EP0097991B1 - Membran-Elektrolysezelle mit vertikal angeordneten Elektroden - Google Patents

Membran-Elektrolysezelle mit vertikal angeordneten Elektroden Download PDF

Info

Publication number
EP0097991B1
EP0097991B1 EP83200883A EP83200883A EP0097991B1 EP 0097991 B1 EP0097991 B1 EP 0097991B1 EP 83200883 A EP83200883 A EP 83200883A EP 83200883 A EP83200883 A EP 83200883A EP 0097991 B1 EP0097991 B1 EP 0097991B1
Authority
EP
European Patent Office
Prior art keywords
electrode
membrane
units
electrodes
spring elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP83200883A
Other languages
English (en)
French (fr)
Other versions
EP0097991A1 (de
Inventor
Karl Lohrberg
Peter Dr. Kohl
Günter Haas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Priority to AT83200883T priority Critical patent/ATE30252T1/de
Publication of EP0097991A1 publication Critical patent/EP0097991A1/de
Application granted granted Critical
Publication of EP0097991B1 publication Critical patent/EP0097991B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form

Definitions

  • the invention relates to a membrane electrolysis cell with vertically arranged electrodes for electrochemical processes.
  • the surfaces of both electrodes face each other in parallel.
  • Flat parallelism of the surfaces is the prerequisite for an efficiently working cell, since this is the only way to ensure an even current distribution and to avoid local overheating.
  • the distance between the anode and cathode should also be kept as small as possible. All of these requirements are relatively easy to implement in small laboratory cells, but the construction of large industrial units is difficult if the ideal ideas that are theoretically required are to be realized.
  • the larger cells are, the more sensitive they are to deviations from plane parallelism and to current distortion.
  • electrodes with openings for the removal of the reaction gases are generally used, for example perforated electrodes, wire mesh or expanded metal.
  • the disadvantages include the reduced active surface, the lack of mechanical stability and the loss of high-quality coating material on the back of the electrodes.
  • membrane cells with ion exchange membranes are provided with a frame construction that is as rigid as possible, in which the electrodes are rigid, in the majority of cases by welded connections.
  • the contact surfaces of the frames must also be machined accordingly.
  • the membrane electrolysis cell known from FR-OS 2 486 105 has electrodes divided vertically into several units, and the anode arrangement has flexible spring elements which make the anodes displaceable.
  • an electrode plate consisting of individual plates has already been provided for vertically arranged electrodes in gas-forming diaphragm cells, the individual plates having guide surfaces for the discharge of the gas generated. Due to the intended inclination of the guide plate or surface, there are inevitably different distances between the active surface and the counterelectrode, warps being easily caused, in particular, by local temperature increases in the sensitive partition walls of poor thermal conductivity. Furthermore, the entire active surface of the electrode cannot be brought into the energetically desirable close distance from the counter electrode.
  • the object of the invention is therefore to avoid the mentioned and other disadvantages and to provide an electrode arrangement for a membrane electrolysis cell which, under technical operating conditions, ensures a secure plane parallelism of the electrode surfaces and an energetically favorable minimum electrode spacing and ensures safe and rapid gas removal.
  • the two geometric reference systems in the cell namely frame / frame and anode / cathode
  • the one electrode such as the cathode
  • the electrode of the opposite polarity such as the anode vertically divided into several plates or strip units
  • This flexible design is brought about by spring elements.
  • the spring elements are useful on the Power leads attached to the electrodes and cause electrical contact with the individual strip units of the electrode (anode) via contact pressure or welding.
  • the cathode in the above-mentioned arrangement, can also be set up flexibly when the anode is rigidly fixed.
  • both electrodes which are divided into individual units, can also be made displaceable by spring elements. In this way, the unevenness of the contact surfaces of the cell frame which is inevitably present and can only be removed with a great deal of work is not transferred to the positioning of the electrode. Rather, the tolerances occurring in the area of the cell frame are bridged by means of the movable connection of the current distributor to the active surface of the electrode.
  • the spring force of the spring elements is dimensioned so that it allows the relative spatial position of the anode and cathode to be adjusted.
  • the frames can advantageously be made from commercially available, drawn material without substantial post-processing, and the required tight tolerances can be achieved using spacers.
  • the movable or displaceable arrangement of the electrode active surfaces for discharging developed and accumulated gas such as chlorine gas
  • the spring elements designed as flexible power supply lines form a concave curvature directed towards the cell bottom or an angle opened towards them.
  • the spring element can be a leaf spring welded to the power supply.
  • the chlorine gas collected under the individual flexible spring elements or current feeders is discharged upwards at one point by gas discharge elements arranged laterally in the electrolysis room. In this way, partial degassing of the electrode space or anode space takes place. This partial degassing in turn causes convection flows in the electrolyte and an improved electrolyte exchange in the active area of the electrodes, which leads to considerable improvements in the energy yield.
  • horizontal separation points are created between the individual units of the electrode, on which the membrane does not rest, in which spacers are arranged. Due to the different densities of catholyte and anolyte, the membrane rests on an electrode at the same hydrostatic heights, i. that is, a lateral force acts on the electrode.
  • the spacer in the case of gas-developing processes, is designed as a guide element for discharging the developed gas from the electrode space.
  • the spacer acts as a gas separation unit when arranged horizontally. It then consists, for example, of strip-shaped plates with serrated edges or strips with slot-shaped or circular openings, or of grid-shaped or network-shaped strips. Such spacers bring about a complete gas withdrawal from the electrode gap after each division of the multiple horizontally divided electrode (cathode).
  • FIGS. 1 to 4 of the drawing The invention is illustrated in more detail and by way of example in FIGS. 1 to 4 of the drawing.
  • FIG. 1 shows a front view of an electrode frame F with a horizontally divided cathode plate 2.
  • FIG. 1b is a similar view of an electrode frame with a vertically and horizontally divided anode 3.
  • FIG. 4 shows a displaceable anode 3 in a top view.
  • This figure is an enlarged view of section "B" in FIG. 1c and shows spring elements 7 which are connected to the power supply 8 and the anode 3. In the working position, the anode is pressed against the membrane 4.
  • the electrolytic cell according to the invention has i.a. following advantages. Due to the movable electrode combination with spring elements caused by multiple divisions, the smallest critical electrode spacing can be maintained at any time during the operation of the electrolytic cell. This combination saves a considerable amount of technical production effort for both the electrodes and for the electrode frames with regard to maintaining tight manufacturing tolerances. Furthermore, a limitation of the height design of the electrolysis cell is practically removed, since developed gas is removed from the electrode gap in each division, i. H. gas accumulation is avoided.
  • 1 cm 2 of one of the electrodes is raised by 1 mm. Then there is a current density at the raised point, which can be determined in a first approximation via the power consumption.
  • the power consumption would be 1 cm 2 on the area raised by 1 mm
  • 1 cm 2 of one of the electrodes is raised by 1 mm.
  • the temperature difference between the membrane and the electrolyte increases by about 20%.
  • Example 2 shows the limitations in the construction of large-scale electrolytic cells due to power warps. ⁇ 0.75 mm are tolerances that can just be maintained with reasonable effort. For a 1 m wide or tall cell, this tolerance means an accuracy of 0.075% based on the gauge block. Furthermore, 30 to 50% free area for the gas discharge is the maximum of the tolerable, because otherwise the effective current density increases too much.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Engineering & Computer Science (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Secondary Cells (AREA)
  • Electroluminescent Light Sources (AREA)
  • Radiation-Therapy Devices (AREA)
  • Luminescent Compositions (AREA)

Description

  • Die Erfindung betrifft eine Membranelektrolysezelle mit vertikal angeordneten Elektroden für elektrochemische Prozesse.
  • Bei der Durchführung elektrochemischer Prozesse kommt es auf eine gleichmäßige Verteilung des Stroms über die Elektrodenoberfläche an. Die gleichmäßige Verteilung wird durch die Streufähigkeit des Elektrolyten wie auch durch die Homogenität der Elektroden beeinflußt. Die Streufähigkeit ist um so besser, je größer die auf der Gegenelektrode von den Stromlinien beaufschlagte Fläche ist. Zwar kann mangelnde Streufähigkeit durch Vergrößerung des Elektrodenabstandes ausgeglichen werden, doch wird hierdurch der Spannungsabfall der Zelle erhöht. Inhomogenitäten in der Elektrodenoberfläche bewirken Strom-Verwerfungen. Dem Abstand der Elektrodenplatten, d.h. dem Abstand zwischen Anode und Kathode kommt somit wesentliche Bedeutung zu.
  • Im Idealfall stehen sich die Flächen beider Elektroden parall gegenüber. Planparallelität der Flächen ist die Veraussetzung für eine effizient arbeitende Zelle, da nur so eine gleichmäßige Stromverteilung gewährleistet und lokale Überhitzungen vermieden werden können. Um den Spannungsabfall möglichst gering zu halten und somit den Energieverbrauch zu reduzieren, soll der Abstand zwischen Anode und Kathode darüberhinaus möglichst gering gehalten werden. Alle diese Forderungen sind relativ einfach in kleinen Laborzellen zu verwirklichen, der Bau großer industrieller Einheiten bereitet aber Schwierigkeiten, sollen die theoretisch zu fordernden Idealvorstellungen realisiert werden. Es kommt hinzu, daß Zellen um so empfindlicher auf Abweichungen von der Planparallelität und auf Stromverwerfungen reagieren, je größer sie sind. Zur Vermeidung einer beschleunigten Zerstörung der Ionenaustauschermembran dieses Typs besteht im allgemeinen der Zwang zur Begrenzung der Höhe der Elektroden, zur Einstellung eines erheblichen Abstandes zwischen den Elektroden der Zelle und zur Begrenzung der elektrischen Stromdichte, was gleichzeitig für die energetische Ausbeute der Elektrolysezelle und ihre Produktivität von Nachteil ist.
  • Zur Verminderung dieser Nachteile von Elektrolysezellen mit Membranen und vertikal angeordneten Elektroden werden im allgemeinen Elektroden mit Öffnungen für die Abfuhr der Reaktionsgase verwendet, beispielsweise gelochte Elektroden, Drahtgewebe oder Streckmetall. Die Nachteile liegen unter anderem in der verminderten aktiven Oberfläche, der mangelnden mechanischen Stabilität und dem Verlust an hochwertigem Beschichtungsmaterial auf der Elektrodenrückseite.
  • Üblicherweise werden Membranzellen mit lonenaustauschermembranen mit einer möglichst starren Rahmenkonstruktion versehen, in der die Elektroden starr, in der überwiegenden Zahl der Fälle durch Schweißverbindungen montiert sind. Um zu gewährleisten, daß einerseits die erforderlichen engen Toleranzen in der planparallelen Anordnung der Elektroden eingehalten, andererseits aber eine Vielzahl solcher Rahmen zu einem Elektrolyseur nach dem Filterpressenprinzip leckagefrei verbunden werden können, müssen auch die Kontaktflächen der Rahmen entsprechend aufwendig bearbeitet werden.
  • Aus DE-PS 563 393 ist eine elektrolytische Zelle bekannt, bei der zwischen segmentierten Elektroden und dem Diaphragma elastische oder federnde Elemente angebracht sind, welche das Diaphragma an selbständigen Schwingungen oder schädlichen Bewegungen hindern.
  • Die aus FR-OS 2 486 105 bekannte Membranelektrolysezelle weist in mehrere Einheiten vertikal geteilte Elektroden auf, und die Anodenanordnung besitzt flexible Federelemente, welche die Anoden verschiebbar machen.
  • Nach einem aus DE-AS 20 59 868 bekannten Vorschlag hat man auch schon bei vertikal anzuordnenden Elektroden in gasbildenden Diaphragmazellen eine aus einzelnen Platten bestehende Elektrodenplatte vorgesehen, wobei die einzelnen Platten Führungsflächen für die Ableitung des erzeugten Gases aufweisen. Auf Grund der vorgesehenen Neigung der Führungsplatte bzw. -fläche ergeben sich zwangsläufig unterschiedliche Abstände der aktiven Oberfläche zur Gegenelektrode, wobei insbesondere durch lokale Temperaturerhöhungen in den empfindlichen Trennwänden schlechter Wärmeleitfähigkeit leicht Verwerfungen bewirkt werden. Des weiteren kann auch die gesamte aktive Oberfläche der Elektrode nicht in den energetisch wünschenswert engen Abstand zur Gegenelektrode gebracht werden.
  • Aufgabe der Erfindung ist es daher, die genannten und weitere Nachteile zu vermeiden und eine Elektrodenanordnung für eine Membran-Elektrolysezelle bereitzustellen, die unter technischen Betriebsbedingungen eine sichere Planparallelität der Elektrodenflächen und einen energetisch günstigen geringsten Elektrodenabstand gewährleistet und eine sichere und rasche Gasabfuhr bewirkt.
  • Die Erfindung löst diese Aufgabe mit einer Membran-Elektrolysezelle mit aus mehreren Einheiten zusammengesetzten vertikal angeordneten, mit Federelementen versehenen Elektroden. Bei einer Zelle der genannten Art besteht die Erfindung darin, daß
    • a) die Elektrode der einen Polarität in mehrere getrennte Einheiten horizontal geteilt ist,
    • b) die Elektrode der entgegengesetzten Polarität in mehrere getrennte Einheiten vertikal geteilt ist, und
    • c) die jeweiligen Einheiten mindestens einer der beiden Elektroden durch Federelemente verschiebbar sind.
  • Mit der erfindungsgemäßen Anordnung werden die beiden geometrischen Bezugssysteme in der Zelle, nämlich Rahmen/Rahmen und Anode/Kathode voneinander unabhängig gestaltet. Beispielsweise wird die eine Elektrode, wie Kathode, in einzelne horizontal geteilte Plattenabschnitte starr mit dem Kathodenrahmen verbunden, während die Elektrode der entgegengesetzten Polarität, wie in mehrere Platten oder Streifeneinheiten vertikal geteilte Anode, flexibel bzw. verschiebbar ausgestaltet wird. Diese flexible Ausgestaltung wird über Federelemente herbeigeführt. Die Federelemente sind zweckmäßig an den Stromzuführungen zu den Elektroden angebracht und bewirken über Anpreßdruck oder Verschweißung den elektrischen Kontakt mit den einzelnen Streifeneinheiten der Elektrode (Anode).
  • Gemäß der Erfindung kann bei der vorerwähnten Anordnung auch die Kathode flexibel eingerichtet werden bei starrer Fixierung der Anode. Es können aber auch beide, in Einzeleinheiten aufgeteilte Elektroden durch Federelemente verschiebbar ausgerüstet werden. Auf diese Weise werden die zwangsläufig vorhandenen und nur mit hohem Arbeitsaufwand zu beseitigenden Unebenheiten der Kontaktflächen der Zellenrahmen nicht auf die Positionierung der Elektrode übertragen. Vielmehr werden mittels der beweglichen Verbindung des Stromverteilers mit der Aktivfläche der Elektrode die im Bereich des Zellenrahmens auftretenden Toleranzen überbrückt.
  • Die Federkraft der Federelemente wird so bemessen, daß sie die Anpassung der relativen räumlichen Lage von Anode und Kathode erlaubt. Hierbei können die Rahmen vorteilhaft aus handelsüblichem, gezogenen Material ohne wesentliche Nachbearbeitung gefertigt und die geforderten engen Toleranzen durch Abstandshalter erzielt werden.
  • Nach einer weiteren Ausführungsform der Erfindung wird die bewegliche bzw. verschiebbare Anordnung der Elektrodenaktivflächen zur Ableitung entwickelten und angesammelten Gases, wie Chlorgas, verwendet und dementsprechend ausgestaltet. In diesem Fall bilden die als flexible Stromzuführungen gestalteten Federelemente eine zum Zellenboden gerichtete konkave Wölbung oder einen nach dort geöffneten Winkel. Beispielsweise kann das Federelement eine an der Stromzuführung angeschweißte Blattfeder sein. Das unter den einzelnen flexiblen Federelementen bzw. Stromzuführern gesammelte Chlorgas wird an einer Stelle durch im Elektrolysenraum seitlich angeordnete Gasabführorgane nach oben abgeleitet. Auf diese Weise findet eine partielle Entgasung des Elektrodenraumes bzw. Anodenraumes statt. Diese partielle Entgasung bewirkt wiederum Konvektionströmungen im Elektrolyten und einen verbesserten Elektrolyteaustausch im Aktivbereich der Elektroden, der zu erheblichen Verbesserungen der Energieausbeute führt.
  • Nach der Erfindung sind zwischen den einzelnen Einheiten der Elektrode, an welcher die Membran nicht anliegt, horizontale Trennstellen geschaffen, in denen Abstandhalter angeordnet sind. Aufgrund der unterschiedlichen Dichten von Katholyt und Anolyt liegt die Membran bei gleichen hydrostatischen Höhen an einer Elektrode an, d. h., es wirkt eine seitliche Kraft auf die Elektrode ein.
  • Dieser Seitenkraft wirkt nun die Federkraft der flexiblen Stromzufuhr entgegen. Federstärken und hydrostatische Höhendifferenz zwischen Anolyt- und Katholyt-Kreislauf werden daher so aufeinander abgestimmt, daß z. B. mehrere horizontal an der Kathode montierte Abstandshalter ohne großen Kraftaufwand, d.h., mit möglichst geringer Quetschung der Membran, die relative Lage der beiden Aktivflächen zueinander justieren. Die Abstandhalter haben vorzugsweise eine Stärke von 1 bis 5 mm.
  • In einer weiteren Ausgestaltung der Erfindung ist bei gasentwickelnden Prozessen der Abstandhalter als Leitorgan zur Ableitung des entwickelten Gases aus dem Elektrodenraum ausgebildet. Der Abstandhalter fungiert bei horizontaler Anordnung als Gastrenneinheit. Er besteht dann beispielsweise aus streifenförmigen Platten mit ausgezackten Rändern oder Streifen mit schlitz- oder kreisförmigen Öffnungen oder aus gitter-oder netzförmigen Streifen. Derartige Abstandhalter bewirken einen völligen Gasabzug aus dem Elektrodenspalt nach jeder Teilung der mehrfach horizontal geteilten Elektrode (Kathode).
  • In den Figuren 1 bis 4 der Zeichnung ist die Erfindung näher und beispielhaft veranschaulicht.
  • Es zeigt Fig. 1 in Frontansicht einen Elektrodenrahmen F mit horizontal geteilter Kathodenplatte 2. Fig. 1b ist eine ähnliche Ansicht eines Elektrodenrahmens mit vertikal und horizontal geteiiter Anode 3.
    • Fig. 1a ist ein Schnitt gemäß der Linie I - I in Fig. 1 und zeigt die horizontal gestaltete Kathodenplatte 2 mit Abstandhalter 1.
    • Fig. 2 ist eine vergrößerte Darstellung des Ausschnitts "A" in Fig. 1a. In Fig. 2 veranschaulicht der Abstandhalter 2 ein Gasabführungsorgan. Die horizontal geteilte Elektrode 2 (Kathode) und die vertikal geteilte Gegenelektrode 3 (Anode) sind ebenfalls dargestellt. Die Pfeile 5 und 6 bezeichnen den Elektrolyteintritt bzw. Austritt des Gas-Elektrolyt-Gemisches aus der Zelle.
    • Fig. 3 zeigt in der Draufsicht eine verschiebbare Elektrodenkombination aus horizontal geteilter Kathode 2 und vertikal geteilter Anode 3 sowie Federelemente 7, die mit der Stromzuführung 8 verbunden sind.
  • In Fig. 4 ist in der Draufsicht von oben eine verschiebbare Anode 3 dargestellt. Diese Figur ist eine vergrößerte Darstellung des Ausschnitts "B" in Fig. 1c und zeigt Federelemente 7, die mit der Stromzuführung 8 und der Anode 3 verbunden sind. In Arbeitsposition ist die Anode gegen die Membran 4 gepreßt.
  • Die erfindungsgemäße Elektrolysezelle weist u.a. folgende Vorteile auf. Aufgrund der durch mehrfache Teilungen bewirkten beweglichen Elektrodenkombination mit Federelementen kann der kleinste kritische Elektrodenabstand jederzeit während des Betriebs der Elektrolysezelle eingehalten werden. Diese Kombination erübrigt einen erheblichen technischen Fertigungsaufwand sowohl für die Elektroden als auch für die Elektrodenrahmen hinsichtlich der Einhaltung enger Fertigungstoleranzen. Des weiteren wird eine Begrenzung der Höhenbauweise der Elektrolysenzelle praktisch aufgehoben, da entwickeltes Gas in jeder Teilung aus dem Elektrodenspalt abgeführt wird, d. h. die Gasakkumulation wird vermieden.
  • Die Erfindung wird anhand der nachstehenden Beispiele und Berechnungen näher und beispielhaft erläutert.
  • Beispiel 1
  • A) Laboratoriumszelle zur Erzeugung von Natriumchlorat.
    Figure imgb0001
  • Annahme:
  • 1 cm2 einer der Elektroden sei um 1 mm erhaben. Dann ergibt sich an der erhabenen Stelle eine Stromdichte, die in erster Näherung über die Leistungsaufnahme zu ermitteln ist.
  • Bei planparallelen Elektroden gleichmäßigen Abstandes ist die Leistungsaufnahme
    Figure imgb0002
  • Bei gleicher Stromdichte wäre die Leistungsaufnahme auf der um 1 mm erhabenen Fläche von 1 cm2
    Figure imgb0003
  • Die Leistungsaufnahme auf der nicht erhabenen Fläche ist dann
    Figure imgb0004
  • Die Gesamtleistungsaufnahme also 1,860,
    • d.h. die Spannung reduziert sich auf
      Figure imgb0005
    • die Stromdichte auf der nicht erhabenen Fläche auf
      Figure imgb0006
    • > r die Stromdichte auf der erhabenen Fläche
      Figure imgb0007
    • >r B) Membranzelle zur Erzeugung von C12, NaOH, H2
      Figure imgb0008
    Annahme:
  • 1 cm2 einer der Elektroden sei um 1 mm erhaben.
  • Die gleiche Rechnung wie unter Beisp. 1, A ergibt dann folgende Werte:
    Figure imgb0009
  • > r Die Membran als zusätzlicher Widerstand hat also eine stabilisierende Wirkung, die Wärmeentwicklung in der Membran steigt jedoch nicht unerheblich an:
  • Wärmeentwicklung bei 3 kAfm2 in der Membran:
  • 3 x 0,4 x 860 = 1032 kcaljm2 x h
  • Wärmeentwicklung bei 3,24 kAfm2:
    Figure imgb0010
  • Bei gleicher Wärmeabfuhr steigt also die Temperaturdifferenz zwischen Membran und Elektrolyt um ca. 20 %.
  • Es ist einleuchtend, daß eine Unebenheit von 1 mm bei kleinen Laborzellen schwierig darzustellen ist.
  • Im Gegensatz dazu sind Unebenheiten von 1 mm bei Zellen industrieller Größe ohne besondere Maßnahmen nicht zu vermeiden Wirtschaftliche Zwänge erlauben es nicht, bei Zellen industrieller Größe mit Abständen von 5 mm zu arbeiten. Angestrebt werden Abstände, die geringsten Spannungsabfall gewähren. Dieser liegt in Abhängigkeit von der Elektrodenform bei 1 bis 3 mm. Die gesamte Anoden- oder Kathodenfläche kann Größenordnungen von 50 m2 erreichen, wobei Höhen von 1,2 m normalerweise nicht überschritten werden. Ursache für die Beschränkung der Höhe ist ein unvermeidbares Ansteigen der Gaskonzentration in Elektrolyten im oberen Teil von Elektrolysezellen.
  • An den folgenden Beispielen soll die Auswirkung von geringerem Abstand und höheren Gaskonzentrationen erläutert werden.
  • Beispiel 2
  • Großtechnische Zellen
  • A) Membranzelle zur Erzeugung von C12, NaOH, H2, monopolar
    Figure imgb0011
  • Annahme:
  • 10 cm2 beider Elektroden sind um 0,75 mm erhaben und stehen sich gegenüber.
  • Die gleiche Rechnung (wie in Beispiel 1, A) ergibt dann folgende Werte:
    Figure imgb0012
  • Aufgrund der Relation erhabene Fläche zum Rest der Fläche ergibt sich praktisch keine Änderung im Gesamtspannungsabfall und keine meßbare Verringerung der Stromdichte auf den nicht erhabenen Flächen. Die Wärmeentwicklung in der Membran (s. Beispiel 1, B) steigt jedoch auf 1380 kcal/m2 x h entsprechend 133 % vom Normalwert.
  • B) Salzsäureelektrolyse mit Diaphragma zur Erzeugung von C12 und H2 aus Abfallsäure, bipolar.
    Figure imgb0013
  • Beispiel 2 zeigt die Begrenzungen beim Bau großtechnischer Elektrolysezellen, bedingt durch Stromverwerfungen. ± 0,75 mm sind Toleranzen, die mit vertretbarem Aufwand gerade noch eingehalten werden können. Bei einer 1 m breiten oder hohen Zelle bedeutet diese Toleranz eine Genauigkeit von 0,075 % bezogen auf das Endmaß. Ferner sind 30 bis 50 % freie Fläche für den Gasabzug das Maximum des Tolerierbaren, weil sonst die effektive Stromdichte zu sehr ansteigt.

Claims (4)

1. Membran-Elektrolysezelle mit aus mehreren Einheiten zusammengesetzten, vertikal angeordneten, mit Federelementen versehenen Elektroden, dadurch gekennzeichnet, daß
a) die Elektrode der einen Polarität in mehrere getrennte Einheiten horizontal geteilt ist,
b) die Elektrode der entgegengesetzten Polarität in mehrere getrennte Einheiten vertikal geteilt ist und
c) die jeweiligen Einheiten mindestens einer der beiden Elektroden durch Federelemente verschiebbar sind.
2. Membran-Elektrolysezelle nach Anspruch 1, dadurch gekennzeichnet, daß zwischen den Einheiten der Elektrode, an welcher die Membran nicht anliegt, horizontale Trennstellen belassen werden, in denen Abstandhalter angeordnet sind.
3. Membran-Elektrolysezelle nach Anspruch 1 bis 2, dadurch gekennzeichnet, daß die Abstandhalter in den horizontalen Trennstellen als streifenförmige Platte zur Ableitung sich an der Elektrodeneinheit entwickelnder Gase ausgebildet sind.
4. Membran-Elektrolysezelle nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß bei in vertikale Einheiten aufgeteilten Elektroden die Federelemente mit zum Zellenboden gerichteter konkaver Wölbung oder nach dort geöffnetem Winkel als Gasabzugseinrichtung ausgebildet sind.
EP83200883A 1982-06-25 1983-06-16 Membran-Elektrolysezelle mit vertikal angeordneten Elektroden Expired EP0097991B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT83200883T ATE30252T1 (de) 1982-06-25 1983-06-16 Membran-elektrolysezelle mit vertikal angeordneten elektroden.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3223701 1982-06-25
DE19823223701 DE3223701A1 (de) 1982-06-25 1982-06-25 Membran-elektrolysezelle mit vertikal angeordneten elektroden

Publications (2)

Publication Number Publication Date
EP0097991A1 EP0097991A1 (de) 1984-01-11
EP0097991B1 true EP0097991B1 (de) 1987-10-14

Family

ID=6166805

Family Applications (1)

Application Number Title Priority Date Filing Date
EP83200883A Expired EP0097991B1 (de) 1982-06-25 1983-06-16 Membran-Elektrolysezelle mit vertikal angeordneten Elektroden

Country Status (11)

Country Link
US (1) US4502935A (de)
EP (1) EP0097991B1 (de)
JP (1) JPS5913085A (de)
AT (1) ATE30252T1 (de)
AU (1) AU553793B2 (de)
BR (1) BR8303395A (de)
CA (1) CA1214750A (de)
DE (2) DE3223701A1 (de)
FI (1) FI73471C (de)
IN (1) IN156644B (de)
ZA (1) ZA834630B (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE8400459L (sv) * 1984-01-30 1985-07-31 Kema Nord Ab Elektrod for elektrolysorer
DE3726674A1 (de) * 1987-08-11 1989-02-23 Heraeus Elektroden Elektrodenstruktur fuer elektrochemische zellen
DE3808495A1 (de) * 1988-03-15 1989-09-28 Metallgesellschaft Ag Membranelektrolysevorrichtung
US5221452A (en) * 1990-02-15 1993-06-22 Asahi Glass Company Ltd. Monopolar ion exchange membrane electrolytic cell assembly
US5254233A (en) * 1990-02-15 1993-10-19 Asahi Glass Company Ltd. Monopolar ion exchange membrane electrolytic cell assembly
US5100525A (en) * 1990-07-25 1992-03-31 Eltech Systems Corporation Spring supported anode
DE19859882A1 (de) * 1998-12-23 1999-12-09 W Strewe Ionenaustauschermembranzelle für hohe Produktleistungen
WO2002103082A1 (en) * 2001-06-15 2002-12-27 Akzo Nobel N.V. Electrolytic cell
US7141147B2 (en) * 2001-06-15 2006-11-28 Akzo Nobel N.V. Electrolytic cell
ATE294261T1 (de) * 2001-09-07 2005-05-15 Akzo Nobel Nv Elektrolysezelle
US6797136B2 (en) * 2001-09-07 2004-09-28 Akzo Nobel N.V. Electrolytic cell

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE563393C (de) * 1929-02-05 1932-11-04 I G Farbenindustrie Akt Ges Elektrolytische Zelle
US3674676A (en) * 1970-02-26 1972-07-04 Diamond Shamrock Corp Expandable electrodes
BE793122A (fr) * 1971-12-22 1973-06-21 Rhone Progil Electrodes bipolaires demontables
US3960699A (en) * 1974-12-23 1976-06-01 Basf Wyandotte Corporation Self supporting electrodes for chlor-alkali cell
US4056458A (en) * 1976-08-26 1977-11-01 Diamond Shamrock Corporation Monopolar membrane electrolytic cell
DE2642559B1 (de) * 1976-09-22 1978-02-23 Heraeus Elektroden Verfahren zur erneuerung wirksamer elektrodenflaechen von metallelektroden fuer elektrolysezellen
US4075077A (en) * 1977-05-16 1978-02-21 Pennwalt Corporation Electrolytic cell
IT1114623B (it) * 1977-07-01 1986-01-27 Oronzio De Nora Impianti Cella elettrolitica monopolare a diaframma
US4154667A (en) * 1978-01-03 1979-05-15 Diamond Shamrock Corporation Method of converting box anodes to expandable anodes
JPS5629683A (en) * 1979-08-17 1981-03-25 Toagosei Chem Ind Co Ltd Anode structure for diaphragmatic electrolysis cell
IT1163737B (it) * 1979-11-29 1987-04-08 Oronzio De Nora Impianti Elettrolizzatore bipolare comprendente mezzi per generare la ricircolazione interna dell'elettrolita e procedimento di elettrolisi
US4443315A (en) * 1980-07-03 1984-04-17 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Finger type electrolytic cell for the electrolysis of an aqueous alkali metal chloride solution

Also Published As

Publication number Publication date
CA1214750A (en) 1986-12-02
AU553793B2 (en) 1986-07-24
FI73471B (fi) 1987-06-30
AU1626083A (en) 1984-01-05
IN156644B (de) 1985-09-28
US4502935A (en) 1985-03-05
ZA834630B (en) 1985-02-27
JPS5913085A (ja) 1984-01-23
FI73471C (fi) 1987-10-09
FI832313L (fi) 1983-12-26
ATE30252T1 (de) 1987-10-15
DE3374072D1 (en) 1987-11-19
FI832313A0 (fi) 1983-06-23
EP0097991A1 (de) 1984-01-11
BR8303395A (pt) 1984-02-07
DE3223701A1 (de) 1983-12-29

Similar Documents

Publication Publication Date Title
EP0687312B1 (de) Elektrodenanordnung für gasbildende elektrolytische prozesse in zellen mit ionenaustauschermembran oder mit diaphragma
EP0591293B1 (de) Elektrolysezelle sowie kapillarspaltelektrode für gasentwickelnde oder gasverbrauchende elektrolytische reaktionen und elektrolyseverfahren hierfür
DE2656650A1 (de) Bipolare elektrode fuer eine elektrolysezelle
EP0717130A1 (de) Druckkompensierte elektrochemische Zelle
EP0097991B1 (de) Membran-Elektrolysezelle mit vertikal angeordneten Elektroden
EP1747304A1 (de) Elektrolysezelle mit mehrlagen-streckmetall-elektroden
DE3439265A1 (de) Elektrolyseapparat mit horizontal angeordneten elektroden
DE2739324C3 (de) Verfahren und Vorrichtung zur Durchführung elektrochemischer Reaktionen sowie dazu geeignete bipolare Elektroden
EP0095039B1 (de) Membran-Elektrolysezelle
DE2856882A1 (de) Vorrichtung zum elektrolysieren und verfahren zum herstellen von chlor durch elektrolysieren
EP0204126B1 (de) Elektrode für die Membran-Elektrolyse
DE2059868B2 (de) Vertikal anzuordnende Elektrodenplatte für eine gasbildende Elektrolyse
DE3420483A1 (de) Bipolarer elektrolyseapparat mit gasdiffusionskathode
EP0102099B1 (de) Vertikal angeordnete Plattenelektrode für gasbildende Elektrolyseure
EP0274138B1 (de) Elektrodenanordnung für gasbildende Elektrolyseure mit vertikal angeordneten Plattenelektroden
DE2538000B2 (de) Bipolare Elektrodenkonstruktion für eine membranlose Elektrolysezelle
DE69213362T2 (de) Elektrolyseur und Herstellung davon
DE19740673C2 (de) Elektrolyseapparat
EP0051764A1 (de) Salzsäure-Elektrolysezelle zur Herstellung von Chlor und Wasserstoff
DE3808495C2 (de)
DE2949495C2 (de) Elektrode für Elektrolysezellen
EP0150019B1 (de) Elektrolyseverfahren mit flüssigen Elektrolyten und porösen Elektroden
DE2753885A1 (de) Elektrolytische zelle
DE2709093A1 (de) Elektrode fuer die erzeugung eines gases in einer zelle mit einer membran
EP0071754A1 (de) Monopolare elektrolytische Filterpressenzelle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

17P Request for examination filed

Effective date: 19840706

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI LU NL SE

REF Corresponds to:

Ref document number: 30252

Country of ref document: AT

Date of ref document: 19871015

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3374072

Country of ref document: DE

Date of ref document: 19871119

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880630

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890101

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19940527

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19940615

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19940617

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19940621

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19940624

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19940629

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 19940718

Year of fee payment: 12

EAL Se: european patent in force in sweden

Ref document number: 83200883.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19950616

Ref country code: AT

Effective date: 19950616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19950617

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19950630

Ref country code: CH

Effective date: 19950630

Ref country code: BE

Effective date: 19950630

BERE Be: lapsed

Owner name: METALLGESELLSCHAFT A.G.

Effective date: 19950630

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19950616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19960229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19960301

EUG Se: european patent has lapsed

Ref document number: 83200883.3

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST