EP0108375B1 - Verfahren zur Kontrolle von elektronenstrahlgravierten Druckformoberflächen - Google Patents

Verfahren zur Kontrolle von elektronenstrahlgravierten Druckformoberflächen Download PDF

Info

Publication number
EP0108375B1
EP0108375B1 EP83110891A EP83110891A EP0108375B1 EP 0108375 B1 EP0108375 B1 EP 0108375B1 EP 83110891 A EP83110891 A EP 83110891A EP 83110891 A EP83110891 A EP 83110891A EP 0108375 B1 EP0108375 B1 EP 0108375B1
Authority
EP
European Patent Office
Prior art keywords
electron beam
engraving
electron
checking
engraved
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP83110891A
Other languages
English (en)
French (fr)
Other versions
EP0108375A2 (de
EP0108375A3 (en
Inventor
Siegfried Beisswenger
Wolfgang Boppel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dr Ing Rudolf Hell GmbH
Original Assignee
Dr Ing Rudolf Hell GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dr Ing Rudolf Hell GmbH filed Critical Dr Ing Rudolf Hell GmbH
Priority to AT83110891T priority Critical patent/ATE49534T1/de
Publication of EP0108375A2 publication Critical patent/EP0108375A2/de
Publication of EP0108375A3 publication Critical patent/EP0108375A3/de
Application granted granted Critical
Publication of EP0108375B1 publication Critical patent/EP0108375B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/02Engraving; Heads therefor
    • B41C1/04Engraving; Heads therefor using heads controlled by an electric information signal
    • B41C1/05Heat-generating engraving heads, e.g. laser beam, electron beam

Definitions

  • the present invention relates to a method for checking electron beam-engraved printing form surfaces according to the patent claim.
  • a separate control beam path is provided, which is directed onto a radiation receiver 19.
  • a photoelectric converter is provided as the radiation receiver, which is followed by a display device, from the deflection of which a conclusion can be drawn directly about the state of focus of the electron beam. This signal can then be used to control the intensity of the machining beam.
  • DE-A-2 354 323 discloses a method for producing an engraved printing surface and a device for carrying out the method, in which both an ion and an electron beam are proposed for engraving printing plate surfaces.
  • the visualization of the engraved printing form surface by means of the electron beam generation system is not addressed there, but without special precautions, the disadvantageous effect of post-engraving when scanning the surface would also occur here.
  • Applied Physics Letters, Volume 34, No. 5, March 1, 1975, pages 310-312 also discloses a method for first processing semiconductor surfaces and then checking them with electron microscopy using the same device.
  • a liquid metal gallium ion source is used for the maskless doping of semiconductors.
  • Such an ion source with low power is indeed suitable for the processing of semiconductor substrates and their electron microscopic examination, but not for the engraving of printing forms, since their performance is far from sufficient to e.g. B. Engrave a complete rotogravure cylinder made of copper, the surface of which should accommodate several newspaper pages, in one go.
  • Some of these devices are suitable for the direct optical inspection of engraved surfaces, but not for the engraving of printing form surfaces, since special electron beam generation systems are required for this.
  • the invention is based on the object of specifying a method for producing printing forms in which a simpler and more reliable control of the cells produced is possible with an electron beam generation system specially developed for the engraving of printing form surfaces.
  • the beam will be reduced to approximately 1 I lm diameter than the mode engraving according to the invention.
  • the beam undergoes an x and y deflection in order to scan the cell area to be displayed.
  • the secondary electrons generated in this way are detected and used as a video signal to control a monitor.
  • a great advantage of the present invention lies in the fact that no special optical control device or a separate electron beam microscope has to be provided, but that the electron beam gun, which is designed for material processing, enables the electron beam microscope operation during engraving pauses in a simple manner due to the present invention becomes.
  • Electron beam microscopes are known per se, but electron beam microscopes in turn cannot be used or modified for material processing. With regard to the known electron beam microscopes, reference is made to the book by L. Reimer and G. Pfefferkorn, scanning electron microscopy, Springer Verlag Berlin, Heidelberg, New York 1977, Chapter 1 Introduction, pages 1, 2 and 3, in which, in FIG associated description of the circuitry for the detection of the secondary electrons and the connection of the 4 monitor is given.
  • Figure 1 shows a pressure cylinder (1) with engraved cups (2), which have been produced by an electron beam (3).
  • Such printing cylinders are used as printing forms in gravure printing, the cups, which have different volumes depending on the tonal value to be printed, are filled with printing ink during the printing process and the printing ink is transferred to the printing substrate during printing.
  • FIG. 1 shows in detail the electron optics and the beam path of an electron beam generator, by means of which the invention can be carried out.
  • the electron beam (3) goes from a heated cathode (4), which lies in a heating circuit (41), which has a voltage source V k (z. B. 6 volts).
  • the beam passes through the Wehnelt cylinder (5) and the anode (6) and comes to a first lens system (7), which is shown in more detail in FIG. 2.
  • the Wehnelt cylinder (5) is in the circuit (51) with the voltage source Vw (e.g. 100 volts) and the anode (6) in a circuit (61) with a voltage source Va for the anode voltage (5 to -50 KV ).
  • an aperture diaphragm (8) is provided and the beam transmitted by the diaphragm passes through a deflection unit (9) and a second lens system (10) before it hits the engraving cylinder (1).
  • the deflection unit (9) serves to move the deflection beam in a row over the wells (2) to be scanned. This scanning movement is carried out simultaneously by the electron beam (11) of a picture tube (12) by means of a second deflection unit (13).
  • the corresponding deflection currents are generated in a raster generator (14), and the two deflection booklets (9) and (13) are connected to one another via a unit (15) for varying the magnification.
  • FIG. 2 shows the electron beam generating system and the beam path for the various operating modes, engraving and microscope operation in more detailed form, the actual electron beam generating system comprising the cathode, Wehnelt and anode and the deflection coils being omitted for the sake of clarity.
  • the first lens system (7) which brings about a first reduction, consists of two lenses (71) and (72), and a further lens (73) is provided inside the lens (71) for the engraving mode.
  • three operating cases are explained on the basis of the drawn beam paths (30), (31) and (32), namely beam path (30), engraving of a large cell, beam path (31), engraving of a small cell and beam path (32), microscope operation.
  • the lens system (71), (72) and (73) forms a variable reduction stage, the radiation source shown schematically being reduced 12 times when the lens is maximally tightened and 3 times when the lens (73) is not tightened.
  • the aperture diaphragm 8 is dimensioned such that an angle ao of 0.08 rd is given, which results in an opening error disk of 25 ⁇ m in diameter.
  • the lens (10) makes a 4-fold reduction, and the lens (101) serves to focus and defocus the beam, thereby producing cells.
  • a processing effect occurs when the beam is focused, but not when the beam is defocused.
  • the beam path (30) is set for engraving large cells, the beam having a diameter of approximately 100 ⁇ m at the point of impact and having a beam current in the processing spot of 50 mA.
  • the beam path (31) is used to produce small cells.
  • the beam has a diameter of about 20 ⁇ m at the point of impact and the current in the spot is 3 mA.
  • the tonal value-dependent variation of the cell size is carried out by varying the tension of the dynamic lens (73).
  • the deflection system (9) shown in FIG. 1 generates a beam entrainment for cylinder rotation, so that the beam always hits the same point when the cylinder is rotating.
  • an acceleration voltage of 50 KV is used, and the beam emerging from the cathode has a current of approximately 50 mA.
  • the dynamic lens (73) is switched off.
  • the static lens (71) is more excited and the reduction in the radiation source is approximately 250.
  • the lens (10) remains almost unchanged and the dynamic focus lens (101) is switched off.
  • the probe diameter on the cylinder surface is 1 to 1.5 ⁇ m.
  • the deflection system (9) shown in FIG. 1 is used to generate the scanning grid in accordance with the line and image frequency of the picture tube (12).
  • the scanned field is approximately 1 mm 2 .
  • a secondary electron detector (16) is provided for microscope operation, which is also pivoted in like the aperture (8 ') during microscope operation.
  • the image of the well on the picture tube appears as if the wells were illuminated from the side, since the detector (16) is directed from one side towards the wells of the printing form surface and the electrons, which are on the inside of the detector opposite the Wells are reflected, give a better yield on the detector (16).

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Electron Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)

Description

    Verfahren zur Kontrolle von elektronenstrahlgravierten Druckformoberflächen.
  • Die vorliegende Erfindung betrifft ein Verfahren zur Kontrolle von elektronenstrahlgravierten Druckformoberflächen gemäß dem Patentanspruch.
  • Es sind bereits Verfahren zur Herstellung von Druckformen mittels Elektronerstrahl bekannt, bei denen das Matenal der Druckformoberfläche mittels des Elektronenstrahls entfernt wird, siehe beispielsweise DD-A 55 965, in der das Prinzip Elektronenstrahlgravur beschrieben ist. Es ist aber wünschenswert, das Resultat der Gravur, d.h. die in die Druckformoberfläche eingravierten Näpfchen zu kontrollieren, d.h. sichtbar zu machen. Bei Geräten zur Materialbearbeitung, z. B. DE-B-1 099 695, ist zu diesem Zweck ein Stereomikroskop in dem elektronischen Strahlerzeuger eingebaut.
  • Bei der DE-B-1 299 498 ist ein separater Kontrollstrahlengang vorgesehen, der auf einen Strahlungsempfänger 19 gerichtet ist. Als Strahlungsempfänger ist ein fotoelektrischer Wandler vorgesehen, dem ein Anzeigegerät nachgeschaltet ist, aus dessen Ausschlag direkt auf den Fokussierungszustand des Elektronenstrahls geschlossen werden kann. Dieses Signal kann dann zur Intensitätssteuerung des Bearbeitungsstrahls verwendet werden.
  • Aus dem Dokument US-A-3 881 108 ist eine lonen-Mikro-Prüfsonde bekannt, um Proben in Richtung von mit der Sonde geätzten Vertiefungen zu analysieren. Fig. 9 dieses Dokumentes zeigt den prinzipiellen Aufbau eines entsprechenden lonenstrahlerzeugers mit dem in eine Probe zuerst eine Oberflächenvertiefung geätzt und dann mit demselben lonenstrahlerzeugungssystem die geätzte Oberfläche der Probe elektronenmikroskopisch abgetastet und sichtbar gemacht wird, indem die dabei emittierten Sekundärionen mittels eines Massenspektrometers aufgefangen werden und einer Katodenstrahlröhre, deren Elektronenstrahl synchron mit der Abtastbewegung des lonenstrahls abgelenkt wird, steuern. Ein Nachteil dieser Anordnung besteht darin, daß auch während des Mikroskopbetriebes ein Ätzen der Probe stattfindet.
  • Aus DE-A-2 354 323 ist ein Verfahren zur Herstellung einer gravierten Druckfläche und eine Vorrichtung zur Durchführung des Verfahrens bekannt, bei dem sowohl ein Ionen als auch ein Elektronenstrahl zur Gravur von Druckformoberflächen vorgeschlagen wird. Die Sichtbarmachung der gravierten Druckformoberfläche mittels des Elektronenstrahlerzeugungssystems ist dort zwar nicht angesprochen, aber ohne besondere Vorkehrungen würde auch hier der nachteilige Effekt einer Nachgravur beim Abtasten der Oberfläche auftreten. Aus Applied Physics Letters, Band 34, Nr. 5, 1 März 1975, Seiten 310-312 ist weiterhin ein Verfahren bekannt, um Halbleiteroberflächen zuerst zu bearbeiten und dann elektronenmikroskopisch mit derselben Einrichtung zu überprüfen.
  • Hierbei wird eine Flüssigmetall-Gallium-lonenquelle zum maskenlosen Dotieren von Halbleitern verwendet. Eine solche Ionenquelle mit geringer Leistung ist zwar für die Bearbeitung von Halbleitersubstraten und deren elektronenmikroskopische Untersuchung, aber nicht zur Gravur von Druckformen geeignet, da ihre Leistungsfähigkeit bei weitem nicht ausreicht, um z. B. einen kompletten Tiefdruckzylinder aus Kupfer, dessen Oberfläche mehrere Zeitungsseiten aufnehmen soll, in einem Zuge zu gravieren.
  • Einige dieser Einrichtungen sind zwar zur direkten optischen Kontrolle von gravierten Oberflächen, aber nicht zur Gravur von Druckformoberflächen geeignet, da hierzu besondere Elektronenstrahlerzeugungssysteme erforderlich sind.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zum Herstellen von Druckformen anzugeben, bei dem eine einfachere und sichere Kontrolle der erzeugten Näpfchen mit einem speziell für die Gravur von Druckformoberflächen entwickelten Elektronenstrahlerzeugungssystem möglich wird.
  • Die Erfindung erreicht dies durch die im Patentanspruch angegebenen Merkmale und wird wie folgt näher erläutert.
  • Um den Elektronenstrahlerzeuger zur Materialbearbeitung auf Elektronenstrahlmikroskop-Betrieb umzuschalten, wird erfindungsgemäß der Strahl auf ca. 1 Ilm Durchmesser gegenüber der Betriebsartgravur verkleinert. Außerdem erfährt der Strahl eine x- und y-Ablenkung, um den darzustellenden Näpfchenbereich abzutasten. Die dabei erzeugten Sekundärelektronen werden detektiert, und als Videosignal zur Ansteuerung eines Monitors verwendet.
  • Ein großer Vorteil der vorliegenden Erfindung liegt darin, daß keine besondere optische Kontrolleinrichtung oder ein separates Elektronenstrahlmikroskop vorgesehen werden muß, sondern daß mit der Elektronenstrahlkanone, die für die Materialbearbeitung ausgelegt ist, aufgrund der vorliegenden Erfindung auf einfache Weise ein Elektronenstrahlmikroskop-Betrieb während der Gravurpausen ermöglicht wird. Elektronenstrahlmikroskope sind zwar an sich bekannt, aber Elektronenstrahlmikroskope wiederum können nicht zur Materialbearbeitung verwendet oder umgebaut werden. Bezüglich der bekannten Elektronenstrahlmikroskope wird auf das Buch von L. Reimer und G. Pfefferkorn, Raster-Elektronenmikroskopie, Springer Verlag Berlin, Heidelberg, New York 1977, Kapitel 1 Einführung, Seiten 1, 2 und 3 verwiesen, in dem in der Figur 1.1 mit dazugehöriger Beschreibung der schaltungstechnische Aufbau für die Detektion der Sekundärelektronen sowie des Anschlusses des'4Monitors angegeben ist.
  • Bei der vorliegenden Erfindung wird von einem Elektronenstrahlerzeugungssystem ausgegangen, daß speziell für die Materialbearbeitung und Druckformherstellung entwickelt worden ist. Die Erfindung wird im folgenden anhand der Figuren 1 und 2 näher erläutert. Es zeigen:
    • Figur 1 den Aufbau einer Einrichtung zur Durchführung des Verfahrens und
    • Figur 2 den Aufbau des Elektronenstrahlerzeugungssystems für Gravur- und Mikroskopbetrieb.
  • Figur 1 zeigt einen Druckzylinder (1) mit eingravierten Näpfchen (2), welche von einem Elektronenstrahl (3) hergestellt worden sind. Solche Druckzylinder werden als Druckformen im Tiefdruck verwendet, wobei beim Druckprozeß die Näpfchen, die je nach zu druckendem Tonwert unterschiedliches Volumen haben, mit Druckfarbe gefüllt und die Druckfarbe beim Drucken auf den Bedruckstoff übertragen wird.
  • In Figur 1 sind im einzelnen die Elektronenoptik und der Strahlengang eines Elektronenstrahlerzeugers dargestellt, mittels dessen die Erfindung durchgeführt werden kann. Der Elektronenstrahl (3) geht von einer beheizten Kathode (4), welche in einem Heizstromkreis (41) liegt, der eine Spannungsquelle Vk (z. B. 6 Volt) aufweist. Der Strahl durchläuft den Wehnelt-Zylinder (5) und die Anode (6) und kommt zu einem ersten Linsensystem (7), das in Figur 2 näher dargestellt ist. Der Wehnelt-Zylinder (5) liegt im Stromkreis (51) mit der Spannungsquelle Vw (z. B. 100 Volt) und die Anode (6) in einem Stromkreis (61) mit einer Spannungsquelle Va für die Anodenspannung (5 bis -50 KV).
  • Weiterhin ist eine Aperturblende (8) vorgesehen und der von der Blende durchgelassene Strahl durchläuft eine Ablenkeinheit (9) und ein zweites Linsensystem (10), bevor er auf den Gravurzylinder (1) auftrifft. Die Ablenkeinheit (9) dient dazu, den Ablenkstrahl zeilenförmig über die abzutastenden Näpfchen (2) zu bewegen. Diese Abtastbewegung wird gleichzeitig vom Elektronenstrahl (11) einer Bildröhre (12) mittels einer zweiten Ablenkeinheit (13) durchgeführt. Die Erzeugung der entsprechenden Ablenkströme erfolgt in einem Rastergenerator (14), und die beiden Ablenkeinheften (9) und (13) sind über eine Einheit (15) zur Variation der Vergrößerung miteinander verbunden. Im Vakuum befindet sich seitlich der gravierten Näpfchen eine Sonde (16), welche die von der Druckformoberfläche ausgehenden Sekundärelektronen und reflektierten Elektronen auffängt und an einen Videoverstärker (17) weitergibt, von dem aus die Helligkeitssteuerung der Bildröhre (12) erfolgt. Das Abtastraster ist auf dem Bildschirm der Bildröhre (12) dargestellt.
  • Figur 2 zeigt in detaillierterer Form das Elektronenstrahlerzeugungssystem und den Strahlengang für die verschiedenen Betriebsarten, Gravur- und Mikroskopbetrieb, wobei das eigentliche Elektronenstrahlerzeugungssystem aus Kathode, Wehnelt und Anode sowie die Ablenkspulen der Übersichtlichkeit halber weggelassen wurden. Das erste Linsensystem (7), das eine erste Verkleinerung herbeiführt, besteht in der Praxis aus zwei Linsen (71) und (72), und für die Betriebsart Gravur ist eine weitere Linse (73) innerhalb der Linse (71) vorgesehen. Im folgenden werden anhand der eingezeichneten Strahlengänge (30), (31) und (32) drei Betriebsfälle erläutert nämlich, Strahlengang (30), Gravur eines großen Näpfchens, Strahlengang (31), Gravur eines kleinen Näpfchens und Strahlengang (32), Mikroskopbetrieb.
  • 1. Gravurbetrieb
  • Das Linsensystem (71), (72) und (73) bildet eine variable Verkleinerungsstufe, wobei die schematisch dargestellte Strahlungsquelle bei maximaler Anspannung der Linse 12-mal und bei nicht angespannter Linse (73) 3-mal verkleinert wird. Die Aperturblende 8 wird so dimensioniert, daß ein Winkel ao von 0,08 rd gegeben ist, wodurch sich ein Öffnungsfehlerscheibchen von 25 µm Durchmesser ergibt. Die Linse (10) macht eine 4-fache Verkleinerung, und die Linse (101) dient zur Fokussierung und Defokussierung des Strahls, wodurch Näpfchen erzeugt werden. Bei fokussiertem Strahl tritt ein Bearbeitungseffekt auf, bei defokussiertem Strahl nicht. Wie bereits erwähnt, wird zur Gravur großer Näpfchen der Strahlengang (30) eingestellt, wobei der Strahl am Auftreffpunkt einen Durchmesser von etwa 100 µm hat und einen Strahlstrom im Bearbeitungsfleck von 50 mA aufweist.
  • Der Strahlengang (31) dient zur Herstellung kleiner Näpfchen. Der Strahl hat am Auftreffpunkt einen Durchmesser von etwa 20 µm, und der Strom im Fleck beträgt 3 mA. Durch unterschiedliche Anspannung der dynamischen Linse (73) wird die tonwertabhängige Variation der Näpfchengröße vorgenommen.
  • Bei der Betriebsart Gravur erzeugt das in Figur 1 dargestellte Ablenksystem (9) eine Strahlmitführung zur Zylinderrotation, damit der Strahl bei rotierendem Zylinder immer auf die gleiche Stelle trifft.
  • Beim Gravurbetrieb und auch beim Mikroskopbetrieb wird mit einer Beschleunigungsspannung von 50 KV gearbeitet, und der aus der Kathode austretende Strahl hat eine Stromstärke von ca. 50 mA.
  • 2. Mikroskopbetrieb
  • Die dynamische Linse (73) ist abgeschaltet. Die statische Linse (71) ist stärker erregt, und die Verkleinerung der Strahlungsquelle beträgt ca. 250.
  • Es wird mit einer kleineren Aperturblende (8'), die in der Figur gestrichelt gezeichnet ist, gearbeitet, welche zu diesem Zweck in den Strahlengang geschwenkt wird. Die Apertur dieser Blende beträgt α1 = 0,025 rd. Dies ergibt ein Öffnungsfehlerscheibchen von ca. 1 µm.
  • Die Linse (10) bleibt nahezu unverändert, und die dynamische Fokuslinse (101) ist abgeschaltet.
  • Durch diese Modifikation ergibt sich der Strahlengang (32), wobei die Linse (10) lediglich zur Scharfstellung dient. Der Sondendurchmesser auf der Zylinderoberfläche beträgt 1 bis 1,5 µm.
  • Das in Figur 1 gezeigte Ablenksystem (9) dient zur Erzeugung des Abtastrasters entsprechend der Zeilen- und Bildfrequenz der Bildröhre (12). Das abgetastete Feld beträgt etwa 1 mm2. Wie in Figur 1 beschrieben, ist für den Mikroskopbetrieb ein Sekundärelektronendetektor (16) vorgesehen, der beim Mikroskopbetrieb ebenfalls wie die Blende (8') eingeschwenkt wird. Die Abbildung des Näpfchens auf der Bildröhre erscheint so, als ob die Näpfchen von der Seite beleuchtet worden seien, da der Detektor (16) von einer Seite her auf die Näpfchen der Druckformoberfläche gerichtet ist und die Elektronen, die auf der im Detektor gegenüberliegenden Innenseite der Näpfchen reflektiert werden, am Detektor (16) eine bessere Ausbeute ergeben.
  • Bei der Durchführung des Verfahrens kann mit stillstehenden Druckformzylindern gearbeitet werden, wobei die gesamte x- und y-Ablenkung für den Scan-Vorgang durch die Ablenksysteme des Elektronenstrahlerzeugungssystems erzeugt werden. Es liegt auch im Rahmen der Erfindung, daß die Abtastung der zu untersuchenden Näpfchen bei rotierendem Druckzylinder erfolgt. Hierbei wird ebenfalls der Elektronenstrahl feinfokussiert, und die sich durch die Drehung des Druckformzylinders und den Vorschub ergebenden einzelnen Bildlinien werden zwischengespeichert und ebenfalls zur Ansteuerung des Monitors benutzt. Solche Zwischenspeicher sind als Bildwiederholspeicher oder sogenannte Refresh-Memories bekannt.

Claims (1)

  1. Verfahren zur Kontrolle von elektronenstrahlgravierten Druckformoberflächen, die mittels eines Elektronenstrahlerzeugungssystems hergestellt werden, wobei Gravur und Kontrolle mit demselben Elektronenstrahlerzeugungssystem durchgeführt werden, das eine erste Verkleinerungsstufe (71, 72, 73) und eine zweite Verkleinerungsstufe (10, 101) mit jeweils einer dynamischen Linse (73 bzw. 101), die jeweils innerhalb einer statischen Linse (71, 10) angeordnet ist, sowie eine zwischen den beiden Verkleinerungssystemen angeordnete Aperturblende (8) aufweist, wobei beim Gravurbetrieb näpfchenförmige Vertiefungen (2) in die Druckformoberfläche (1) graviert werden, wobei beim Kontrollbetrieb zur Kontrolle der gravierten Näpfchen (2) der Elektronenstrahlerzeuger in bekannter Weise als Rasterelektronenmikroskop betriewird, indem der Elektronenstrahl (30, 31) bezüglich seiner Intensität und seiner Ablenkparameter auf Mikroskopbetrieb umgeschaltet wird, indem bei den beiden Verkleinerungssystemen die dynamischen Linsen (73 und 101) abgeschaltet werden und anstelle der beim Gravurbetrieb benutzten Aperturblende (8) eine kleinere Aperturblende (8') eingeschwenkt wird und wobei der abzubildende Näpfchenbereich gescannt wird, ein Videosignal zur Ansteuerung einer Elektronenstrahlröhre (12) eines Monitors aus den durch den Strahl erzeugten Sekundärelektronen, mittels eines Sekundärelektronenvervielfachers (16) gewonnen wird und der Elektronenstrahlröhre (12), die bezüglich ihrer Strahlenablenkung mit dem Elektronenstrahlerzeuger synchronisiert ist, zur Sichtbarmachung der Näpfchen (2) zugeführt wird.
EP83110891A 1982-11-04 1983-11-02 Verfahren zur Kontrolle von elektronenstrahlgravierten Druckformoberflächen Expired - Lifetime EP0108375B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83110891T ATE49534T1 (de) 1982-11-04 1983-11-02 Verfahren zur kontrolle von elektronenstrahlgravierten druckformoberflaechen.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3240653 1982-11-04
DE19823240653 DE3240653A1 (de) 1982-11-04 1982-11-04 Verfahren zur kontrolle von mittels elektronenstrahlgravierten druckformoberflaechen

Publications (3)

Publication Number Publication Date
EP0108375A2 EP0108375A2 (de) 1984-05-16
EP0108375A3 EP0108375A3 (en) 1987-04-01
EP0108375B1 true EP0108375B1 (de) 1990-01-17

Family

ID=6177236

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83110891A Expired - Lifetime EP0108375B1 (de) 1982-11-04 1983-11-02 Verfahren zur Kontrolle von elektronenstrahlgravierten Druckformoberflächen

Country Status (6)

Country Link
US (1) US4549067A (de)
EP (1) EP0108375B1 (de)
JP (2) JPS5998848A (de)
AT (1) ATE49534T1 (de)
DE (2) DE3240653A1 (de)
SU (1) SU1240347A3 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT386297B (de) * 1985-09-11 1988-07-25 Ims Ionen Mikrofab Syst Ionenstrahlgeraet und verfahren zur ausfuehrung von aenderungen, insbes. reparaturen an substraten unter verwendung eines ionenstrahlgeraetes
AT392857B (de) * 1987-07-13 1991-06-25 Ims Ionen Mikrofab Syst Vorrichtung und verfahren zur inspektion einer maske
DE4031547A1 (de) * 1990-10-05 1992-04-09 Hell Rudolf Dr Ing Gmbh Verfahren und vorrichtung zur herstellung von texturwalzen
US5515182A (en) * 1992-08-31 1996-05-07 Howtek, Inc. Rotary scanner
DE19840926B4 (de) * 1998-09-08 2013-07-11 Hell Gravure Systems Gmbh & Co. Kg Anordnung zur Materialbearbeitung mittels Laserstrahlen und deren Verwendung
JP4178741B2 (ja) * 2000-11-02 2008-11-12 株式会社日立製作所 荷電粒子線装置および試料作製装置
DE102006032303B4 (de) * 2006-07-11 2010-08-19 Ellcie Maintenance Gmbh Oberflächenbearbeitungsvorrichtung

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE55965C (de) * AKTIENGESELLSCHAFT „FABRIK LEIPZIGER MUSIKWERKE", VORM. PAUL EHRLICH & Co. in Gohlis bei Leipzig Antriebvorrichtung für mechanische Musikwerke
DE1099659B (de) * 1958-08-30 1961-02-16 Zeiss Carl Fa Abschirmvorrichtung
NL268860A (de) * 1959-04-17
DE1299498B (de) * 1964-07-24 1969-07-17 Steigerwald Strahltech Vorrichtung zur UEberwachung des Strahlauftreffbereichs in Korpuskularstrahl-Bearbeitungsgeraeten
US3404254A (en) * 1965-02-26 1968-10-01 Minnesota Mining & Mfg Method and apparatus for engraving a generally cross-sectionally circular shaped body by a corpuscular beam
JPS532599B2 (de) * 1972-10-30 1978-01-30
GB1410518A (en) * 1972-10-30 1975-10-15 Crosfield Electronics Ltd Preparation of printing surfaces
US4041311A (en) * 1976-07-12 1977-08-09 Iowa State University Research Foundation, Inc. Scanning electron microscope with color image display
JPS57132657A (en) * 1981-02-06 1982-08-17 Akashi Seisakusho Co Ltd Inclined moving body tube type scanning electron microscope and its similar apparatus
JPS57135172A (en) * 1981-02-13 1982-08-20 Hell Rudolf Dr Ing Gmbh Electron beam-working method

Also Published As

Publication number Publication date
SU1240347A3 (ru) 1986-06-23
JPS5998848A (ja) 1984-06-07
JPH067933U (ja) 1994-02-01
DE3381109D1 (de) 1990-02-22
ATE49534T1 (de) 1990-02-15
DE3240653A1 (de) 1984-05-10
JPH088102Y2 (ja) 1996-03-06
EP0108375A2 (de) 1984-05-16
EP0108375A3 (en) 1987-04-01
US4549067A (en) 1985-10-22

Similar Documents

Publication Publication Date Title
DE69332995T2 (de) Raster-Elektronenmikroskop
EP0189777B1 (de) Korpuskularstrahl-Messverfahren zum berührungslosen Testen von Leitungsnetzwerken
EP0218829B1 (de) Anordnung zur Detektion von Sekundär- und/oder Rückstreuelektronen in einem Elektronenstrahlgerät
DE2235903C2 (de) Verfahren zum Betrieb eines Feldemissions-Raster-Korpuskularstrahlmikroskops und Feldemissions-Raster-Korpuskularstrahlmikroskop zur Durchführung des Verfahrens
DE69817787T2 (de) Rasterelektronenmikroskop mit elektrostatischem objektiv und elektrische abtastvorrichtung
DE3307745C2 (de) Rasterelektronenmikroskop
DE3924605C2 (de) Rasterelektronenmikroskop
DE69924325T2 (de) Gasgefüllter Rückstreuelektronendetektor für Rasterelektronenmikroskop unter kontrollierter Umgebung
DE3636316C2 (de)
DE19549022C2 (de) Rasterelektronenmikroskop und Probenbetrachtungsverfahren mittels eines solchen
DE102018007652A1 (de) Teilchenstrahl-System sowie Verfahren zur Stromregulierung von Einzel-Teilchenstrahlen
DE2922325C2 (de)
DE2436160B2 (de) Rasterelektronenmikroskop
DE2842527B2 (de) Elektrostatische Emissionslinse
DE69133256T2 (de) Rasterelekronenmikroskop und Bilderzeugungsverfahren
DE112014007154B4 (de) Ladungsteilchen-Strahlvorrichtung
DE69920182T2 (de) Korpuskularstrahloptisches gerät mit auger-elektronendetektion
DE2151167A1 (de) Elektronenstrahl-mikroanalysator mit auger-elektronen-nachweis
DE2335304B2 (de) Rasterelektronenmikroskop
DE2246404C3 (de) Raster-Elektronenmikroskop
EP0108375B1 (de) Verfahren zur Kontrolle von elektronenstrahlgravierten Druckformoberflächen
EP0029604A2 (de) Elektronenstrahl-Gravierverfahren
DE69628367T2 (de) Rasterelektronenmikroskop
EP0076868B1 (de) Elektronenstrahl-Gravierverfahren und Einrichtung zu seiner Durchführung
DE112018007105T5 (de) Ladungsteilchenstrahlvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19870220

17Q First examination report despatched

Effective date: 19880707

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19900117

REF Corresponds to:

Ref document number: 49534

Country of ref document: AT

Date of ref document: 19900215

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3381109

Country of ref document: DE

Date of ref document: 19900222

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19901102

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19901130

Ref country code: CH

Effective date: 19901130

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921027

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921028

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19921127

Year of fee payment: 10

ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921130

Year of fee payment: 10

BECN Be: change of holder's name

Effective date: 19920422

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19931102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931130

BERE Be: lapsed

Owner name: LINOTYPE-HELL A.G.

Effective date: 19931130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931102

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19981207

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000901