EP0109358A1 - Kathode für eine Schmelzflusselektrolysezelle - Google Patents

Kathode für eine Schmelzflusselektrolysezelle Download PDF

Info

Publication number
EP0109358A1
EP0109358A1 EP83810496A EP83810496A EP0109358A1 EP 0109358 A1 EP0109358 A1 EP 0109358A1 EP 83810496 A EP83810496 A EP 83810496A EP 83810496 A EP83810496 A EP 83810496A EP 0109358 A1 EP0109358 A1 EP 0109358A1
Authority
EP
European Patent Office
Prior art keywords
aluminum
fragments
cathode according
melt flow
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP83810496A
Other languages
English (en)
French (fr)
Inventor
Sandor Molnar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcan Holdings Switzerland AG
Original Assignee
Alusuisse Holdings AG
Schweizerische Aluminium AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alusuisse Holdings AG, Schweizerische Aluminium AG filed Critical Alusuisse Holdings AG
Publication of EP0109358A1 publication Critical patent/EP0109358A1/de
Ceased legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C3/00Electrolytic production, recovery or refining of metals by electrolysis of melts
    • C25C3/06Electrolytic production, recovery or refining of metals by electrolysis of melts of aluminium
    • C25C3/08Cell construction, e.g. bottoms, walls, cathodes

Definitions

  • the invention relates to a cathode for a melt flow electrolysis cell for the production of aluminum, with wettable work surfaces which are resistant to the melt flow and which are electrically conductive.
  • the electrolysis generally takes place in a temperature range between 940 and 970 ° C. In the course of electrolysis, the electrolyte becomes poor in aluminum oxide. At a lower concentration of approx. 1 - 2% by weight. Aluminum oxide in the electrolyte leads to an anode effect, which results in a voltage increase from 4 - 4.5 V to 30 V and above, for example.
  • the generated metal flow on the surface leads to an increased chemical dissolution or to fine dispersion of the aluminum in the melt flow, which is known to result in a reduced current yield due to reoxidation.
  • both US Pat. Nos. 3,661,736 and 4,308,114 disclose a solid-state cathode for aluminum melt flow electrolysis, which consists of a composite material. Refractory grains made of a material wettable by aluminum are embedded in a carbon matrix. To produce the composite material, fine carbon powder is mixed with granular titanium diboride and treated with a suitable thermal process in the first-mentioned patent specification; granular titanium diboride is used in the second-mentioned patent specification. mixed in tar or pitch.
  • Such cathodes made of composite material are only slightly wettable by aluminum, the carbon matrix comes into contact with the melt flow. The interpolar distance can be reduced to a maximum of approximately 4 cm.
  • the inventor has set himself the task of creating a cathode for a melt flow electrolysis cell for the production of aluminum which is completely wettable by it, is not attacked by the melt flow, is inexpensive to produce and can be easily replaced.
  • the carbon, graphite, aluminum nitride and / or anthracite grains or splinters can be provided with a layer of silicon carbide, on which the actual protective layer made of aluminum-wettable material is then applied.
  • the grains or fragments forming the substrate preferably have an average linear dimension in the range between 0.2 and 10 mm.
  • the spectrum of the grain or splinter size is preferably narrow.
  • the substrate grains or chips are coated using a known method, for example sintering or melting. In this coating process, the substrate grains or chips are connected to one another and the cavities are at least partially filled with coating material. Based on the composite material, the proportion of the coating material is preferably between 2 and 40% by weight, in particular between 5 and 20% by weight. Within this proportion, layer thicknesses between 20 and 200 ⁇ m, preferably between 50 and 100 ⁇ m, are aimed for.
  • any shape can be produced with this coating process, large, shapeless pieces are preferably formed, which are then broken up into fragments with a hard object.
  • the fragments expediently have average linear dimensions between 1 and 8 cm.
  • substrate grains or fragments also burst when the large chunks are broken up.
  • the relatively soft substrate parts are removed by sandblasting or dissolved during the electrolysis process. Any directly formed moldings are of the same order of magnitude as the fragments or slightly larger.
  • the shaped pieces or fragments are poured into the tub of the electrolytic cell, the uppermost layer of the molten aluminum protruding into the electrolyte.
  • the bed is local so that the melt flow can circulate in it, albeit with greater resistance.
  • the bed is - with the working surface of the corresponding anode arranged horizontally - limited as horizontally as possible.
  • the interpolar distance is between 2 and 4 cm. The same applies to obliquely or vertically arranged work surfaces of the anodes.
  • the shaped pieces or fragments are preferably poured in such that the larger pieces are at the bottom and the smaller pieces are at the top.
  • a podium can be built below the anodes in the cathode trough that is suitable for receiving the fill.
  • Parts protruding from the podium into the molten electrolyte must consist of material that is wettable by aluminum and resistant to the electrolyte, expediently from the coating material of the substrate grains or splinters.
  • the podium has a liquid-permeable floor so that the drainage of the molten aluminum is not excessively obstructed.
  • the floor plan of a podium preferably corresponds at most to that of the corresponding anode (s).
  • the geometric change is only slight because the next coating again acts as a barrier.
  • substrate grains or fragments are preferably used, which have a size in the range of 0.5-2 mm. Even smaller substrate grains or chips offer even better protection against Damage, however, more expensive coating material that can be wetted by aluminum must be used in the production of the shaped parts or fragments.
  • the body 10 shown in FIG. 1 consists of anthracite chips 12 forming the substrate and a thin titanium diboride coating 14, which binds the substrate chips together. Before sintering together, the individual anthracite chips 12 were provided with a thin silicon carbide layer, not shown.
  • FIG. 2 Only the carbon liner 16 of the melt flow electrolysis cell for the production of aluminum is shown in FIG. 2.
  • Graphite bricks 18 are arranged on the horizontal bottom of this carbon lining, which are the foundation for the podium 20 which carries the shaped or fragments 10.
  • the higher-formed graphite bricks 18 carry the bottom plates 22 made of silicon carbide, which are provided with a specific perforation.
  • the level of the molten aluminum is always significantly above these plates 22, especially after scooping.
  • the aluminum level is lowered by h during scooping.
  • the podium is laterally delimited by plates or rods 26 protruding into the electrolyte, which can be wetted by aluminum and are not attacked by the latter or by the electrolyte 28.
  • the plates or rods 26 are supported on the outside by silicon carbide profiles 30.
  • the bulk material loosely filled into the pedestal 20 consists of shaped pieces or fragments 10 of substrate grains or fragments which are sintered together with the material which is wettable for aluminum and is inert to the melt flow. It is clearly shown that the larger shaped pieces or fragments 10 below, the smaller ones above, i.e. adjacent the anode (s) 32 are arranged.
  • the upper form or fragments 10 form an approximately horizontal plane, which has the distance d, the interpolar distance, from the working surface of the anode 32.
  • the anode 32 can be made of carbon or an incombustible material, for example oxide ceramic. Steel tub, insulation layer, cathode bar, solidified electrolyte crust and other accessories are omitted for the sake of simplicity. Like the anode (s), they are designed in a manner known to the electrolysis specialist.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

Eine Kathode für eine Schmelzflusselektrolysezelle zur Herstellung von Aluminium mit benetzbaren, gegen den Schmelzfluss resistenten Arbeitsflächen, die elektrisch leitend sind, ist gebildet aus im Schmelzfluss locker angeordneten Form- bzw. Bruchstücken (10). Dieses in geschmolzenem Aluminium (24) sinkende Verbundmaterial besteht aus - einem feinkörnigen bzw. feinsplittrigen Substrat aus Kohle, Graphit, Anthrazit, Aluminiumnitrid oder Siliziumcarbind, und - einer die Oberfläche dieses Substrats vollständig und dicht bedeckenden, dünnen Schicht aus Titandiborid, Titancarbid, Titannitrid, Zirkondiborid, Zirkoncarbid und/oder Zirkonnitrid. Die Hohlräume zwischen dem beschichteten Substrat (12) sind mindestens teilweise mit Beschichtungswerkstoff gefüllt.

Description

  • Die Erfindung bezieht sich auf eine Kathode für eine Schmelzflusselektrolysezelle zur Herstellung von Aluminium, mit benetzbaren, gegen den Schmelzfluss resistenten Arbeitsflächen, die elektrisch leitend sind.
  • Für die Gewinnung von Aluminium durch Elektrolyse von Aluminiumoxid wird dieses in einer Fluoridschmelze gelöst, die zum grössten Teil aus Kryolith besteht. Das kathodisch abgeschiedene Aluminium sammelt sich unter der Fluoridschmelze auf dem Kohleboden der Zelle, wobei die Oberfläche des flüssigen Aluminiums oder ein von diesem benetzbarer Festkörper die Kathode bildet. Am Anodenbalken befestigte, bei konventionellen Verfahren aus amorphem Kohlenstoff bestehende Anoden tauchen von oben in den Elektrolyten ein.. An den Anoden entsteht durch die elektrolytische Zersetzung des Aluminiumoxids Sauerstoff, der sich bei Kohleanoden zu;CO2 und CO verbindet.
  • Die Elektrolyse findet im allgemeinen in einem Temperaturbereich zwischen 940 und 970°C statt. Im Laufe der Elektrolyse verarmt der Elektrolyt an Aluminiumoxid. Bei einer unteren Konzentration von ca. 1 - 2 Gew.-%. Alumiumoxid im Elektrolyten kommt es zum Anodeneffekt, der sich in einer Spannungserhöhung von beispielsweise 4 - 4,5 V auf 30 V und darüber auswirkt.
  • Es ist bekannt, dass bei grossen Stromstärken das Zusammenwirken von vertikalen Komponenten des Magnetfeldes mit horizontalen Komponenten des Stromes zu unerwünschten Deformationen der Oberfläche des einige Zentimeter hohen Metallbades und zu unerwünscht starken Metallströmungen führen kann. Bei klei-nen Interpolardistanzen können diese unerwünschten Deformationen so gross werden, dass das Aluminium die Anoden berührt und zu Kurzschlüssen führt.
  • Weiter führt die erzeugte Metallströmung an der Oberfläche zu einer vermehrten chemischen Auflösung oder zu feiner Dispergierung des Aluminiums im Schmelzfluss, was wegen Rückoxidation bekanntlich eine verminderte Stromausbeute zur Folge hat.
  • Eine sich im Prinzip vorteilhaft auswirkende geringere Stromdichte würde in untragbarem Masse erhöhte Kapitalkosten für Elektrolysezellen und Halle erforderlich machen.
  • Seit einiger Zeit sind von Aluminium benetzbare Kathoden bekannt, die eine dünne, also in Vertikalrichtung zur Arbeits- - fläche nur wenig bewegliche Aluminiumschicht aufweisen. Dadurch werden die klassischen Oberflächendeformationen - sowohl stationäre Aufwölbungen als auch Wellen - zum grössten Teil beseitigt. Neben den sehr teuren Materialkosten weisen diese Anordnungen mit erniedrigter Interpolärdistanz jedoch den Nachteil auf, dass die Zirkulation des Elektrolyten zwischen Anode und Kathode erschwert ist, wodurch die Kryolithschmelze bei der Abscheidung von Aluminium an Tonerde verarmt und die Zelle anfällig für Anodeneffekte wird.
  • Eine Verbesserung der Zirkulation des Elektrolyten ist auf zwei Arten angestrebt worden:
    • - Die Festkörperkathode erstreckt sich nicht vollflächig in gleichem Abstand über den ganzen Arbeitsbereich, viel mehr ragen einzelne Formteile höher gegen die Anode empor, und/oder es sind Schlitze in der Kathodenoberfläche ausgebildet.
    • - Es wird ein körniges Schüttgut in die Zelle gefüllt, wobei die Schüttung vom flüssigen Metall vollständig über- deckt wird.
  • Weiter wird sowohl in der US-PS 3 661 736 als auch 4 308 114 eine Festkörperkathode für die Aluminiumschmelzflusselektrolyse offenbart, die aus einem Verbundmaterial besteht. Refraktäre Körner aus einem von Aluminium benetzbaren Material werden in eine Kohlenstoffmatrix eingebettet. Zur Herstellung des Verbundmaterials wird in der erstgenannten Patentschrift feines Kohlenstoffpulver mit körnigem Titandiborid gemischt und mit einem geeigneten thermischen Verfahren behandelt, bei der zweitgenannten Patentschrift wird körniges Titandiborid. in Teer oder Pech eingemischt. Derartige Kathoden aus Verbundmaterial sind durch Aluminium nur geringfügig benetzbar, die Kohlenstoffmatrix tritt mit dem Schmelzfluss in Berührung. Die Interpolardistanz kann auf höchstens ungefähr 4 cm gesenkt werden.
  • Der Erfinder hat sich die Aufgabe gestellt, eine Kathode für eine Schmelzflusselektrolysezelle zur Herstellung von Aluminium zu schaffen, welche von diesem vollständig benetzbar ist, vom Schmelzfluss nicht angegriffen wird, kostengünstig herzustellen ist und leicht ersetzt werden kann.
  • Die Aufgabe wird erfindungsgemäss gelöst durch im Schmelzfluss locker angeordnete Form- bzw. Bruchstücke aus in geschmolzenem Aluminium sinkendem Verbundmaterial, die aus
    • - einem feinkörnigen bzw. feinsplittrigen Substrat mindestens eines Werkstoffs der Gruppe, gebildet aus Kohle, Graphit, Anthrazit, Aluminiumnitrid und Siliziumcarbid, und
    • - einer die Oberfläche dieses Substrats vollständig und dicht bedeckenden, dünnen Schicht mindestens eines Werkstoffs der Gruppe, gebildet aus Titandiborid, Titancarbid, Titannitrid, Zirkondiborid, Zirkoncarbid und Zirkonnitrid, bestehen, wobei die Hohlräume zwischen dem beschichteten Substrat mindestens teilweise mit Beschichtungswerkstoff gefüllt sind.
  • Die Kohle-, Graphit-, Aluminiumnitrid- und/oder Anthrazitkörner bzw. -splitter können mit einer Schicht von Siliziumcarbid versehen sein, auf welcher dann die eigentliche Schutzschicht aus von Aluminium benetzbarem Material aufgetragen wird.
  • Die das Substrat bildenden Körner bzw. Splitter haben vorzugsweise eine mittlere lineare Dimension im Bereich zwischen 0,2 und 10 mm. Das Spektrum der Korn- bzw. Splittergrösse ist vorzugsweise eng.
  • Die Substratkörner bzw. -splitter werden mit einem bekannten Verfahren, beispielsweise Sintern oder Aufschmelzen, überzogen. Bei diesem Beschichtungsverfahren werden die Substratkörner bzw. -splitter miteinander verbunden und die Hohlräume mindestens teilweise mit Beschichtungsmaterial aufgefüllt. Bezogen auf das Verbundmaterial liegt der Anteil des Beschichtungswerkstoffs zwischen vorzugsweise 2 und 40 Gew.-%, insbesondere zwischen 5 und 20 Gew.-%. Innerhalb dieses Anteils werden Schichtdicken zwischen 20 und 200 um, vorzugsweise zwischen 50 und 100 um, angestrebt.
  • Obwohl mit diesem Beschichtungsverfahren beliebige Formkörper hergestellt werden können, werden bevorzugt grosse, formlose Stücke gebildet, die dann mit einem harten Gegenstand in Bruchstücke zerschlagen werden. Die Bruchstücke haben zweckmässig mittlere lineare Dimensionen zwischen 1 und 8 cm. Selbstverständlich bersten beim Zerschlagen der grossen Brocken auch Substratkörner bzw. -splitter. Die verhältnismässig weichen Substratteile werden durch Sandstrahlen entfernt oder während des Elektrolyseprozesses aufgelöst. Allfällig direkt gebildete Formkörper sind von der gleichen Grössenordnung wie die Bruchstücke oder etwas grösser.
  • Die Form- bzw. Bruchstücke werden in die Wanne der Elektrolysezelle geschüttet, wobei die oberste Schicht aus dem geschmolzenen Aluminium hinaus in den Elektrolyten ragt. Die Schüttung ist lokal, damit der Schmelzfluss darin, wenn auch mit grösserem Widerstand, zirkulieren kann. Die Schüttung ist - bei horizontal angeordneter Arbeitsfläche der entsprechenden Anode - nach oben möglichst horizontal begrenzt. Bei eingesetzter Anode liegt die Interpolardistanz zwischen 2 und 4 cm. Entsprechendes gilt für schräg oder vertikal angeordnete Arbeitsflächen der Anoden.
  • Das Einschütten der Form- bzw. Bruchstücke erfolgt bevorzugt derart, dass die grösseren Stücke unten und die kleineren oben sind.
  • Insbesondere aus Kostengründen kann unterhalb der Anoden in der Kathodenwanne ein Podium gebaut werden, das zur Aufnahme der Schüttung geeignet ist. Vom Podium in den schmelzflüssigen Elektrolyten hineinragende Teile müssen aus von Aluminium benetzbarem und gegen den Elektrolyten resistentem Material bestehen, zweckmässig aus dem Beschichtungsmaterial der Substratkörner bzw. -splitter. Das Podium hat einen flüssigkeitsdurchlässigen Boden, damit der Abfluss des schmelzflüssigen Aluminiums nicht übermässig behindert wird.
  • Der Grundriss eines Podiums entspricht bevorzugt höchstens demjenigen der entsprechenden Anode/n.
  • Wird bei den erfindungsgemäss ausgebildeten benetzbaren Kathoden die Beschichtung eines einzelnen Substratkornes bzw. -splitters aufgelöst oder beschädigt, so ist die geometrische Veränderung nur geringfügig, weil die nächste Beschichtung wieder als Sperre wirkt. Aus diesem Grund sind Substratkörner bzw. -splitter bevorzugt eingesetzt, die eine Grösse im Bereich von 0,5 - 2 mm haben. Noch kleinere Substratkörner bzw. -splitter bieten wohl einen noch besseren Schutz gegen Beschädigungen, dagegen muss bei der Herstellung der Form- bzw. Bruchstücke mehr teures, von Aluminium benetzbares Beschichtungsmaterial aufgewendet werden.
  • Die Erfindung wird anhand der Zeichnung näher erläutert. Es zeigen schematisch:
    • Fig. 1 einen Schnitt durch einen aus einem splitterförmigen Substrat hergestellten Körper,
    • Fig. 2 einen teilweisen Vertikalschnitt durch eine Elektrolysezelle mit eingefüllten Bruchstücken.
  • Der in Fig. 1 dargestellte Körper 10 besteht aus das Substrat bildenden Anthrazitsplittern 12 und einer dünnen Titandiboridbeschichtung 14, welche die Substratsplitter zusammenbindet. Vor dem Zusammensintern sind die einzelnen Anthrazitsplitter 12 mit einer nicht dargestellten, dünnen Siliziumcarbidschicht versehen worden.
  • Von der Schmelzflusselektrolysezelle zur Herstellung von Aluminium ist in Fig. 2 nur die Kohlenstoffauskleidung 16 gezeigt. Auf dem horizontalen Boden dieser Kohlenstoffauskleidung sind Graphitziegel 18 angeordnet, die das Fundament für das die Form- bzw. Bruchstücke 10 tragende Podium 20 sind. Die höher-ausgebildeten Graphitziegel 18 tragen die mit einer gezielten Lochung versehenen Bodenplatten 22 aus Siliziumcarbid. Das Niveau des geschmolzenen Aluminiums liegt stets deutlich oberhalb dieser Platten 22, insbesondere auch nach dem Schöpfen. Während des Schöpfens wird das Aluminiumniveau um h abgesenkt.
  • Seitlich wird das Podium begrenzt durch in den Elektrolyten hineinragende Platten oder Stangen 26, welche von Aluminium benetzbar sind und weder von diesem noch vom Elektrolyten 28 angegriffen werden. Nach aussen werden die Platten bzw. Stangen 26 von Siliziumcarbidprofilen 30 gestützt.
  • Das in das Podest 20 locker eingefüllte Schüttgut besteht aus Form- bzw. Bruchstücken 10 aus Substratkörnern bzw. -splittern, die mit dem für Aluminium benetzbaren, gegen den Schmelzfluss inerten Material zusammengesintert sind. Es ist deutlich dargestellt, dass die grösseren Form- bzw. Bruchstücke 10 unten, die kleineren oben, d.h. benachbart der Anode/n 32, angeordnet sind. Die oberen Form- bzw. Bruchstücke 10 bilden eine angenähert horizontale Ebene, die von der Arbeitsfläche der Anode 32 den Abstand d, die Interpolardistanz, hat.
  • Die Anode 32 kann aus Kohlenstoff oder aus einem unbrennbaren Material, beispielsweise Oxidkeramik, bestehen. Stahlwanne, Isolationsschicht, Kathodenbarren, erstarrte Elektrolytkruste und weitere Zubehörteile sind einfachheitshalber weggelassen. Sie sind, wie die Anode/n, in dem Elektrolysefachmann bekannter Weise ausgebildet.

Claims (10)

1. Kathode für eine Schmelzflusselektrolysezelle zur Herstellung von Aluminium mit benetzbaren, gegen den Schmelzfluss resistenten Arbeitsflächen, die elektrisch leitend sind,
gekennzeichnet durch
im Schmelzfluss locker angeordnete Form- bzw. Bruchstücke (10) aus in geschmolzenem Aluminium (24) sinkendem Verbundmaterial, die aus
- einem feinkörnigen bzw. feinsplittrigen Substrat(12)'mindestens eines Werkstoffs der Gruppe, gebildet aus Kohle, Graphit, Anthrazit, Aluminiumnitrid und Siliziumcarbid, und
- einer die Oberfläche dieses Substrats vollständig und dicht bedeckenden, dünnen Schicht mindestens eines Werkstoffs der Gruppe, gebildet aus Titandiborid, Titancarbid, Titannitrid, Zirkondiborid, Zirkoncarbid und Zirkonnitrid,

bestehen, wobei die Hohlräume zwischen dem beschichteten Substrat (12) mindestens teilweise mit Beschichtungswerkstoff gefüllt sind.
2. Kathode nach Anspruch 1, dadurch gekennzeichnet, dass das Substrat aus mit Siliziumcarbid beschichteten Kohle-, Graphit-, Aluminiumnitrid- und/oder Anthrazitkörnern bzw. -splittern (12) besteht.
3. Kathode nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die mittlere lineare Dimension der Substratkörner bzw. -splitter (12) im Bereich zwischen 0,2 und 10 mm liegt, vorzugsweise mit engem Korn- bzw. Splittergrössenspektrum.
4. Kathode nach mindestens einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Anteil des Beschichtungswerkstoffs (14), bezogen auf das Verbundmaterial, zwischen 2 und 40 Gew.-%, vorzugsweise zwischen 5 und 20 Gew.-%, liegt.
5. Kathode nach mindestens einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die mittlere lineare Dimension der Form- bzw. Bruchstücke (10) aus Verbundmaterial zwischen 1 und 8 cm liegt.
6. Kathode nach mindestens einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Form- bzw. Bruchstücke (10) ein zerschlagener grosser Brocken sind.
7. Kathode nach mindestens einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass in einer Elektrolysezelle kleinere Form- bzw. Bruchstücke (10) näher bei der Anode (32) angeordnet, grössere weiter von der Anode (32) entfernt sind.
8. Kathode nach mindestens einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass Form- bzw. Bruchstücke (10) auf einem Podium (20) mit für geschmolzenes Aluminium (24) durchlässigen Bodenplatten (22), seitlichen Platten oder Stangen (26) aus von Aluminium benetzbarem und gegen den Schmelzfluss (24,28) beständigem Material, die in den Elektrolyten (28) hineinragen, angeordnet sind.
9. Kathode nach Anspruch 8, dadurch gekennzeichnet, dass der Grundriss eines Podiums (20) höchstens demjenigen der entsprechenden Anode (32) entspricht.
10. Kathode nach mindestens einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass die Form- bzw. Bruchstücke (10) derart angeordnet sind, dass ihr Abstand (d) zur entsprechenden Anode (32) möglichst gleichmässig ist und im Bereich von 2 bis 4 cm liegt.
EP83810496A 1982-11-15 1983-10-28 Kathode für eine Schmelzflusselektrolysezelle Ceased EP0109358A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH663582 1982-11-15
CH6635/82 1982-11-15

Publications (1)

Publication Number Publication Date
EP0109358A1 true EP0109358A1 (de) 1984-05-23

Family

ID=4312670

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83810496A Ceased EP0109358A1 (de) 1982-11-15 1983-10-28 Kathode für eine Schmelzflusselektrolysezelle

Country Status (3)

Country Link
US (1) US4511449A (de)
EP (1) EP0109358A1 (de)
AU (1) AU2096883A (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8406049A (pt) * 1983-11-29 1985-09-03 Alcan Int Ltd Celula de reducao de aluminio
JPS6246964A (ja) * 1985-08-21 1987-02-28 黒崎窯業株式会社 耐食性炭化珪素複合焼結体
US4929328A (en) * 1989-03-07 1990-05-29 Martin Marietta Energy Systems, Inc. Titanium diboride ceramic fiber composites for Hall-Heroult cells
US5658447A (en) * 1992-12-17 1997-08-19 Comalco Aluminium Limited Electrolysis cell and method for metal production
WO1999040239A1 (en) * 1998-02-09 1999-08-12 Advanced Refractory Technologies, Inc. Materials for use in electrochemical smelting of metals from ore
CN101949034B (zh) * 2010-09-30 2012-06-06 广西强强碳素股份有限公司 铝电解用阴极石墨化阻流块
CN102953083B (zh) * 2011-08-25 2016-08-24 贵阳铝镁设计研究院有限公司 内腔阴极结构铝电解槽

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661736A (en) * 1969-05-07 1972-05-09 Olin Mathieson Refractory hard metal composite cathode aluminum reduction cell
FR2170188A1 (en) * 1972-02-04 1973-09-14 Borax Cons Ltd Carbon cathodes for aluminium refining - with fused refractory coating to reduce erosion
GB2065174A (en) * 1979-12-05 1981-06-24 Alusuisse Cathodes for electrolytic furnaces
EP0033630A1 (de) * 1980-01-28 1981-08-12 Diamond Shamrock Corporation Elektrolytische Zelle für die elektrolytische Gewinnung von Aluminium aus geschmolzenen Salzen
DE3110490A1 (de) * 1980-04-03 1981-12-24 Schweizerische Aluminium AG, 3965 Chippis Schmelzflusselektrolysezelle zur herstellung von aluminium
US4333813A (en) * 1980-03-03 1982-06-08 Reynolds Metals Company Cathodes for alumina reduction cells
US4341611A (en) * 1980-12-18 1982-07-27 Reynolds Metals Company Alumina reduction cell
FR2500488A1 (fr) * 1981-02-24 1982-08-27 Pechiney Aluminium Procede de production d'aluminium selon la technique hall-heroult et cathode en refractaire electroconducteur pour la mise en oeuvre du procede

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4071420A (en) * 1975-12-31 1978-01-31 Aluminum Company Of America Electrolytic production of metal
US4097567A (en) * 1976-08-25 1978-06-27 Aluminum Company Of America Titanium diboride shapes
US4338177A (en) * 1978-09-22 1982-07-06 Metallurgical, Inc. Electrolytic cell for the production of aluminum
US4410403A (en) * 1980-06-17 1983-10-18 Aluminum Company Of America Electrolysis method
US4349427A (en) * 1980-06-23 1982-09-14 Kaiser Aluminum & Chemical Corporation Aluminum reduction cell electrode
US4308115A (en) * 1980-08-15 1981-12-29 Aluminum Company Of America Method of producing aluminum using graphite cathode coated with refractory hard metal
ZA824255B (en) * 1981-06-25 1983-05-25 Alcan Int Ltd Electrolytic reduction cells
US4439382A (en) * 1981-07-27 1984-03-27 Great Lakes Carbon Corporation Titanium diboride-graphite composites

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3661736A (en) * 1969-05-07 1972-05-09 Olin Mathieson Refractory hard metal composite cathode aluminum reduction cell
FR2170188A1 (en) * 1972-02-04 1973-09-14 Borax Cons Ltd Carbon cathodes for aluminium refining - with fused refractory coating to reduce erosion
GB2065174A (en) * 1979-12-05 1981-06-24 Alusuisse Cathodes for electrolytic furnaces
EP0033630A1 (de) * 1980-01-28 1981-08-12 Diamond Shamrock Corporation Elektrolytische Zelle für die elektrolytische Gewinnung von Aluminium aus geschmolzenen Salzen
US4333813A (en) * 1980-03-03 1982-06-08 Reynolds Metals Company Cathodes for alumina reduction cells
DE3110490A1 (de) * 1980-04-03 1981-12-24 Schweizerische Aluminium AG, 3965 Chippis Schmelzflusselektrolysezelle zur herstellung von aluminium
US4341611A (en) * 1980-12-18 1982-07-27 Reynolds Metals Company Alumina reduction cell
FR2500488A1 (fr) * 1981-02-24 1982-08-27 Pechiney Aluminium Procede de production d'aluminium selon la technique hall-heroult et cathode en refractaire electroconducteur pour la mise en oeuvre du procede

Also Published As

Publication number Publication date
US4511449A (en) 1985-04-16
AU2096883A (en) 1984-05-24

Similar Documents

Publication Publication Date Title
DE69509540T2 (de) Aluminium-elektrogewinnungszelle mit verbesserten kohlenstoff-kathodeblöcken
EP0041045B1 (de) Kathode für eine Schmelzflusselektrolysezelle
DE69111078T2 (de) Elektrodenzusammenstellung und multimonopolare zellen für die aluminiumelektrogewinnung.
DE3875437T2 (de) Kathodenstromkollektor fuer die elektrogewinnung von aluminium.
DE69926809T2 (de) Salzschmelzbad-zirkulationsfluss für eine elektrolysezelle
DE3400932A1 (de) Verfahren zur herstellung von festkoerperkathoden
DE2105247C3 (de) Ofen für die Schmelzflußelektrolyse von Aluminium
DE3015244A1 (de) Kathoden-strom-zufuhr-element fuer zellen zur elektrolytischen reduktion von aluminium
CH643885A5 (de) Elektrodenanordnung einer schmelzflusselektrolysezelle zur herstellung von aluminium.
DE3041680C2 (de) Kathodenanordnung für einen Schmelzflußelektrolyseofen
DE3110490A1 (de) Schmelzflusselektrolysezelle zur herstellung von aluminium
EP0109358A1 (de) Kathode für eine Schmelzflusselektrolysezelle
DE69514370T2 (de) Aluminiumgetauchter aufbau für zellen zur aluminiumproduktion
DE3116273C2 (de) Elektrolysewanne
DE3506200A1 (de) Kathodenwanne fuer eine aluminium-elektrolysezelle und verfahren zur herstellung von deren seitenwand bildenden verbundkoerpern
DE3880940T2 (de)
DE3405762A1 (de) Zelle zur raffination von aluminium
DE1115467B (de) Ofen zur Herstellung von Aluminium durch Schmelzflusselektrolyse
DE69837966T2 (de) Zelle für aluminium-herstellung mit drainierfähiger kathode
DE3045349C2 (de) Kathode für eine Schmelzflusselektrolysezelle zur Herstellung von Aluminium
DE60201534T2 (de) Elektrolysezellen zur aluminiumgewinnung mit drainiertem kathodenboden und einem reservoir für aluminium
DE1153538B (de) Aluminiumelektrolyseofen
DE60003683T2 (de) Aluminium-elektrogewinnungszelle mit v-förmigem kathodenboden
DE60005301T2 (de) Elektrolytische zelle mit verbesserter tonerde-zufuhr
DE2731908B1 (de) Verfahren und Vorrichtung zum Herstellen von Aluminium

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL

17P Request for examination filed

Effective date: 19841115

17Q First examination report despatched

Effective date: 19860204

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 19870420

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MOLNAR, SANDOR