y2 (ja) * 1988-06-23 1995-07-05 株式会社村田製作所 ノイズ除去用インダクタ
US5192832A (en) * 1990-08-31 1993-03-09 Amp Incorporated Electromagnet insert for data current coupler
WO1992005568A1 (en) * 1990-09-21 1992-04-02 Coilcraft, Inc. Inductive device and method of manufacture
US5294749A (en) * 1991-09-23 1994-03-15 Motorola, Inc. Surface mountable molded electronic component
US5572180A (en) * 1995-11-16 1996-11-05 Motorola, Inc. Surface mountable inductor
TW362222B (en) * 1995-11-27 1999-06-21 Matsushita Electric Ind Co Ltd Coiled component and its production method
DE19615185C1 (de) * 1996-04-17 1997-06-19 Siemens Ag Elektromagnetisches Relais
US5877667A (en) * 1996-08-01 1999-03-02 Advanced Micro Devices, Inc. On-chip transformers
US6198373B1 (en) 1997-08-19 2001-03-06 Taiyo Yuden Co., Ltd. Wire wound electronic component
JP4216917B2 (ja) * 1997-11-21 2009-01-28 Tdk株式会社 チップビーズ素子およびその製造方法
JP3449222B2 (ja) * 1998-06-23 2003-09-22 株式会社村田製作所 ビーズインダクタの製造方法及びビーズインダクタ
JP2000040626A (ja) * 1998-07-24 2000-02-08 Matsushita Electric Ind Co Ltd チョークコイル
US6285272B1 (en) 1999-10-28 2001-09-04 Coilcraft, Incorporated Low profile inductive component
JP2007067177A (ja) * 2005-08-31 2007-03-15 Nec Tokin Corp 線輪部品
DE102006058336A1 (de) * 2006-12-11 2008-06-19 Vacuumschmelze Gmbh & Co. Kg Induktives SMD-Bauteil
US9636741B2 (en) * 2007-04-19 2017-05-02 Indimet, Inc. Solenoid housing and method of providing a solenoid housing
JP6072443B2 (ja) * 2011-08-04 2017-02-01 アルプス電気株式会社 インダクタの製造方法
JP6451081B2 (ja) * 2014-05-16 2019-01-16 Tdk株式会社 コイル装置
DE102019204950A1 (de) * 2019-04-08 2020-10-08 Robert Bosch Gmbh Induktives Bauelement und Verfahren zur Herstellung eines induktiven Bauelements
KR102198533B1 (ko) * 2019-05-27 2021-01-06 삼성전기주식회사 코일 부품

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0079659A1 (de) * 1981-11-17 1983-05-25 Koninklijke Philips Electronics N.V. Induktanzvorrichtung

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB567963A (en) * 1943-10-18 1945-03-09 Neosid Ltd An improved iron dust core for variable inductances
GB694559A (en) * 1951-04-17 1953-07-22 Philips Electrical Ind Ltd Improvements in or relating to coils comprising a core of ferromagnetic material
US3201729A (en) * 1960-02-26 1965-08-17 Blanchi Serge Electromagnetic device with potted coil
US3287678A (en) * 1962-11-17 1966-11-22 Fujitsu Ltd Miniature magnetic cores having perpendicular annular recesses
DE1907881U (de) * 1963-06-20 1965-01-07 Fujitsu Ltd Magnetisierbarer, im wesentlichen quaderfoermiger schalenkern.
GB1055808A (en) * 1964-08-20 1967-01-18 Cole E K Ltd Improvements in or relating to inductance coil assemblies
US3325760A (en) * 1965-10-01 1967-06-13 Gen Motors Corp Electromagnet with resinous ferromagnetic cladding
US3663913A (en) * 1967-12-22 1972-05-16 Tohoku Metal Ind Ltd Core coil having a improved temperature characteristic
US3585553A (en) * 1970-04-16 1971-06-15 Us Army Microminiature leadless inductance element
US3750069A (en) * 1972-02-22 1973-07-31 Coilcraft Inc Low reluctance inductor
DE2452252A1 (de) * 1974-11-04 1976-05-06 Standard Elektrik Lorenz Ag Drosselspule
US4245207A (en) * 1977-05-20 1981-01-13 Toko, Inc. Miniature high frequency coil assembly or transformer
JPS5926577Y2 (ja) * 1979-09-17 1984-08-02 ティーディーケイ株式会社 小型インダクタンス素子
US4490706A (en) * 1981-07-09 1984-12-25 Tdk Corporation Electronic parts
JPS5851412U (ja) * 1981-10-02 1983-04-07 東光株式会社 高周波コイル
JPH114716A (ja) * 1997-06-17 1999-01-12 Mitsubishi Heavy Ind Ltd グリップ部材ならびにこれを利用した歯ブラシおよび洋食器

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0079659A1 (de) * 1981-11-17 1983-05-25 Koninklijke Philips Electronics N.V. Induktanzvorrichtung

Also Published As

Publication number Publication date
EP0157927A1 (de) 1985-10-16
US4717901A (en) 1988-01-05
JPH0449763B2 (de) 1992-08-12
DE3477438D1 (en) 1989-04-27
JPS60214510A (ja) 1985-10-26

Similar Documents

Publication Publication Date Title
EP0157927B1 (de) Elektronisches Bauteil, insbesondere für eine Chip-Induktivität
EP0177759B1 (de) Elektronisches Bauteil, insbesondere für eine Chip-Induktivität
DE3225782C2 (de)
DE19544915C2 (de) Elektronisches Bauteil niedrigen Profils
DE69016187T2 (de) Niedrigprofil-Magnetkomponente mit mehreren Schichtwindungen.
DE69823876T2 (de) Induktives bauelement und induktive bauelementanordnung
DE3940880C2 (de)
EP1430491B1 (de) Flachtransformator mit gesteckten sekundärwicklungen
DE10112460B4 (de) Mehrschicht-Induktivität
DE4337053B4 (de) Spule
DE3927711C2 (de) Lamellierte Induktivität
EP0799487B1 (de) Elektrisches bauteil, insbesondere spule, vorzugsweise für smd-montagetechnik
DE19812836A1 (de) Induktives Miniatur-Bauelement für SMD-Montage
DE69625444T2 (de) Ultradünne mehrschichtige monolitische Chip-Induktivität und seine Herstellungsverfahren
DE69800001T2 (de) Stapelbarer und preisreduzierter Transformator mit eingebetteten EMI-Filtern
DE69729127T2 (de) Induktives bauelement und verfahren zur herstellung eines solchen bauelements
WO1985000072A1 (en) Inductive element, particularly repeater
DE2230587B2 (de) Induktives Bauelement
DE2054457A1 (de) Hochfrequenztransformator bzw. -drossel
EP1634308B1 (de) Induktives miniatur-bauelement, insbesondere antenne
DE4337054B4 (de) Spule
DE3807892C2 (de) SMD-Hochfrequenztransformator für die Schwall-Löttechnik und Verfahren zum Montieren desselben auf einer Platine
DE2744142C2 (de) Transformator, insbesondere für Zerhacker im Mittelfrequenzbereich
DE3609617A1 (de) Spulenkern
DE1564556A1 (de) Mehrteiliger ferromagnetischer Schalenkern fuer elektrische Spulen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19841221

AK Designated contracting states

Designated state(s): DE FR GB NL

17Q First examination report despatched

Effective date: 19861222

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

REF Corresponds to:

Ref document number: 3477438

Country of ref document: DE

Date of ref document: 19890427

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921119

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921221

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921231

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19930218

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931211

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940701

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931211

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST