EP0093759B1 - Device for selectively removing a light liquid layer at the surface of a water sheet - Google Patents

Device for selectively removing a light liquid layer at the surface of a water sheet Download PDF

Info

Publication number
EP0093759B1
EP0093759B1 EP82903459A EP82903459A EP0093759B1 EP 0093759 B1 EP0093759 B1 EP 0093759B1 EP 82903459 A EP82903459 A EP 82903459A EP 82903459 A EP82903459 A EP 82903459A EP 0093759 B1 EP0093759 B1 EP 0093759B1
Authority
EP
European Patent Office
Prior art keywords
flow
wing
floor
hull
sub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82903459A
Other languages
German (de)
French (fr)
Other versions
EP0093759A1 (en
Inventor
Henry Benaroya
Jean Le Foll
Jean-Elie Cadoux
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR8121905A external-priority patent/FR2516889A1/en
Priority claimed from FR8123741A external-priority patent/FR2518488B2/en
Application filed by Individual filed Critical Individual
Publication of EP0093759A1 publication Critical patent/EP0093759A1/en
Application granted granted Critical
Publication of EP0093759B1 publication Critical patent/EP0093759B1/en
Expired legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02BHYDRAULIC ENGINEERING
    • E02B15/00Cleaning or keeping clear the surface of open water; Apparatus therefor
    • E02B15/04Devices for cleaning or keeping clear the surface of open water from oil or like floating materials by separating or removing these materials
    • E02B15/046Collection of oil using vessels, i.e. boats, barges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/32Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for for collecting pollution from open water
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S210/00Liquid purification or separation
    • Y10S210/918Miscellaneous specific techniques
    • Y10S210/922Oil spill cleanup, e.g. bacterial
    • Y10S210/923Oil spill cleanup, e.g. bacterial using mechanical means, e.g. skimmers, pump

Definitions

  • the present invention relates to a device for the selective sampling of a layer of light liquid, such as a hydrocarbon, floating on the surface of a sheet of water capable of being subjected to swell, usable in particular for cleaning up areas covered with a layer of oil following accidental spills.
  • a layer of light liquid such as a hydrocarbon
  • the polluting hydrocarbon is in the form of a thin layer (of the order of a millimeter) consisting of a hydrocarbon phase which can be very viscous following the evaporation of the light components or by a polyphase emulsion d hydrocarbon with sea water and / or air, following the mixing caused by the blades.
  • the machine must be designed to clean up on each pass over a width as large as possible.
  • the water inevitably withdrawn at the same time as the pollutant must represent as small a fraction as possible of the extracted and stored part.
  • the achievement of this last result is thwarted by the very small ratio between the thickness of the pollutant layer and that of the water layer which it is necessary to capture because of the level variations due in particular to the swell .
  • Patent application FR-A-2 467 769 describes a machine of a type which comprises a hull provided with propulsion means making it possible to keep it in flight, the hull having a central part projecting forward relative to with two lateral parts which delimit with the central part of the supply conduits to separators and the central part having deflector means, such as wings, to create vortices whose orientation tends to reduce the divergence of the flow in surface around the hull.
  • the deflector means achieve a double result.
  • the machine thus sweeps the sea between two current lines which, upstream have a much greater spacing than that which they would have in the absence of these means; correlatively, there is thickening of the layer of light liquid at the inlet of the supply conduits. Due to the fact that the pre-collection is carried out in leakage, the wake of the ship causes a damping of the swell.
  • Such thickening remains however very insufficient to allow a separator, in particular centrifugal, to be supplied under conditions such that the ratio between pollutant and water in the flow rate sampled is acceptable.
  • the invention aims in particular to provide a sampling device in which a progressive thickening of the layer of light liquid is carried out throughout a flow in an open vein until separation by a vortex process with a free surface, a vertical axis and central levy.
  • the invention provides a machine according to claim 1.
  • the partition is advantageously swollen at its lower part, located at a distance from the floor, to limit the curvature of the paths of the liquid which passes from one subchannel to the other; the total section of the two sub-channels is substantially constant in the direction of flow, the section of the first sub-channel decreasing while the other increases.
  • the channel floor is advantageously constituted by a thick partition whose sections by vertical planes parallel to the plane of symmetry of the hull are offset profiles, therefore having a very convex underside.
  • the underside descends approximately to a depth equal to the draft and then rises backward.
  • the upper face will then present a horizontal threshold parallel to the leading edge and immersed at a depth equal to approximately one third of the draft and, behind this threshold, will descend to the limit depth compatible with the thickness necessary for the mechanical strength of the floor.
  • the initial increase in the depth of the conduit simplifies the problem posed by the loss of useful cross section due to the partition between the two sub-channels since it compensates for this loss by an increase in the total cross section available.
  • the vertical partition joins the inner side wall of the supply sub-channel.
  • the leading edge of the partition definitively separates the supply sub-channel, which therefore acts as an injection gutter for the vortex in the open vein of the separator, from the discharge sub-channel which becomes a simple channel 'exhaust whose flow is sucked by a pump which can be a means of propulsion of the machine.
  • Model experience confirmed these considerations, which were by no means obvious to those skilled in the art, accustomed to considering only permanent flows. They lead to the provision of a damping of the swell coming from the rear in the form of a leak by means of a submerged rear wing which, moreover, unexpectedly provides additional favorable properties.
  • the subchannel of the machine which opens into the pumping means successively has a fraction constituting a damping bowl, then a loaded portion opening into the pumping means.
  • the sub-channel is full-walled, so that the pumps can only suck water that has entered the sub-channel by passing above or below the partition.
  • the subchannel which opens into the pumping means is advantageously provided with means for supplying water to from the water table provided to provide an additional flow to the pumping means, at least when the level in this channel drops to or exceeds a determined level.
  • These means for providing a make-up flow can be limited to an opening for communication with the sheet of water formed in the wall of the sub-channel, advantageously in the floor.
  • This opening will generally be placed at the entrance to the part in charge of the subchannel which opens into the pumping means or immediately upstream.
  • the entry of the loaded part may constitute a threshold projecting downward relative to the downstream portion, so as to better avoid the aspiration of air towards the pumping means.
  • the central part 10 and the lateral parts 11 of the shell 12 have surfaces which delimit the flow along internal spirals 13 and external spirals 14 and meet at a cusp point 15 (fig. 1).
  • These lateral surfaces must extend approximately vertically, at least up to a depth which is chosen according to the maximum wave depth for which the machine is designed. In practice, this verticality is ensured up to a depth which is of the order of half of the draft D of the machine.
  • the surfaces 13 are thus formed by the wall of the central part 10 of the hull, starting from the bow which must be designed to limit as much as possible the wave of the bow which creates turbulence.
  • Each external surface 14 is materialized by the internal wall of a lateral part 11 from the bow 30 of the latter, which will generally be located at mid-length of the hull.
  • FIG. 1 shows thus a shape which, between the bow of the central part 10 and a point approximately halfway along the length of the ship, corresponds to the forward half of a conventional ship hull. Between each bow of a lateral part 11 and the stern, the water line corresponds substantially to the stern half of a monohull ship having a greater torque than that of the central hull 10.
  • the overall shape parameters of the machine must be proportional to each other to ensure satisfactory flow.
  • the L / 2I ratio will remain between approximately 3.6 and 4.
  • the ratio I / Ic will be between 1.5 and 2.5, a value of the order of 2 being generally satisfactory.
  • a third important parameter is the D / L ratio of draft to length. But the choice of this ratio must take into account different requirements depending on whether it is a machine intended to work offshore or in the immediate vicinity of the coast.
  • the length L will generally be greater than 75 m and D / L will then be determined by the maximum value that can be given to D for a pollution control work, generally less than 12 m: we arrive at a lower value 0.1, that is to say a very flat machine.
  • the most frequent devices intended to operate near the coasts will have a length of less than 75 m and, in this case, a value of D / L can be adopted between 0.14 and 0.16.
  • the flow rate taken by the separator dip tube must be at least two orders of magnitude lower than this inlet flow rate, which leads to seeking a thickening of the layer of light liquid before admission to the separators. This thickening will be carried out in several stages, under the action of components placed in series and which will be successively described.
  • Front deflector means As in the case of the device described in the document FR-A-2467769, deflector means are provided for converging the threads of liquid on the surface, without however causing surge or jump phenomena.
  • these means comprise a jagged front wing 17, provided with fins 18 directed upwards, the feet of which converge forward and whose role will be explained below.
  • This is a provision which differs from that of document FR-A-2467 769 only by the presence of the fins.
  • the wing 17, with positive lift, creates vortices causing convergence on the surface.
  • the deflector means consist of a wing
  • the latter must generate marginal eddies whose efficiency (measured by the relative transverse displacement of the water streams which it causes on the surface) is as high as possible without causing surges in surface, for a given speed of the machine.
  • the transverse displacement is proportional to the circulation of the vortex created by the wings. It increases with the distance, projected on the longitudinal axis, which separates the stem 30 from the lateral part of the origin of the vortex, as well as with the distance which separates the vortex from the plane of symmetry.
  • the influence of the depth of the wing is less marked: if the efficiency of a vortex goes through a maximum when the depth of the wing, equal to the draft, is equal to l a / 2 (figures 3 and 4), this maximum is fairly flat.
  • the efficiency of the marginal vortex which gathers all the circulation of a sheet of free vortices poured out by the wing, is equal to the circulation around the profile at its root, itself proportional to the lift of the profile. It is therefore desirable to increase this lift, but this increase will come up against other imperatives which must also be respected.
  • an isolated wing gives the vortices a marginal vortex immersion depth which is greater than the optimal value, men mentioned above, even in the case of a relatively flat craft, for which D / I c is of the order of 0.9, and a fortiori in the case of heavy draft craft (D / I c of the order of 2.25).
  • each wing 31 with a substantially vertical fin 32.
  • the vertical plane bisector at the trailing edge of the fin 32 a significant inclination relative to the plane median, typically 30 to 35 °. This result can be obtained either with a profile with low camber and high incidence, as indicated in the case of FIG. 5, or with an average incidence and a high camber.
  • FIGS. 7 and 8 Another solution, shown in FIGS. 7 and 8, consists in giving the end portion of the wing 31 a “rolled up” shape: this latter solution will generally be preferable in the case of machines with a high draft. Again, the bisector plane of the terminal part of the wing, having a large dihedral, must be strongly incised on the median plane of the vessel ( Figures 7 and 8).
  • This Froude number must not exceed 1, which means that the immersion depth D c of the threshold in calm water must be:
  • This slowing down can be obtained by delimiting the open vein below by a floor 33 having a general shape of a horizontal wing with negative lift.
  • the general shape of the profile, along the dashed line in Figure 1, can then be that shown in Figure 9.
  • the wing has a span equal to I c . Its leading edge is at a depth of the order of D / 2 if the threshold is at a level of D / 3. Behind a threshold, at depth D / 3, the upper face of the wing descends to increase the depth of the duct, then rises while the upper surface descends to a depth substantially equal to the draft.
  • a first remedy consists in extending the floor forwards beyond the bow 20 and in giving its leading edge a shape having, at least near the central part 10, an inverted arrow.
  • the leading edge has, on most of its development from the central part an inverted arrow, while the external part 34 has a notable arrow, from a point which is located slightly inside the bow in the transverse direction.
  • the vortices created by the reverse arrow portion cause convergence of the layer of liquid lightening the central part 10, which is favorable. But the vortices due to the other party, as well as the vertical vorticity due to the tip, tend to cause divergence.
  • FIGS. 10A to 10G successive profiles of the floor 33.
  • the profile of the central part 10 of the shell at the location of the cut is indicated in solid lines, while the master couple is indicated in dashed lines.
  • Figure 1 OA shows a section along the plane A of Figure 1, immediately behind the tip of the floor. We can see the vertical wing 35 and a small fragment of the floor.
  • Figures 10B, 1 OC and 1 OD are sections in planes staggered from that of Figure 10A to the bow 30 of the lateral part ( Figure 1 OD).
  • FIG. 10E shows the evolution of the cross section immediately behind the bow, and in particular the thickening of the lateral hull 11.
  • FIGS. 10F and 10G are sections approximately at the level of the planes F and G of FIG. 1 .
  • FIG. 10G it can be seen that the lateral shell 11 is progressively increasing upwards.
  • This form corresponds to an embodiment in which the partition between the two sub-channels constitutes a weir, a small fraction of the captured flow discharging, from the conduit, into a sub-channel supplying the separator.
  • the partition 36 There is shown in dashed lines in FIG. 10G the general appearance of the partition 36 behind the section along the plane G.
  • Figure 11 shows schematically the arrangement of the transverse partition which separates each conduit gradually into two sub-channels.
  • FIG. 11 shows a constant section supply duct, which will be assimilated to the channel delimited by the surfaces 13 and 14 and the floor 23 in FIG. 1.
  • the partition 37 is placed obliquely with respect to the direction of the duct, so as to gradually reduce the passage section offered to a subchannel 38 which goes towards the separator.
  • This partition ends upwards above the free surface and below it at a distance from the bottom of the canal.
  • a fraction of the flow is thus gradually drawn off from the bottom in a volume constituting a damping bowl 39, which is extended by an evacuation subchannel 40, the external wall 41 of which is formed by the internal wall of the lateral part of the shell.
  • This external wall of the exhaust sub-channel is shown rectilinear in FIG. 11. In practice, it will obviously be shaped to correspond to the shape of the shell.
  • the flow to the bowl 39 implies a change in orientation of the fluid threads. To avoid turbulence, this change of orientation is helped by vanes 42 which, at the same time, support the partition 37. In addition, the partition is thick so that the change of orientation is gradual. The reduction in cross section which results from the presence of the partition is compensated by the fact that the bowl represents an increase in the passage section.
  • the water level may vary. However, this variation must remain in a domain which is limited below by the risk of air entering the rejection pump and, above, by the presence of a load lower than the upstream load. If the pump rotates at constant speed, which will be the general case, the flow rate which it takes in the bowl 39 decreases when the level drops, even in the case of a constant section at ejection. Although this variation in flow rate is not in phase with that of the flow rate received by the bowl 39, it contributes to reducing the buffer volume offered by the bowl which is necessary.
  • the ejection orifice is provided with section adjustment means, for example using a flap controlled by a jack. In this case, the actuator can be controlled to modulate the ejection section as a function of the height of water in the bowl, which makes it possible to obtain greater variations in flow and the phase of which is better adapted, therefore reduce the minimum required buffer volume of the cuvette.
  • the two-phase current supplied by the supply subchannel in which the thickness of the layer of light liquid is approximately ten times greater than at the start of the conduit, is admitted tangentially into a centrifugal separator with open vein.
  • the flow in the open supply vein must give rise to two closed vein flows, one consisting of a discharge flow escaping from the bottom of the separator to an extraction pump, the other by a sample flow sucked by pumping means to storage containers.
  • the light liquid is often an extremely viscous hydrocarbon, it is necessary to warm it. This reheating is almost impossible to achieve in open vein. It will therefore be carried out in the flow in closed sampling vein, which begins at the entrance of a vertical tube plunging into the mass of liquid, to a depth in which pollutant is constantly found.
  • the interface between the layer of light liquid and the water remains substantially parallel to the free surface if the tangential speed remains constant over the entire height of the body of water.
  • this result is obtained by constituting the separator by a cavity 45 with a vertical axis 46 into which a dip tube 47 penetrates.
  • the supply sub-channel 38 opens tangentially at the top of the cavity 45 to maintain the rotational movement.
  • the friction-retardant effect on the central tube 47 gives the free surface 48 a shape of the kind indicated in FIG. 12 and causes a thickening of the layer of light liquid, as shown by the shape of the upper and lower borders 49 of l 'interface in Figure 12.
  • the maximum thickness of pollutant layer that can be allowed around the tube 47 is limited only by the risk of driving the pollutant down by the discharge flow.
  • the separator shown in FIG. 12, which can be considered as a section along a plane substantially parallel to the median plane of the machine, comprises a thick horizontal partition plate 50 pierced with an approximately circular central hole and centered on the axis 46.
  • the plate 50 limits a supply chamber into which opens the supply sub-channel 38 which maintains the vortex flow and whose wall has an approximately cylindrical shape of which the director is a spiral.
  • the discharge chamber placed below the plate 50 is delimited downwards by a floor 51. It opens by a tangential exhaust channel 52.
  • the flow in this chamber and the diverging exhaust channel have a wide symmetry with the supply flow. The angular momentum of the discharged water mass is preserved, except for pressure drops.
  • the corresponding energy can be recovered in a vortex placed downstream or the exhaust channel 52 can lead directly into an extraction pump, which can moreover be confused with the propulsion pump 53 (FIG. 1) which receives the flow coming from subchannel 40.
  • the propulsion pump 53 FIG. 1
  • the tube 47 must suck all the flow of light polluting liquid which arrives at the separator, which implies that it simultaneously sucks a flow of water sufficient to entrain the pollutant even if the viscosity of the latter is so high that it occurs in lumps.
  • the tube 47 shown in FIG. 12 is double-walled and has an internal conduit 54 for supplying steam which escapes towards the top by a series of holes 55 formed in an internal rim of the tube, at the bottom of the latter. This injection of steam simultaneously heats the pollutant and makes handling easier.
  • calibrated inlet throttles can be provided on the duct 54: the corresponding lamination is adiabatic and does not significantly modify the heat input from the steam.
  • the layer of palliative light liquid is concentrated in the separator to form a core whose thickness and lume value correspond to a balance between the flow aspirated by the tube 47 and an injected flow which can vary very quickly, since it is appreciably proportional at each instant to the thickness of the layer of polluting liquid, itself roughly fifty times greater than the average thickness of the polluting layer in line with the stem 20.
  • This nucleus constitutes a volumetampon. It is normally maintained between limits determined by controlling the pump (not shown) for the suction of the light liquid by a relay actuated by means for determining the level of the interface, indicated diagrammatically at 56.
  • These means can be constituted in particular by an electric cell or by a float whose average density is between that of water and that of light liquid, connected to a control relay of the pump motor.
  • the light liquid finally obtained will be stored. This storage can be carried out in tanks placed on board the abatement machine, from where the pollutant will later be transferred to tanks placed on the ground. However, especially in the case of small vehicles, the pollutant can be stored in containers that are closed and ballasted. These containers are then submerged as they are filled in locations marked with buoys. The containers are then recovered by non-specialized vessels.
  • the buffer volume represented by the core will generally be sufficient to allow a temporary stop of the suction pump for the time necessary for a change of container for storing light polluting liquid.
  • a first remedy consists in reducing the amplitude of the swell coming from the rear in the appearance of a leak, during its journey along the hull before it reaches the grip orifices.
  • the machine comprises a rear wing 57. It is preferable that this wing does not project beyond the machine towards the rear.
  • the thickness of the wing 57 increases from the rear to the front and the wing is placed at a depth slightly less than the draft of the craft.
  • the wing 57 dampens the absolute movement of the swell in a half-light zone which covers all the flow in free vein before entering the collection orifices conduits.
  • the wing reduces the amplitude of the pitch. On short vehicles, it dampens the relative movement of the ship relative to the sea, especially if it has a positive lift. The wing finally plays the role of anti-roll keel.
  • a second remedy takes into account that the most dangerous disturbances from the point of view of the risk of surge are those which go up the general flow. Such disturbances can appear in the conduits as a result of the reflection of the waves which descend the conduit, then the exhaust sub-channel towards the part in charge of the latter.
  • the flow suction pump which runs through the subchannel 40 is controlled so that this subchannel remains under load and there is no air intake in the pump and also so as to maintain immediately upstream a speed and a height of water such that the flow is of fluvial type, that is to say with a Froude number less than 1.
  • the basin 39 is given a width 1 2 greater than the width 1, of the duct and a flooded weir 59 is placed there which reduces the depth and, correspondingly, causes a local increase in speed. Enlargement 1 2/1 1 and the height of the weir 59 are selected so that the variations undergone by the flow from upstream to downstream are as follows.
  • the flow speed and the depth h 1 are such that the flow is fluvial (Froude number less than 1). In the upstream part of the bowl, this fluvial character is further increased due to the decrease in speed caused by the increase in width.
  • the depth h 2 of the flow at the right of the spillway becomes such that the Froude number becomes equal, then greater than 1. It remains greater than 1, then the flow becomes fluvial again with the formation of a projection 60 which is capable of moving longitudinally in a limited area.
  • the disturbances propagating from upstream to downstream cross the jump and can be reflected on the entry of the subchannel under load 40. But the reflected disturbances cannot cross the jump and come to disturb the flow in the conduit.
  • FIG. 16 shows by way of example a wing 67 of annular shape capable of being used at the front of the floor 33.
  • This wing is connected to the floor 33 by a profile which may be similar to that shown in FIG. 1 OG then the wing turns forward to connect to the central part 10 of the hull by a profile close to the horizontal, as indicated by a cut folded in dashes.
  • the wing At its root on the floor 33, the wing has a shorter length than in the case of FIG. 10 and a higher incidence, so that the wing 61 does not descend below the draft of the shell.
  • the annular wing embedded at its two ends, has greater rigidity and resistance than a cantilever wing; the free vortices which escape from a wing of the kind shown in FIGS. 1 and 10 are removed, vortices which can in some cases be troublesome, although they are released at a considerable depth.
  • the floor 33 of the embodiment shown in Figures 1, 2 and 9 is full. Despite the slowing of the flow upstream of the capture, it limits the speed at which the machine can move, since it is necessary to avoid a spill. In the variant embodiment shown in FIGS. 17 and 18, this limitation is largely eliminated by carrying out the capture (that is to say the separation between the polluted flow removed and the water returned to the ambient water table) in two steps.
  • the stream of liquid sampled by the lateral shell 11, placed obliquely is first closed laterally, and then the vein is closed by the floor 33 downstream from the bow of the lateral shell.
  • the floor 33 In its upstream part, the floor 33 is limited to inclined blades 65 and 66, connecting the two shells and of progressively decreasing depth (FIG. 17).
  • the purpose of these blades is to eject downwards and outwards, under the lateral shell 11, the lower part of the flow of water from the vein, a part which does not contain any pollutant.
  • the front part of the side hull will in this case have a depth of between half and a third of the draft.
  • the non-rejected part of the vein is directed to the pumps.
  • the curve in solid lines in FIG. 19 shows the variation in the feed rate supplied to a subchannel opening into pumping means as a function of time, in the presence of a swell of period T.
  • This feed rate is pours into a damping bowl 39 (FIG. 20) communicating with the pumping means 53 via a charged duct 40.
  • the pumping means 53 are provided for sucking in an approximately constant flow rate (dashed line in FIG. 19) which corresponds at the average feed rate.
  • the level of the mass of water contained in the bowl therefore varies as a function of time, the difference between the average volume and the minimum volume of water in the bowl being represented by the hatched surface in FIG. 19.
  • this difference in volume corresponds to a difference between the average level m of the water in the bowl (downstream of the projection 60 due in particular to the presence of the flooded weir 59) and the low level. This difference is all the greater the smaller the surface area of the bowl 39.
  • the means for supplying the subchannel with make-up water consist of an opening 62 formed in the floor to provide permanent communication between the subchannel and the sea.
  • the opening shown is placed in the front part of the loaded tunnel 40.
  • the ceiling of this front part has a threshold 61 projecting downwards, making it possible to further reduce the risk of air suction.
  • the flow of the water streams at the bottom of the subchannel takes place along the floor upstream and downstream of the opening 62 (arrow f o ).
  • this opening will be either at the entrance to the loaded part 40, or immediately upstream, partly below the threshold 61.
  • the level water in the damping bowl 39 is higher than the average level, there is ejection of water through the opening 62: this ejection is without drawback, this water flow being devoid of pollutant.
  • the additional flow rate to the pumping means 53 a value mean over time which is positive, zero or even negative, when the machine moves at its normal operating speed, the make-up flow being always positive in the case of a zero speed. If, for example, provision is made for the opening 62 so that it provides an average additional flow rate of around 10 to 20% of the total flow aspirated by your pumping means 53, a maximum flow rate of around 50% of the flow sucked by the pump, which clearly shows a very significant impact on maintaining the level in the damping bowl 39 at a sufficient height.
  • the inlet opening of a supply flow can be fitted with oscillating flaps preventing the ejection of a fraction of the flow that has crossed the flooded weir.
  • These flaps can be fitted with jacks which keep them closed when the machine moves without operating to take a layer of light liquid, for example to go to a place of intervention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Public Health (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Cleaning Or Clearing Of The Surface Of Open Water (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

A device for depolluting a water sheet comprises a hull having a central portion (10) protruding with respect to two side portions (11) which delimit with the central portion delivery pipes to separators. The central portion has a wing (17) for generating swirls of which the orientation reduces the divergence of the surface flow. Each pipe (16) has a floor with a drifting profile with a protruding leading edge for slowing down the flow and for thickening the polluting layer. A vertical partitioning wall separates each pipe (16) into two subchannels of which one communicates downstream with the separator and the other one opens, at the rear portion of the device, into a pump (53).

Description

La présente invention concerne un engin de pré- lèvementsélectif d'une couche de liquide léger, tel qu'un hydrocarbure, flottant à la surface d'une nappe d'eau susceptible d'être soumise à la houle, utilisable notamment pour dépolluer des zones re- couvertes d'une couche d'hydrocarbure à la suite de déversements accidentels.The present invention relates to a device for the selective sampling of a layer of light liquid, such as a hydrocarbon, floating on the surface of a sheet of water capable of being subjected to swell, usable in particular for cleaning up areas covered with a layer of oil following accidental spills.

Il convient tout d'abord de rappeler quels sont les problèmes auxquels se heurte la réalisation d'un engin dépollueur devant être utilisé à la mer.It should first of all be recalled what are the problems encountered in the production of a pollution control device to be used at sea.

L'hydrocarbure polluant se présente sous forme d'une couche mince (de l'ordre du millimètre) constituée par une phase d'hydrocarbure qui peut être très visqueuse par suite de l'évaporation des composants légers ou par une émulsion polypha- sique d'hydrocarbure avec l'eau de mer et/ou l'air, à la suite du brassage provoqué par les lames.The polluting hydrocarbon is in the form of a thin layer (of the order of a millimeter) consisting of a hydrocarbon phase which can be very viscous following the evaporation of the light components or by a polyphase emulsion d hydrocarbon with sea water and / or air, following the mixing caused by the blades.

L'engin doit être conçu pour dépolluer à chaque passage sur une largeur aussi élevée que possible. L'eau inévitablement prélevée en même temps que le polluant doit représenter une fraction aussi faible que possible de la partie extraite et stockée. L'obtention de ce dernier résultat est contrariée par le rapport très faible entre l'épaisseur de la couche de polluant et celle de la lame d'eau qu'il est nécessaire de capter du fait des variations de niveau dues en particulier à la houle.The machine must be designed to clean up on each pass over a width as large as possible. The water inevitably withdrawn at the same time as the pollutant must represent as small a fraction as possible of the extracted and stored part. The achievement of this last result is thwarted by the very small ratio between the thickness of the pollutant layer and that of the water layer which it is necessary to capture because of the level variations due in particular to the swell .

La demande de brevet FR-A-2 467 769 décrit un engin d'un type qui comprend une coque munie de moyens de propulsion permettant de le maintenir en allure de fuite, la coque ayant une partie centrale faisant saillie vers l'avant par rapport à deux parties latérales qui délimitent avec la partie centrale des conduits d'amenée à des séparateurs et la partie centrale présentant des moyens déflecteurs, tels que des ailes, pour créer des tourbillons dont l'orientation tend à diminuer la divergence de l'écoulement en surface autour de la coque.Patent application FR-A-2 467 769 describes a machine of a type which comprises a hull provided with propulsion means making it possible to keep it in flight, the hull having a central part projecting forward relative to with two lateral parts which delimit with the central part of the supply conduits to separators and the central part having deflector means, such as wings, to create vortices whose orientation tends to reduce the divergence of the flow in surface around the hull.

Les moyens déflecteurs permettent d'atteindre un double résultat. D'une part, l'engin balaie ainsi la mer entre deux lignes de courant qui, en amont ont un écartement beaucoup plus grand que celui qu'elles auraient en l'absence de ces moyens; corrélativement, il y a épaississement de la couche de liquide léger à l'entrée des conduits d'amenée. Du fait que le préièvement s'effectue en allure de fuite, le sillage du navire provoque un amortissement de la houle.The deflector means achieve a double result. On the one hand, the machine thus sweeps the sea between two current lines which, upstream have a much greater spacing than that which they would have in the absence of these means; correlatively, there is thickening of the layer of light liquid at the inlet of the supply conduits. Due to the fact that the pre-collection is carried out in leakage, the wake of the ship causes a damping of the swell.

On peut ainsi réaliser, entre la mer ouverte en amont de l'engin et les prises d'eau d'entrée des conduits 16, un épaississement par un facteur de l'ordre de 2,5- Dans la pratique, on peut réaliser, grâce à la convergence des lignes de courant, un taux d'épaississement de la couche d'hydrocarbure de l'ordre de 2,5.It is thus possible, between the open sea upstream of the vehicle and the inlet water intakes of the conduits 16, to thicken by a factor of the order of 2.5- In practice, it is possible to achieve, thanks to the convergence of the current lines, a rate of thickening of the hydrocarbon layer of the order of 2.5.

Untel épaississement reste toutefois très insuffisant pour permettre d'alimenter un séparateur, notamment centrifuge, dans des conditions telles que le rapport entre polluant et eau dans le débit prélevé soit acceptable.Such thickening remains however very insufficient to allow a separator, in particular centrifugal, to be supplied under conditions such that the ratio between pollutant and water in the flow rate sampled is acceptable.

L'invention vise notamment à fournir un engin de prélèvement dans lequel on réalise un épaississement progressif de la couche de liquide léger tout au long d'un écoulement en veine ouverte jusqu'à séparation par un processus tourbillonnaire à surface libre, à axe vertical et prélèvement central.The invention aims in particular to provide a sampling device in which a progressive thickening of the layer of light liquid is carried out throughout a flow in an open vein until separation by a vortex process with a free surface, a vertical axis and central levy.

Cet épaississement doit s'effectuer de façon très progressive depuis l'étrave de la partie centrale jusqu'au prélèvement par tube plongeur axial. En effet, l'équilibre d'une couche de liquide léger d'épaisseur variable fait intervenir un entraînement de ce liquide par l'eau résultant d'une discontinuité de vitesse à l'interface avec une contrainte tangentielle proportionnelle au gradient du carré de l'épaisseur; cet équilibre devient instable au-delà d'une valeur limite de cette contrainte, donc aussi de ce gradient ou de la discontinuité de vitesse.This thickening must be carried out very gradually from the bow of the central part to the sampling by axial dip tube. Indeed, the equilibrium of a layer of light liquid of variable thickness involves a entrainment of this liquid by water resulting from a speed discontinuity at the interface with a tangential stress proportional to the gradient of the square of l 'thickness; this equilibrium becomes unstable beyond a limit value of this constraint, therefore also of this gradient or of the speed discontinuity.

Dans ce but, l'invention propose un engin selon la revendication 1.For this purpose, the invention provides a machine according to claim 1.

La cloison est avantageusement renflée à sa partie inférieure, située à distance du plancher, pour limiter la courbure des trajectoires du liquide qui passe d'un sous-canal à l'autre; la section totale des deux sous-canaux est sensiblement constante dans le sens de l'écoulement, la section du premier sous-canal diminuant tandis que l'autre augmente.The partition is advantageously swollen at its lower part, located at a distance from the floor, to limit the curvature of the paths of the liquid which passes from one subchannel to the other; the total section of the two sub-channels is substantially constant in the direction of flow, the section of the first sub-channel decreasing while the other increases.

On réalise ainsi un épaississement par trois phénomènes successifs en veine à surface libre:

  • - un tourbillon ribre d'axe horizontal et approximativement parallèle au plan de sumétrie du navire, engendré par les moyens déflecteurs, typiquement par une voilure portante immergée raccordée au fond de la partie centrale de la coque et dépassant l'étrave vers l'avant. Ce tourbillon superpose, au champ, de vitesse divergent engendré par fa partie centrale, descomposantes de vitesse convergeant vers le plan de symétrie au niveau de la surface libre et provoque un épaississement progressif de la nappe par convergence à: vitesse constante (taux d'épaississement de l'ordre de 2,5);
  • - un. tourbillon oblique et approximativement horizontal dû au plancher profilé déporteur formant le fond de chaque conduit et dont le bord d'attaque présente une flèche négative, au moins à proximité de la partie centrale de la coque. Le tourbillon induit en surface des composantes de vitesse qui ralentissent progressivement l'écoulement en amont du bord d'attaque du plancher au prix d'une divergence très modérée. Il en résulte un ralentissement de la nappe, à largeur presque constante, et un nouvel épaississement progressif (taux de l'ordre de 2);
  • - un soutirage de la majeure fraction du débit capté dans le conduit au-dessus du bord d'attaque du plancher et qui reste complètement séparé de l'écoulement à l'extérieur de l'engin jusqu'à son éjection finale après passage dans une pompe, cette configuration permettant un meilleur contrôle du soutirage progressif de la quasi-totalité du débit. Pour cela, pratiquement depuis l'entrée du conduit et jusqu'à l'injection dans le tourbillon du séparateur, le conduit est séparé en deux sous-canaux par la cloison sensiblement verticale, oblique par rapport au plan médian de l'engin, qui coupe la ligne de flottaison et descend jusqu'à une faible distance du plancher. La somme des aires des sections droites des deux sous-canaux restant sensiblement constante, celle du sous-canal de décharge (ou de soutirage) croît de 0 à environ 9/1 o de l'aire totale, tandis que celle du sous-canal d'alimentation, qui reçoit initialement tout le débit capté, diminue d'autant. De ce fait, la composante de vitesse parallèle au plan de symétrie reste à peu près constante dans le sous-canal d'alimentation, à la fois pour l'eau et pour la nappe polluante qui s'épaissit progressivement (taux d'épaississement de l'ordre de 10). Cette disposition peut d'ailleurs être inversée, le sous-canal d'alimentation étant alimenté par-dessus la cloison, qui forme déversoir.
Thickening is thus carried out by three successive phenomena in a free surface vein:
  • a rib vortex with a horizontal axis and approximately parallel to the plane of the ship's sumetrics, generated by the deflector means, typically by a submerged bearing wing connected to the bottom of the central part of the hull and projecting forward from the bow. This vortex superimposes, in the field, of diverging speed generated by the central part, of the speed components converging towards the plane of symmetry at the level of the free surface and causes a progressive thickening of the sheet by convergence at: constant speed (rate of thickening 2.5);
  • - a. oblique and approximately horizontal vortex due to the profiled spoiler floor forming the bottom of each duct and whose leading edge has a negative arrow, at least near the central part of the hull. The vortex induces velocity components on the surface which gradually slow the flow upstream of the leading edge of the floor at the cost of a very moderate divergence. This results in a slowing down of the sheet, of almost constant width, and a further gradual thickening (rate of the order of 2);
  • - a withdrawal of the major fraction of the flow collected in the duct above the leading edge of the floor and which remains completely separated from the flow outside the machine until its final ejection after passing through a pump, this configuration allowing better control of the progressive withdrawal of almost all of the flow. For this, practically from the entry of the conduit and until injection into the separator vortex, the conduit is separated into two sub-channels by the substantially vertical partition, oblique to the median plane of the machine, which cuts the waterline and descends a short distance from the floor. The sum of the cross-sectional areas of the two remaining subchannels substantially constant, that of the discharge (or withdrawal) subchannel increases from 0 to approximately 9/1 o of the total area, while that of the supply subchannel, which initially receives all the captured flow, decreases especially. As a result, the velocity component parallel to the plane of symmetry remains roughly constant in the supply sub-channel, both for water and for the polluting layer which thickens progressively (thickening rate of around 10). This arrangement can also be reversed, the supply sub-channel being supplied over the partition, which forms a weir.

Le plancher du chenal est avantageusement constitué par une cloison épaisse dont les sections par des plans verticaux parallèles au plan de symétrie de la coque sont des profils déporteurs, ayant donc une face inférieure très convexe. Habituellement, la face inférieure descend approximativement jusqu'à une profondeur égale au tirant d'eau pour remonter ensuite vers l'arrière. La face supérieure présentera alors un seuil horizontal parallèle au bord d'attaque et immergé à une profondeur égale approximativement au tiers du tirant d'eau et, en arrière de ce seuil, descendra jusqu'à la profondeur limite compatible avec l'épaisseur nécessaire à la tenue mécanique du plancher. L'accroissement initial de la profondeur du conduit simplifie le problème posé par la perte de section droite utile due à la cloison de séparation entre les deux sous-canaux puisqu'il compense cette perte par une augmentation de la section droite totale disponible.The channel floor is advantageously constituted by a thick partition whose sections by vertical planes parallel to the plane of symmetry of the hull are offset profiles, therefore having a very convex underside. Usually, the underside descends approximately to a depth equal to the draft and then rises backward. The upper face will then present a horizontal threshold parallel to the leading edge and immersed at a depth equal to approximately one third of the draft and, behind this threshold, will descend to the limit depth compatible with the thickness necessary for the mechanical strength of the floor. The initial increase in the depth of the conduit simplifies the problem posed by the loss of useful cross section due to the partition between the two sub-channels since it compensates for this loss by an increase in the total cross section available.

A l'arrière, la cloison verticale rejoint la paroi latérale intérieure du sous-canal d'alimentation. Le bord d'attaque de la cloison sépare définitivement le sous-canal d'alimentation, qui joue dès lors le rôle de gouttière d'injection pour le tourbillon en veine ouverte du séparateur, du sous-canal de décharge qui devient un simple canal d'échappement donttout le débit est aspiré par une pompe qui peut constituer moyen de propulsion de l'engin.At the rear, the vertical partition joins the inner side wall of the supply sub-channel. The leading edge of the partition definitively separates the supply sub-channel, which therefore acts as an injection gutter for the vortex in the open vein of the separator, from the discharge sub-channel which becomes a simple channel 'exhaust whose flow is sucked by a pump which can be a means of propulsion of the machine.

Il est nécessaire d'éviter la formation dans l'écoulement biphasique de déferlements ou de ressauts. Ce problème est rendu particulièrement aigu du fait que l'engin doit être prévu pour travail- l'eren eaux agitées, par exemple soumises à la houle ou à une mer de vent. On connaît déjà les conditions à remplir, en cas d'écoulement permanent, pour éviter les passages d'écoulement torrentiel à un écoulement fluvial qui donnent naissance à un ressaut. Des considérations théoriques permettent de dégager, en cas de régime périodique et même lorsque l'écoulement présente des parties en charge où les sollicitations périodiques se traduisent par des ondes de compression périodiques, les conditions à remplir pour éviter les déferlements dans l'écoulement biphasique et les brassages qu'ils provoquent.It is necessary to avoid the formation in the biphasic flow of surges or projections. This problem is made particularly acute by the fact that the machine must be designed to work in rough waters, for example subject to swell or a sea of wind. We already know the conditions to be fulfilled, in the case of a permanent flow, to avoid passages from torrential flow to a river flow which give rise to a jump. Theoretical considerations make it possible to identify, in the event of a periodic regime and even when the flow has loaded parts where the periodic stresses result in periodic compression waves, the conditions to be fulfilled to avoid surges in the two-phase flow and the shuffles they cause.

L'expérience sur modèle a confirmé ces considérations, qui n'étaient nullement évidentes pour l'homme du métier, habitué à considérer uniquement des écoulements permanents. Elles conduisent à prévoir un amortissement de la houle provenant de l'arrière en allure de fuite à l'aide d'une aile immergée arrière qui d'ailleurs apporte, de façon inattendue, des propriétés favorables supplémentaires. De plus, il est souhaitable d'interposer, dans le sous-canal de décharge en aval de la cloison dans le sens d'écoulement général, un déversoir immergé qui provoque localement une transition écoulement torrentiel, écoulement fluvial et la formation d'un ressaut et de déferlements à un emplacement bien localisé où ce phénomène ne présente pas d'inconvénients et évite la formation de nouveaux déferlements plus en amont.Model experience confirmed these considerations, which were by no means obvious to those skilled in the art, accustomed to considering only permanent flows. They lead to the provision of a damping of the swell coming from the rear in the form of a leak by means of a submerged rear wing which, moreover, unexpectedly provides additional favorable properties. In addition, it is desirable to interpose, in the discharge subchannel downstream of the partition in the general flow direction, a submerged weir which locally causes a transition from torrential flow, river flow and the formation of a jump and surges at a well localized location where this phenomenon does not present any disadvantages and avoids the formation of new surges further upstream.

Dans un mode particulier de réalisation, le sous-canal de l'engin qui débouche dans les moyens de pompage présente successivement une fraction constituant cuvette d'amortissement, puis une partie en chargé débouchant dans les moyens de pompage. Le sous-canal est à paroi pleine, de sorte que les pompes ne peuvent aspirer que de l'eau qui a pénétré dans le sous-canal en passant au-dessus ou au-dessous de la cloison.In a particular embodiment, the subchannel of the machine which opens into the pumping means successively has a fraction constituting a damping bowl, then a loaded portion opening into the pumping means. The sub-channel is full-walled, so that the pumps can only suck water that has entered the sub-channel by passing above or below the partition.

Etant donné que le débit aspiré par les moyens de pompage est sensiblement constant, ou du moins varie peu, alors que le débit prélevé par chaque conduit d'amenée varie périodiquement, par exemple du fait de la houle, le volume d'eau contenu dans la cuvette limitée en amont par la cloison varie en fonction du temps. Il faut éviter que le niveau bas de la surface libre dans la cuvette descende au-dessous d'une valeur limite pour laquelle les moyens de pompage aspireraient de l'air, ce qui risquerait de les détériorer. Ce résultat peut être atteint en donnant des dimensions en plan importantes à la cuvette. Mais, lorsque l'engin est prévu pour opérer dans des houles présentant un creux important, on arrive à des dimensions en plan inacceptables de la cuvette.Since the flow sucked by the pumping means is substantially constant, or at least varies little, while the flow sampled by each supply duct varies periodically, for example due to the swell, the volume of water contained in the bowl limited upstream by the partition varies as a function of time. It is necessary to prevent the low level of the free surface in the bowl from falling below a limit value for which the pumping means would suck in air, which would risk damaging them. This result can be achieved by giving large plan dimensions to the bowl. But, when the machine is designed to operate in swells having a large hollow, we arrive at unacceptable plan dimensions of the bowl.

Pour autoriser le fonctionnement dans des conditions telles que le débit prélevé varie notablement, sans pour autant exiger une cuvette d'amortissement de grandes dimensions, le sous-canal qui débouche dans les moyens de pompage est avantageusement muni de moyens d'alimentation en eau à partir de la nappe d'eau prévus pour fournir un débit d'appoint aux moyens de pompage, au moins lorsque le niveau dans ce canal descend jusqu'à un niveau déterminé ou le dépasse.To allow operation under conditions such that the flow rate withdrawn varies considerably, without however requiring a large damping bowl, the subchannel which opens into the pumping means is advantageously provided with means for supplying water to from the water table provided to provide an additional flow to the pumping means, at least when the level in this channel drops to or exceeds a determined level.

Ces moyens pour fournir un débit d'appoint peuvent se limiter à une ouverture de communication avec la nappe d'eau ménagée dans la paroi du sous-canal, avantageusement dans le plancher.These means for providing a make-up flow can be limited to an opening for communication with the sheet of water formed in the wall of the sub-channel, advantageously in the floor.

Cette ouverture sera généralement placée à l'entrée de la partie en charge du sous-canal qui débouche dans les moyens de pompage ou immédiatement en amont. L'entrée de la partie en charge pourra constituer un seuil en saillie vers le bas par rapport à la portion en aval, de façon à mieux éviter l'aspiration d'air vers les moyens de pompage.This opening will generally be placed at the entrance to the part in charge of the subchannel which opens into the pumping means or immediately upstream. The entry of the loaded part may constitute a threshold projecting downward relative to the downstream portion, so as to better avoid the aspiration of air towards the pumping means.

L'invention sera mieux comprise à la lecture de la description qui suit de modes particuliers de réalisation donnés à titre d'exemples non limitatifs. La description se réfère aux dessins qui l'accompagnent, dans lesquels:

  • - la figure 1 est un schéma de principe montrant la forme en plan de l'engin à la flottaison et une forme possible de l'aile avant de création de tourbillons et de l'aile arrière d'amortissement de la houle;
  • - la figure 2 est une vue en perspective schématique montrant la coque et les ailes de l'engin de la figure 1 ;
  • - les figures 3 et 4 montrent, respectivement en plan et en élévation, la disposition d'une aile avant de création de tourbillons déflecteurs;
  • - les figures 5 et 6 montrent, respectivement en plan eten élévation (ligne VI-VI de la figure 5), une forme possible d'aile et d'aileron de relèvement de tourbillon;
  • - les figures 7 et 8 montrent, respectivement en plan et suivant la direction VIII de la figure 7, une forme d'aile constituant une variante de celle des figures 5 et 6;
  • - la figure 9 est un schéma montrant la forme générale du plancher d'un conduit de prise, en coupe suivant une surface verticale;
  • - les figures 10A à 10G sont des vues en coupe transversale montrant une évolution possible de la forme du plancher et de l'aile verticale située à l'orifice de prise;
  • - la figure 11 est un schéma en perspective montrant le fractionnement du conduit en deux sous-canaux par une cloison oblique;
  • - la figure 12 est un schéma de principe, en coupe suivant un plan vertical, montrant l'allure d'un séparateur centrifuge à surface libre alimenté par l'un des sous-canaux de la figure 11;
  • - la figure 13 est une coupe, similaire aux figures 10, montrant l'allure du profil de l'aile arrière;
  • - les figures 14 et 15 sont des schémas de principe, respectivement en plan et en élévation, montrant une constitution du deuxième sous-canal de nature à éviter des déferlements dans le conduit;
  • - la figure 16 montre une constitution possible d'une aile annulaire permettant d'augmenter encore l'épaississement de la couche de liquide léger en amont des conduits;
  • - les figures 17 et 18 montrent schématiquement une autre variante de réalisation, respectivement en vue de dessus et en coupe suivant la ligne XVII-XVII;
  • - la figure 19 est une courbe montrant la variation des débits d'alimentation d'un sous-canal et d'aspiration par la pompe en fonction du temps t;
  • - la figure 20 est un schéma de principe, en coupe verticale, montrant les variations du niveau d'eau dans la chambre d'amortissement, dans le cas d'une disposition du genre montré en figure 11;
  • - la figure 21, similaire à la figure 20, correspond à un mode d'exécution de l'invention.
The invention will be better understood on reading the following description of particular embodiments given by way of nonlimiting examples. The description refers to the accompanying drawings, in which:
  • - Figure 1 is a block diagram showing the plan shape of the buoyancy device and a possible shape of the front wing to create vortices and the rear wave damping wing;
  • - Figure 2 is a schematic perspective view showing the hull and the wings of the machine of Figure 1;
  • - Figures 3 and 4 show, respectively in plan and elevation, the arrangement of a wing before creating deflector vortices;
  • - Figures 5 and 6 show, respectively in plan and elevation (line VI-VI of Figure 5), a possible form of wing and aileron for raising the vortex;
  • - Figures 7 and 8 show, respectively in plan and in the direction VIII of Figure 7, a wing shape constituting a variant of that of Figures 5 and 6;
  • - Figure 9 is a diagram showing the general shape of the floor of an intake duct, in section along a vertical surface;
  • - Figures 10A to 10G are cross-sectional views showing a possible evolution of the shape of the floor and the vertical wing located at the intake orifice;
  • - Figure 11 is a perspective diagram showing the division of the conduit into two sub-channels by an oblique partition;
  • - Figure 12 is a block diagram, in section along a vertical plane, showing the appearance of a centrifugal separator with free surface fed by one of the subchannels of Figure 11;
  • - Figure 13 is a section, similar to Figures 10, showing the shape of the profile of the rear wing;
  • - Figures 14 and 15 are block diagrams, respectively in plan and elevation, showing a constitution of the second subchannel so as to avoid surges in the conduit;
  • - Figure 16 shows a possible constitution of an annular wing allowing to further increase the thickening of the layer of light liquid upstream of the conduits;
  • - Figures 17 and 18 schematically show another alternative embodiment, respectively in top view and in section along the line XVII-XVII;
  • - Figure 19 is a curve showing the variation of the feed rates of a subchannel and suction by the pump as a function of time t;
  • - Figure 20 is a block diagram, in vertical section, showing the variations in the water level in the damping chamber, in the case of an arrangement of the kind shown in Figure 11;
  • - Figure 21, similar to Figure 20, corresponds to an embodiment of the invention.

Avant de décrire l'engin, il faut rappeler qu'il constitue un navire qui se déplace à la surface de la mer et que le mouvement initial du liquide léger par rapport ce navire est celui d'une couche mince, de largeur illimitée à l'échelle du navire animé d'un mouvement de translation horizontale uniforme, auquel se superpose le mouvement dû à la houle.Before describing the craft, it should be remembered that it constitutes a vessel which moves on the surface of the sea and that the initial movement of the light liquid with respect to this vessel is that of a thin layer, of unlimited width at 'scale of the ship animated by a movement of uniform horizontal translation, to which is superimposed the movement due to the swell.

Si, comme c'est le cas général, l'opération finale d'extraction du liquide léger s'effectue, dans un séparateur utilisant les forces centrifuges, à l'aide d'un tube central, il est souhaitable d'amener les lignes de courant à s'infléchir progressivement pour passer d'une translation uniforme en amont de l'engin à un mouvement convergent vers l'axe vertical des séparateurs avec une composante radiale de vitesse. La solution la plus rationnelle pour cela consiste à donner aux lignes de courant du liquide léger une forme qui, initialement rectiligne, se transforme en une spirale logarithmique au voisinage du tube de prélèvement.If, as is the general case, the final operation of extraction of the light liquid is carried out, in a separator using centrifugal forces, using a central tube, it is desirable to bring the lines of current to gradually bend to pass from a uniform translation upstream of the machine to a convergent movement towards the vertical axis of the separators with a radial component of speed. The most rational solution for this consists in giving the streamlines of the light liquid a shape which, initially rectilinear, turns into a logarithmic spiral in the vicinity of the sampling tube.

Pour cela, la partie centrale 10 et les parties latérales 11 de la coque 12 présentent des surfaces qui délimitent l'écoulement suivant des spirales internes 13 et des spirales externes 14 et se rejoignent en un point de rebroussement 15 (fig. 1). Ces surfaces latérales doivent se prolonger à peu près verticalement, au moins jusqu'à une profondeur qui est choisie en fonction du creux de houle maximum pour lequel l'engin est conçu. Dans la pratique, cette verticalité est assurée jusqu'à une profondeur qui est de l'ordre de la moitié du tirant d'eau D de L'engin.For this, the central part 10 and the lateral parts 11 of the shell 12 have surfaces which delimit the flow along internal spirals 13 and external spirals 14 and meet at a cusp point 15 (fig. 1). These lateral surfaces must extend approximately vertically, at least up to a depth which is chosen according to the maximum wave depth for which the machine is designed. In practice, this verticality is ensured up to a depth which is of the order of half of the draft D of the machine.

Les surfaces 13 sont ainsi constituées par la muraille de la partie centrale 10 de la coque, à partir de l'étrave qui doit être conçue pour limiter au maximum fa vague d'étrave qui crée des turbulences. Chaque surface externe 14 est mtérialisée par la paroi intérieure d'une partie latérale 11 depuis l'étrave 30 de cette derniére, qui sera généralement située à mi-longueur de la coque. La figure 1 mon- treque l'on arrive ainsi à une forme qui, entre l'étrave de La partie centrale 10 et un point approximativement à mi-longueur du navire, correspond à la moitié avant d'une coque de navire classique. En- trechaque étrave d'une partie latérale 11 et la poupe, la ligne de flottaison correspond sensiblement à la moitié arrère d'un navire monocoque ayant un maître couple ptus grand que celui de la coque centrale 10.The surfaces 13 are thus formed by the wall of the central part 10 of the hull, starting from the bow which must be designed to limit as much as possible the wave of the bow which creates turbulence. Each external surface 14 is materialized by the internal wall of a lateral part 11 from the bow 30 of the latter, which will generally be located at mid-length of the hull. FIG. 1 shows thus a shape which, between the bow of the central part 10 and a point approximately halfway along the length of the ship, corresponds to the forward half of a conventional ship hull. Between each bow of a lateral part 11 and the stern, the water line corresponds substantially to the stern half of a monohull ship having a greater torque than that of the central hull 10.

Les paramètres de forme globaux de l'engin (et notamment la longueur totale L, la largeur hors tout 2I et la largeur de prise 2Ic) doivent être proportionnés les uns aux autres pour assurer un écoulement satisfaisant. Dans la pratique, le rapport L/2I restera compris entre 3,6 et 4 environ. Le rapport I/Ic sera compris entre 1,5 et 2,5, une valeur de l'ordre de 2 étant généralement satisfaisante.The overall shape parameters of the machine (and in particular the total length L, the overall width 2I and the grip width 2Ic) must be proportional to each other to ensure satisfactory flow. In practice, the L / 2I ratio will remain between approximately 3.6 and 4. The ratio I / Ic will be between 1.5 and 2.5, a value of the order of 2 being generally satisfactory.

Un troisième paramètre important est le rapport D/Ldu tirant d'eau à la longueur. Mais le choix de ce rapport doit tenir compte d'impératifs différents suivant qu'il s'agit d'un engin destiné à travailler au large ou à proximité immédiate des côtes.A third important parameter is the D / L ratio of draft to length. But the choice of this ratio must take into account different requirements depending on whether it is a machine intended to work offshore or in the immediate vicinity of the coast.

Dans le premier cas, la longueur L sera généralement supérieure à 75 m et D/Lsera alors déterminé par la valeur maximale que l'on peut donner à D pour un travail de dépollution, généralement inférieure à 12 m: on arrive à une valeur inférieure à 0,1, c'est-à-dire à un engin très plat.In the first case, the length L will generally be greater than 75 m and D / L will then be determined by the maximum value that can be given to D for a pollution control work, generally less than 12 m: we arrive at a lower value 0.1, that is to say a very flat machine.

Au contraire, les engins destinés à opérer près des côtes, les plus fréquents, auront une longueur inférieure à 75 m et, dans ce cas, on peut adopter une valeur de D/L entre 0,14 et 0,16.On the contrary, the most frequent devices intended to operate near the coasts will have a length of less than 75 m and, in this case, a value of D / L can be adopted between 0.14 and 0.16.

Quant au rapport D/Ic, également important, il sera lui aussi très différent suivant qu'il s'agit d'un engin de haute mer, où on aura D/Ic = 0,9, ou côtier, où l'on aura D/Ic = 2,25.As for the D / Ic ratio, also important, it will also be very different depending on whether it is a deep sea craft, where we will have D / Ic = 0.9, or coastal, where we will have D / Ic = 2.25.

Dans tous les cas, on voit que, lorsque l'engin avance dans la direction de la flèche V, la nappe d'eau portant une couche de polluant peut contourner la partie centrale 10 et s'engouffrer dans les conduits ou chenaux 16 délimités par les surfaces 13 et 14, dont l'orifice de prise a généralement une largeur Ic de l'ordre du quart de la largeur hors tout 21 de l'engin. On constate immédiatement que le débit qui pénètre dans chaque conduit 16 est énorme. En moyenne, il s'agit d'une lame d'eau et de polluant dont l'épaisseur sera approximativement égale à la moitié du tirant d'eau D, dont la vitesse est de l'ordre de celle du navire et dont la largeur est d'environ la moitié de la largeur I au maître couple.In all cases, it can be seen that, when the machine advances in the direction of arrow V, the layer of water carrying a layer of pollutant can bypass the central part 10 and rush into the conduits or channels 16 delimited by the surfaces 13 and 14, the grip orifice of which generally has a width Ic of the order of a quarter of the overall width 21 of the machine. It is immediately noted that the flow rate which enters each conduit 16 is enormous. On average, it is a sheet of water and pollutant whose thickness will be approximately equal to half the draft D, whose speed is of the order of that of the ship and whose width is about half the width I to the master couple.

Le débit prélevé par le tube plongeur du séparateur doit être de deux ordres de grandeur au moins inférieur à ce débit d'entrée, ce qui conduit à rechercher un épaississement de la couche de liquide léger avant admission aux séparateurs. Cet épaississement va s'effectuer en plusieurs étapes, sous l'action de composants placés en série et qui seront successivement décrits.The flow rate taken by the separator dip tube must be at least two orders of magnitude lower than this inlet flow rate, which leads to seeking a thickening of the layer of light liquid before admission to the separators. This thickening will be carried out in several stages, under the action of components placed in series and which will be successively described.

Moyens déflecteurs avant: Comme dans le cas de l'engin décrit dans le document FR-A-2467769, des moyens déflecteurs sont prévus pour faire converger les filets de liquide en surface, sans pour autant provoquer des phénomènes de déferlement ou de ressaut.Front deflector means: As in the case of the device described in the document FR-A-2467769, deflector means are provided for converging the threads of liquid on the surface, without however causing surge or jump phenomena.

Dans le cas illustré en figures 1 et 2, ces moyens comprennent une aile avant en flèche 17, munie d'ailerons 18 dirigés vers le haut, dont les pieds convergent vers l'avant et dont le rôle sera exposé plus loin. Il s'agit là d'une disposition qui ne se différencie de celle du document FR-A-2467 769 que par la présence des ailerons. L'aile 17, à portance positive, crée des tourbillons provoquant une convergence en surface.In the case illustrated in FIGS. 1 and 2, these means comprise a jagged front wing 17, provided with fins 18 directed upwards, the feet of which converge forward and whose role will be explained below. This is a provision which differs from that of document FR-A-2467 769 only by the presence of the fins. The wing 17, with positive lift, creates vortices causing convergence on the surface.

Cette disposition n'est pas la seule possible; avant de décrire des variantes de réalisation, il est préférable d'analyser le rôle des moyens déflecteurs et d'en déduire les caractéristiques à rechercher et la façon dont les obtenir.This provision is not the only one possible; before describing variant embodiments, it is preferable to analyze the role of the deflector means and to deduce therefrom the characteristics to be sought and the way in which to obtain them.

Lorsque les moyens déflecteurs sont constitués par une aile, cette dernière doit engendrer des tourbillons marginaux dont l'efficacité (mesurée par le déplacement transversal relatif des filets d'eau qu'elle provoque en surface) est aussi importante que possible sans provoquer des déferlements en surface, pour une vitesse donnée de l'engin.When the deflector means consist of a wing, the latter must generate marginal eddies whose efficiency (measured by the relative transverse displacement of the water streams which it causes on the surface) is as high as possible without causing surges in surface, for a given speed of the machine.

Le déplacement transversal est proportionnel à la circulation du tourbillon créé par les ailes. Il augmente avec la distance, projetée sur l'axe longitudinal, qui sépare l'étrave 30 de la partie latérale de l'origine du tourbillon, ainsi qu'avec la distance qui sépare le tourbillon du plan de symétrie.The transverse displacement is proportional to the circulation of the vortex created by the wings. It increases with the distance, projected on the longitudinal axis, which separates the stem 30 from the lateral part of the origin of the vortex, as well as with the distance which separates the vortex from the plane of symmetry.

L'influence de la profondeur de l'aile est moins marquée: si l'efficacité d'un tourbillon passe par un maximum lorsque la profondeur de l'aile, égale au tirant d'eau, est égale à la/2 (figures 3 et 4), ce maximum est assez plat.The influence of the depth of the wing is less marked: if the efficiency of a vortex goes through a maximum when the depth of the wing, equal to the draft, is equal to l a / 2 (figures 3 and 4), this maximum is fairly flat.

Pour augmenter la distance entre l'étrave de la coque latérale et l'origine du tourbillon, il faut déplacer l'aile 31 vers l'avant, ce qui conduit à placer le bord d'attaque de l'aile 31 en avant du point où l'étrave 20 coupe la ligne d'eau, donc à augmenter la longueur hors tout de l'engin. On peut remarquer que cette augmentation de longueur n'intervient toutefois que par rapport à la ligne d'eau 32 du bateau, l'étrave pouvant faire saillie en forme d'éperon au-dessous de la ligne d'eau, comme on le verra plus loin.To increase the distance between the bow of the lateral hull and the origin of the vortex, it is necessary to move the wing 31 forward, which leads to placing the leading edge of the wing 31 in front of the point where the bow 20 cuts the water line, thus increasing the overall length of the machine. It can be noted that this increase in length only occurs with respect to the water line 32 of the boat, the bow possibly protruding in the shape of a spur below the water line, as will be seen further.

Si on veut augmenter la distance qui sépare l'origine du tourbillon du plan de symétrie, on est pratiquement limité à adopter la = I, aucun marin n'acceptant volontiers que les oeuvres vives du bateau aient un encombrement latéral supérieur à celles des parties visibles du pont.If we want to increase the distance which separates the origin of the vortex from the plane of symmetry, we are practically limited to adopting the = I, no sailor willingly accepting that the live works of the boat have a greater lateral dimensions than those of the visible parts from the bridge.

L'efficacité du tourbillon marginal, qui regroupe toute la circulation d'une nappe de tourbillons libres déversée par l'aile, est égale à la circulation autour du profil à son emplanture, elle-même proportionnelle à la portance du profil. Il est donc souhaitable d'augmenter cette portance, mais cet accroissement va se heurter à d'autres impératifs qui sont également à respecter.The efficiency of the marginal vortex, which gathers all the circulation of a sheet of free vortices poured out by the wing, is equal to the circulation around the profile at its root, itself proportional to the lift of the profile. It is therefore desirable to increase this lift, but this increase will come up against other imperatives which must also be respected.

Pour augmenter la portance à partir d'un profil initial indiqué en trait plein sur la figure 4, qui conduit à une profondeur ho du point le plus haut, on peut augmenter l'incidence de l'aile ou sa cambrure. Dans les deux cas, le point le plus haut est situé à une profondeur plus faible, h1 ou hz. Le coefficient de survitesse augmentant également avec la circulation, le nombre de Froude F = v/.Jgh (v étant la vitesse maximale en surface) augmente donc pour une vitesse V donnée de l'engin quand on augmente la portance. Or, pour éviter le déferlement en surface, il faut respecter la condition F 6 1, ce qui limite la portance acceptable.To increase the lift from an initial profile indicated in solid lines in Figure 4, which leads to a depth h o from the highest point, one can increase the incidence of the wing or its camber. In both cases, the highest point is located at a shallower depth, h 1 or h z . The overspeed coefficient also increasing with circulation, the Froude number F = v / .J g h (v being the maximum surface speed) therefore increases for a given speed V of the machine when the lift is increased. However, to avoid the surface surge, the condition F 6 1 must be respected, which limits the acceptable lift.

De plus, les considérations ci-dessus ne tiennent pas compte de la présence de la partie centrale 10 de la coque qui provoque des perturbations de vitesse en surface (sous-vitesse au voisinage de l'étrave 20, survitesse en aval). C'est la résultante des perturbations dues à l'aile et des perturbations dues à la coque qui intervient pour définir la valeur de v à ne pas dépasser. On a donc intérêt à faire coïncider, dans la mesure du possible, le point où l'étrave 20 coupe la surface libre de la nappe d'eau avec celui où l'extrados du profil d'aile passe par le point le plus haut (figure 4).In addition, the above considerations do not take into account the presence of the central part 10 of the hull which causes surface speed disturbances (under speed in the vicinity of the bow 20, overspeed downstream). It is the result of disturbances due to the wing and disturbances due to the hull which intervenes to define the value of v not to be exceeded. It is therefore advantageous to make the point where the stem 20 intersects the free surface of the water table coincide, as far as possible, with the point where the upper surface of the wing profile passes through the highest point ( figure 4).

Comme par ailleurs, il faut assurer une liaison mécanique robuste entre la partie centrale 10 de la coque et l'aile 31, il est souhaitable de prolonger l'étrave 20 vers l'avant sous la surface libre, pour constituer un éperon muni d'un bulbe de raccordement avec l'aile. Les figures 5 et 6, où la forme de la partie centrale 10 au niveau de la surface libre est montrée en traits épais, tandis que la forme à l'emplacement du raccordement avec l'aile est montrée en traits fins et une ligne de niveau intermédiaire en tirets, montre une disposition qui s'est révélée particulièrement satisfaisante.As in addition, it is necessary to ensure a robust mechanical connection between the central part 10 of the hull and the wing 31, it is desirable to extend the bow 20 forwards under the free surface, to constitute a spur provided with a connection bulb with the wing. Figures 5 and 6, where the shape of the central part 10 at the free surface is shown in thick lines, while the shape at the location of the connection with the wing is shown in thin lines and a level line intermediate in dashes, shows a layout which has proved particularly satisfactory.

Toutefois, une aile isolée donne aux tourbillons une profondeur d'immersion du tourbillon marginal qui est supérieure à la valeur optimale, mentionnée plus haut, même dans le cas d'un engin relativement plat, pour lequel D/Ic est de l'ordre de 0,9, et à fortiori dans le cas d'engins à fort tirant d'eau (D/Ic de l'ordre de 2,25).However, an isolated wing gives the vortices a marginal vortex immersion depth which is greater than the optimal value, men mentioned above, even in the case of a relatively flat craft, for which D / I c is of the order of 0.9, and a fortiori in the case of heavy draft craft (D / I c of the order of 2.25).

Il est donc souhaitable de relever le niveau du tourbillon.It is therefore desirable to raise the level of the vortex.

Dans le cas d'un engin relativement plat, ce résultat peut être atteint en munissant chaque aile 31 d'un aileron 32 pratiquement vertical. Pour tenir compte de la déflexion des filets d'eau provoqués en surface par la partie centrale 10 de la coque, il est souhaitable de donner au plan vertical bisec- teur au bord de fuite de l'aileron 32 une inclinaison importante par rapport au plan médian, typiquement 30 à 35°. Ce résultat peut être obtenu soit avec un profil à faible cambrure et forte incidence, comme indiqué dans le cas de la figure 5, soit avec une incidence moyenne et une forte cambrure.In the case of a relatively flat machine, this result can be achieved by providing each wing 31 with a substantially vertical fin 32. To take into account the deflection of the water streams caused on the surface by the central part 10 of the hull, it is desirable to give the vertical plane bisector at the trailing edge of the fin 32 a significant inclination relative to the plane median, typically 30 to 35 °. This result can be obtained either with a profile with low camber and high incidence, as indicated in the case of FIG. 5, or with an average incidence and a high camber.

Une autre solution, montrée en figures 7 et 8, consiste à donner à la partie terminale de l'aile 31 une forme «enroulée»: cette dernière solution sera généralement préférable dans le cas d'engins à fort tirantd'eau. Làencore, leplan bisecteurde la partie terminale de l'aile, présentant un dièdre important, doit être fortement inetiné sur le plan médian, du navire (figures 7 et 8).Another solution, shown in FIGS. 7 and 8, consists in giving the end portion of the wing 31 a “rolled up” shape: this latter solution will generally be preferable in the case of machines with a high draft. Again, the bisector plane of the terminal part of the wing, having a large dihedral, must be strongly incised on the median plane of the vessel (Figures 7 and 8).

Ralentissement et épaississement de la couche à l'orifice de priseSlowing and thickening of the layer at the gripping orifice

La réalisation de moyens de prise, à l'entrée des conduits ou chenaux, pose différents problèmes dont les plus importants sont d'éviter la formation de déferlement ou de ressaut et le rejet, à l'extérieur des étraves latérales 30, d'une fraction du liquide léger.The production of gripping means, at the entrance to the conduits or channels, poses various problems, the most important of which are to avoid the formation of surges or projections and the rejection, outside the lateral bows 30, of a fraction of the light liquid.

Le risque de déferlement apparaît si l'on étudie la situation immédiatement en amont du seuil de l'orifice de prise, de largeur Ic en présence d'oscillations de niveau dues par exemple à la houle. Si on désigne par De la profondeur du seuil du conduit et par Vc la vitesse au-dessus de ce seuil l'épaisseur d'eau au-dessus du seu sera, au passage du creux d'une houle d'amplitude A:

Figure imgb0001
The risk of breaking out appears if we study the situation immediately upstream of the threshold of the intake orifice, of width I c in the presence of level oscillations due for example to swell. If we designate By From the depth of the threshold of the conduit and by V c the speed above this threshold the thickness of water above the threshold will, when passing the hollow of a swell of amplitude A:
Figure imgb0001

Le nombre de Froude correspondant sera

Figure imgb0002
The corresponding Froude number will be
Figure imgb0002

Ce nombre de Froude ne doit pas dépasser 1, ce qui signifie que la profondeur d'immersion Dc du seuil en eau calme doit être:

Figure imgb0003
This Froude number must not exceed 1, which means that the immersion depth D c of the threshold in calm water must be:
Figure imgb0003

Par ailleurs, il faut donner à Dc la plus petite valeur possible, pour minimiser le débit moyen d'eau captée, qui est égal à nc Dc v.Furthermore, it is necessary to give D c the smallest possible value, in order to minimize the average flow rate of water collected, which is equal to n c D c v.

On voit l'intérêt d'obtenir une valeur de v nettement inférieure à la vitesse V du navire, par exemple de l'ordre de 0,5 à 0,6 V, donc de ralentir l'écoulement du liquide immédiatement en amont du seuil. Mais il faut en même temps éviter une divergence locale appréciable de la couche polluante, qui diminuerait la largeur de captation et l'épaisseur de cette couche.We see the advantage of obtaining a value of v significantly lower than the speed V of the ship, for example of the order of 0.5 to 0.6 V, therefore to slow the flow of the liquid immediately upstream of the threshold. . However, at the same time, an appreciable local divergence of the polluting layer must be avoided, which would reduce the capture width and the thickness of this layer.

Dans la pratique, comme indiqué plus haut, on cherchera à donner au seuil une profondeur De de l'ordre du tiers du tirant d'eau D du navire et ce choix n'est possible qu'avec un ralentissement important.In practice, as indicated above, we will seek to give the threshold a depth D on the order of a third of the draft D of the ship and this choice is only possible with a significant slowdown.

Ce ralentissement peut être obtenu en délimitant inférieurement la veine ouverte par un plancher 33 présentant une forme générale d'aile horizontale à portance négative. L'allure générale du profil, suivant la ligne en trait mixte de la figure 1, peut alors être celle montrée en figure 9. L'aile a une envergure égale à Ic. Son bord d'attaque est à une profondeur de l'ordre de D/2 si le seuil est à un niveau de D/3. En arrière d'un seuil, à profondeur D/3, la face supérieure de l'aile descend pour augmenter la profondeur du conduit, puis se relève tandis que l'extrados descend jusqu'à une profondeur sensiblement égale au tirant d'eau.This slowing down can be obtained by delimiting the open vein below by a floor 33 having a general shape of a horizontal wing with negative lift. The general shape of the profile, along the dashed line in Figure 1, can then be that shown in Figure 9. The wing has a span equal to I c . Its leading edge is at a depth of the order of D / 2 if the threshold is at a level of D / 3. Behind a threshold, at depth D / 3, the upper face of the wing descends to increase the depth of the duct, then rises while the upper surface descends to a depth substantially equal to the draft.

Si elle est utilisée isolément, une telle forme de plancher assure effectivement un ralentissement mais elle crée un tourbillon marginal qui tend à remonter à l'intérieur de l'étrave de la partie latérale 11 et à provoquer le déversement de la couche de polluant vers l'extérieur.If used in isolation, such a form of floor effectively slows down, but it creates a marginal vortex which tends to rise inside the bow of the lateral part 11 and cause the pollutant layer to spill towards the 'outside.

Diverses solutions peuvent être utilisées pour écarter cet inconvénient.Various solutions can be used to overcome this drawback.

Un premier pallatif consiste à prolonger le plancher vers l'avant au-delà de l'étrave 20 et à donner à son bord d'attaque une forme présentant, du moins à proximité de la partie centrale 10, une flèche inversée. Sur l'a figure 1, le bord d'attaque présente, sur la majeure partie de son développement à partir de la partie centrale une flèche inversée, tandis que la partie externe 34 présente une flèche notable, à partir d'une pointe qui se trouve légèrement à l'intérieur de l'étrave dans le sens transversal. Les tourbiltons créés par la portion en flèche inverse provoquent une convergence de la couche de liquide légervers la partie centrale 10, ce qui est favorable. Mais les tourbillons dus à l'autre partie, ainsi que le tourbillon vertical dû à la pointe, tendent à provoquer une divergence.A first remedy consists in extending the floor forwards beyond the bow 20 and in giving its leading edge a shape having, at least near the central part 10, an inverted arrow. In FIG. 1, the leading edge has, on most of its development from the central part an inverted arrow, while the external part 34 has a notable arrow, from a point which is located slightly inside the bow in the transverse direction. The vortices created by the reverse arrow portion cause convergence of the layer of liquid lightening the central part 10, which is favorable. But the vortices due to the other party, as well as the vertical vorticity due to the tip, tend to cause divergence.

Cette divergence résiduelle peut être compensée dans une large mesure par l'adjonction au plancher d'une aile verticale 35 dirigée vers le bas, du genre montré en traits mixtes sur la figure 9. Si elle était isolée, cette aile libérerait un tourbillon marginal dans un sens tendant à faire converger les filets fluides à une profondeur de l'ordre de D/2, ainsi qu'un tourbillon marginal antagoniste sans incidence sur l'écoulement en surface, à la profondeur D. Lorsqu'une telle aile 35 est assemblée au plancher, et si les deux profilssont choisis de façon à créer des circulations comparables, le tourbillon créé par l'aile 35 compense le tourbillon créé par la partie 34 du plancher et, de ce fait, le tourbillon vertical au niveau de la pointe disparaît.This residual divergence can be largely compensated by the addition to the floor of a vertical wing 35 directed downwards, of the kind shown in phantom in Figure 9. If it were isolated, this wing would release a marginal vortex in a direction tending to make the fluid threads converge at a depth of the order of D / 2, as well as an antagonistic marginal vortex with no effect on the surface flow, at depth D. When such a wing 35 is assembled to the floor, and if the two profiles are chosen so as to create comparable circulations, the vortex created by the wing 35 compensates for the vortex created by the part 34 of the floor and, therefore, the vertical vortex at the level of the tip disappears .

Atitre d'exemple, on a représenté en figures 10A à 10G des profils successifs du plancher 33. Sur ces figures, le profil de la partie centrale 10 de la coque à l'emplacement de la coupe est indiqué en traits pleins, tandis que le maître couple est indiqué en traits mixtes.As an example, there are shown in FIGS. 10A to 10G successive profiles of the floor 33. In these figures, the profile of the central part 10 of the shell at the location of the cut is indicated in solid lines, while the master couple is indicated in dashed lines.

La figure 1 OA montre une coupe suivant le plan A de la figure 1, immédiatement en arrière de la pointe du plancher. On y voit l'aile verticale 35 ainsi qu'un fragment, de faible largeur, du plancher. Les figures 10B, 1 OC et 1 OD sont des coupes dans des plans échelonnés depuis celui de la figure 10A jusqu'à l'étrave 30 de la partie latérale (figure 1 OD). La figure 10E montre l'évolution de la section droite immédiatement derrière l'étrave, et notamment l'épaississement de la coque latérale 11. Enfin, les figures 10F et 10G sont des coupes approximativement au niveau des plans F et G de la figure 1.Figure 1 OA shows a section along the plane A of Figure 1, immediately behind the tip of the floor. We can see the vertical wing 35 and a small fragment of the floor. Figures 10B, 1 OC and 1 OD are sections in planes staggered from that of Figure 10A to the bow 30 of the lateral part (Figure 1 OD). FIG. 10E shows the evolution of the cross section immediately behind the bow, and in particular the thickening of the lateral hull 11. Finally, FIGS. 10F and 10G are sections approximately at the level of the planes F and G of FIG. 1 .

Sur la figure 10G, on voit que la coque latérale 11 se creuse vers le haut progressivement. Cette forme correspond à un mode de réalisation dans lequel la cloison de séparation entre les deux sous-canaux constitue déversoir, une faible fraction du débit capté se déversant, à partir du conduit, dans un sous-canal d'alimentation du séparateur. On a représenté en tirets sur la figure 10G l'allure générale que prend la cloison de séparation 36 en arrière de la section suivant le plan G.In FIG. 10G, it can be seen that the lateral shell 11 is progressively increasing upwards. This form corresponds to an embodiment in which the partition between the two sub-channels constitutes a weir, a small fraction of the captured flow discharging, from the conduit, into a sub-channel supplying the separator. There is shown in dashed lines in FIG. 10G the general appearance of the partition 36 behind the section along the plane G.

Soutirage progressifProgressive racking

Comme cela a déjà été indiqué plus haut, il est nécessaire d'orienter vers un canal de décharge la majeure partie de l'eau captée jusqu'à une profondeur approximativement égale au demi-tirant d'eau de l'engin. Ce résultat peut être atteint grâce à un soutirage au-dessous d'une cloison. Sous réserve que le polluant capté ne soit pas entraîné par le mouvement descendant de l'eau pour passer sous la cloison, la couche de liquide léger polluant s'épaissit au fur et à mesure que l'on se rapproche du séparateur.As already indicated above, it is necessary to direct most of the water captured to a discharge channel to a depth approximately equal to the draft of the machine. This can be achieved by racking below a partition. Provided that the pollutant captured is not entrained by the downward movement of water to pass under the partition, the layer of light polluting liquid thickens as one approaches the separator.

Le problème à résoudre est alors l'organisation d'un écoulement en veine ouverte dans les conduits compatible à la fois avec la stabilité nécessaire de l'interface eau-liquide léger, même en présence de houle, avec soutirage de la quasi-totalité du débit liquide initialement capté dans le conduit.The problem to be solved is then the organization of an open vein flow in the conduits compatible both with the necessary stability of the light water-liquid interface, even in the presence of swell, with withdrawal of almost all of the liquid flow initially captured in the conduit.

Pour mieux faire comprendre le mécanisme du soutirage et le rôle des divers éléments qui entrent en jeu pour l'effectuer, on fera référence à la figure 11 qui schématise la disposition de la cloison transversale qui sépare chaque conduit progressivement en deux sous-canaux.To better understand the withdrawal mechanism and the role of the various elements that come into play to perform it, reference will be made to Figure 11 which shows schematically the arrangement of the transverse partition which separates each conduit gradually into two sub-channels.

La figure 11 montre un conduit d'amenée à section constante, que l'on assimilera au canal délimité par les surfaces 13 et 14 et le plancher 23 sur la figure 1. La cloison 37 est placée obliquement par rapport à la direction du conduit, de façon à réduire progressivement la section de passage offerte à un sous-canal 38 qui va vers le séparateur. Cette cloison se termine, vers le haut, au-dessus de la surface libre et, en dessous, à distance du fond du canal. Une fraction du débit est ainsi progressivement soutirée par le fond dans un volume constituant cuvette d'amortissement 39, qui se prolonge par un sous-canal d'évacuation 40 dont la paroi externe 41 est constituée par la paroi intérieure de la partie latérale de la coque. Cette paroi externe du sous-canal d'échappement est représentée rectiligne sur la figure 11. Dans la pratique, elle sera évidemment conformée pour correspondre à la forme de la coque.FIG. 11 shows a constant section supply duct, which will be assimilated to the channel delimited by the surfaces 13 and 14 and the floor 23 in FIG. 1. The partition 37 is placed obliquely with respect to the direction of the duct, so as to gradually reduce the passage section offered to a subchannel 38 which goes towards the separator. This partition ends upwards above the free surface and below it at a distance from the bottom of the canal. A fraction of the flow is thus gradually drawn off from the bottom in a volume constituting a damping bowl 39, which is extended by an evacuation subchannel 40, the external wall 41 of which is formed by the internal wall of the lateral part of the shell. This external wall of the exhaust sub-channel is shown rectilinear in FIG. 11. In practice, it will obviously be shaped to correspond to the shape of the shell.

L'écoulement vers la cuvette 39 implique un changement d'orientation des filets fluides. Pour éviter les turbulences, ce changement d'orientation est aidé par des aubes 42 qui, en même temps, soutiennent la cloison 37. De plus, la cloison est épaisse pour que le changement d'orientation soit progressif. La diminution de section droite qui résulte de la présence de la cloison est compensée par le fait que la cuvette représente une augmentation de la section de passage.The flow to the bowl 39 implies a change in orientation of the fluid threads. To avoid turbulence, this change of orientation is helped by vanes 42 which, at the same time, support the partition 37. In addition, the partition is thick so that the change of orientation is gradual. The reduction in cross section which results from the presence of the partition is compensated by the fact that the bowl represents an increase in the passage section.

Dans la cuvette approximativement triangulaire 39 et le sous-canal 40 qui lui succède en aval, le niveau de l'eau pourra varier. Il faut toutefois que cette variation reste dans un domaine limité inférieurement par le risque d'entrée d'air dans la pompe de rejet et, supérieurement, par la présence d'une charge inférieure à la charge amont. Si la pompe tourne à vitesse constante, ce qui sera le cas général, le débit qu'elle prélève dans la cuvette 39 diminue quand le niveau baisse, même dans le cas d'une section constante à l'éjection. Bien que cette variation de débit ne soit pas en phase avec celle du débit reçu par la cuvette 39, elle contribue à diminuer le volume tampon offert par la cuvette qui est nécessaire. Dans une variante de réalisation, l'orifice d'éjection est muni de moyens de réglage de section, par exemple à l'aide d'un volet commandé par un vérin. Dans ce cas, on peut asservir le vérin pour moduler la section d'éjection en fonction de la hauteur d'eau dans la cuvette, ce qui permet d'obtenir des variations de débit plus importantes et dont la phase est mieux adaptée, donc de réduire le volume tampon minimum requis de la cuvette.In the approximately triangular bowl 39 and the subchannel 40 which follows it downstream, the water level may vary. However, this variation must remain in a domain which is limited below by the risk of air entering the rejection pump and, above, by the presence of a load lower than the upstream load. If the pump rotates at constant speed, which will be the general case, the flow rate which it takes in the bowl 39 decreases when the level drops, even in the case of a constant section at ejection. Although this variation in flow rate is not in phase with that of the flow rate received by the bowl 39, it contributes to reducing the buffer volume offered by the bowl which is necessary. In an alternative embodiment, the ejection orifice is provided with section adjustment means, for example using a flap controlled by a jack. In this case, the actuator can be controlled to modulate the ejection section as a function of the height of water in the bowl, which makes it possible to obtain greater variations in flow and the phase of which is better adapted, therefore reduce the minimum required buffer volume of the cuvette.

Séparateur centrifugeCentrifugal separator

Le courant diphasique fourni par le sous-canal d'alimentation, dans lequel l'épaisseur de la couche de liquide léger estenviron dix fois plus grande qu'au début du conduit, est admis tangentiellement dans un séparateur centrifuge à veine ouverte. Dans ce séparateur, l'écoulement en veine ouverte d'alimentation doit donner naissance à deux écoulements en veinefermée, l'un constitué par un écoulement de décharge s'échappant par le fond du séparateur vers une pompe d'extraction, l'autre par un écoulement de prélèvement aspiré par des moyens de pompage vers des récipients de stockage.The two-phase current supplied by the supply subchannel, in which the thickness of the layer of light liquid is approximately ten times greater than at the start of the conduit, is admitted tangentially into a centrifugal separator with open vein. In this separator, the flow in the open supply vein must give rise to two closed vein flows, one consisting of a discharge flow escaping from the bottom of the separator to an extraction pump, the other by a sample flow sucked by pumping means to storage containers.

Le liquide léger étant souvent un hydrocarbure extrêmement visqueux, il est nécessaire de le réchauffer. Ce réchauffage est à peu près impossible à réaliser en veine ouverte. Il s'effectuera donc dans l'écoulement en veine fermée de prélèvement, qui commence à l'entrée d'un tube vertical plongeant dans la masse de liquide, jusqu'à une profondeur dans laquelle on trouve en permanence du polluant.The light liquid is often an extremely viscous hydrocarbon, it is necessary to warm it. This reheating is almost impossible to achieve in open vein. It will therefore be carried out in the flow in closed sampling vein, which begins at the entrance of a vertical tube plunging into the mass of liquid, to a depth in which pollutant is constantly found.

Avant de décrire le mode particulier de réalisation de séparateur qui est montré schématiquement en figure 12, il faut rappeler que le fonctionnement d'un séparateur en veine ouverte est très différent de celui d'un séparateur en veine fermée, où l'on peut obtenir facilement des valeurs de la composante tangentielle de la vitesse élevées, qui fournissent une accélération radiale très supérieure à l'accélération de la pesanteur. En effet, dans un écoulement en veine ouverte, la surface libre prend une pente proportionnelle au carré de la vitesse tangentielle, et une valeur trop élevée de cette dernière se traduirait par un creusement excessif de la région centrale de la masse de liquide. Par ailleurs, si les composantes radiale et verticale de la vitesse sont très faibles (et elles resteront toujours inférieures d'un ordre de grandeur à la composante tangentielle), l'interface entre la couche de liquide léger et l'eau reste sensiblement parallèle à la surface libre si la vitesse tangentielle reste constante sur toute la hauteur de la masse d'eau.Before describing the particular embodiment of a separator which is shown diagrammatically in FIG. 12, it should be recalled that the operation of an open vein separator is very different from that of a closed vein separator, where it is possible to obtain easily values of the tangential component of the velocity, which provide a much higher radial acceleration re to the acceleration of gravity. Indeed, in an open vein flow, the free surface takes a slope proportional to the square of the tangential speed, and a too high value of the latter would result in an excessive digging of the central region of the mass of liquid. Furthermore, if the radial and vertical components of the speed are very small (and they will always remain an order of magnitude lower than the tangential component), the interface between the layer of light liquid and the water remains substantially parallel to the free surface if the tangential speed remains constant over the entire height of the body of water.

Pour obtenir un épaississement, on prévoira des moyens qui donnent à la vitesse tangentielle une valeur décroissante de la surface vers le fond, à rayon autour de l'axe du séparateur constant.To obtain a thickening, means will be provided which give the tangential speed a decreasing value from the surface to the bottom, with radius around the axis of the constant separator.

Dans le mode de réalisation montré en figure 12, ce résultat est obtenu en constituant le séparateur par une cavité 45 d'axe vertical 46 dans laquelle pénètre un tube plongeur 47. Le sous-canal d'alimentation 38 débouchetangentiellement à la partie supérieure de la cavité 45 pour entretenir le mouvement de rotation. L'effet retardateur des frottements sur le tube central 47 donne à la surface libre 48 une forme du genre indiqué sur la figure 12 et provoque un épaississement de la couche de liquide léger, comme le montre la forme des frontières haute et basse 49 de l'interface sur la figure 12. Pratiquement, l'épaisseur maximale de couche polluante que l'on peut attemdre autour du tube 47 n'est limitée que par le risque d'entraînement du polluant vers le bas par l'écoulement de décharge.In the embodiment shown in FIG. 12, this result is obtained by constituting the separator by a cavity 45 with a vertical axis 46 into which a dip tube 47 penetrates. The supply sub-channel 38 opens tangentially at the top of the cavity 45 to maintain the rotational movement. The friction-retardant effect on the central tube 47 gives the free surface 48 a shape of the kind indicated in FIG. 12 and causes a thickening of the layer of light liquid, as shown by the shape of the upper and lower borders 49 of l 'interface in Figure 12. In practice, the maximum thickness of pollutant layer that can be allowed around the tube 47 is limited only by the risk of driving the pollutant down by the discharge flow.

Pratiquement, on obtient aisément une épaisseur de couche de liquide léger de l'ordre de la moitié du rayon du tourbillon à l'orifice d'alimentation, ce qui correspond, en général, à une épaisseur d'environ un centième de la longueur hors tout de l'engin.In practice, it is easy to obtain a thickness of layer of light liquid of the order of half the radius of the vortex at the supply orifice, which corresponds, in general, to a thickness of approximately one hundredth of the length outside everything from the craft.

Le séparateur montré sur la figure 12, que L'on peut considérer comme une coupe suivant un plan sensiblement parallèle au plan médian de t'engin, comporte une plaque épaisse horizontale 50 de partition percée d'un trou central approximativement circulaire et centré sur l'axe 46. La plaque 50 limite une chambre d'alimentation dans laquelle débouche le sous-canal d'alimentation 38 qui entretient l'écoulement tourbillonnaire et dont la paroi présente une forme approximativement cylindrique dont ta directrice est une spirale. La chambre de décharge placée au-dessous de la plaque 50 est délimitée vers le bas par un plancher 51. Elle s'ouvre par un canal d'échappement tangentiel 52. L'écoulement dans cette chambre et le canal d'échappement divergent présentent une large symétrie avec l'écoulement d'alimentation. Le moment cinétique de la masse d'eau déchargée est conservé, aux pertes de charge près. L'énergie correspondante peut être récupérée dans un tourbillon placé en aval ou le canal d'échappement 52 peut déboucher directement dans une pompe d'extraction, qui peut d'ailleurs être confondue avec la pompe de propulsion 53 (figure 1 ) qui reçoit le débit provenant du sous-canal 40. Il faut remarquer que, sauf dans la région centrale du tourbillon, le niveau de la veine libre dépassera celui de la flottaison du fait de la conservation de l'énergie de l'écoulement et il faut tenir compte du poids du volume d'eau correspondant dans l'équilibre longitudinal de l'engin.The separator shown in FIG. 12, which can be considered as a section along a plane substantially parallel to the median plane of the machine, comprises a thick horizontal partition plate 50 pierced with an approximately circular central hole and centered on the axis 46. The plate 50 limits a supply chamber into which opens the supply sub-channel 38 which maintains the vortex flow and whose wall has an approximately cylindrical shape of which the director is a spiral. The discharge chamber placed below the plate 50 is delimited downwards by a floor 51. It opens by a tangential exhaust channel 52. The flow in this chamber and the diverging exhaust channel have a wide symmetry with the supply flow. The angular momentum of the discharged water mass is preserved, except for pressure drops. The corresponding energy can be recovered in a vortex placed downstream or the exhaust channel 52 can lead directly into an extraction pump, which can moreover be confused with the propulsion pump 53 (FIG. 1) which receives the flow coming from subchannel 40. It should be noted that, except in the central region of the vortex, the level of the free vein will exceed that of the flotation due to the conservation of the energy of the flow and account must be taken the weight of the corresponding volume of water in the longitudinal balance of the machine.

Le tube 47 doit aspirer tout le débit de liquide léger polluant qui arrive au séparateur, ce qui implique qu'il aspire en même temps un débit d'eau suffisant pour entraîner le polluant même si la viscosité de celui-ci est si élevée qu'il se présente en grumeaux. Pour éviter que le polluant n'obstrue progressivement le tube plongeur 47 en se collant le long de sa paroi interne, le tube 47 montré en figure 12 est à double paroi et présente un conduit interne 54 d'amenée de vapeur qui s'échappe vers le haut par une série de trous 55 ménagés dans un rebord interne du tube, à la partie basse de celui-ci. Cette injection de vapeur réchauffe en même temps le polluant et en rend la manutention plus facile. Il faut noter au passage que l'eau d'entraînement aspirée par le tube plongeur tend à occuper la partie centrale du tube et qu'en conséquence l'injection de vapeur à la périphérie réchauffe préférentiellement le polluant. Pour éviter que la vapeur ne sorte à trop grande vitesse des trous 55, on peut prévoir sur le conduit 54 des étranglements calibrés d'entrée: le laminage correspondant est adiabatique et ne mdifie pas sensiblement l'apport de chaleur de la vapeur.The tube 47 must suck all the flow of light polluting liquid which arrives at the separator, which implies that it simultaneously sucks a flow of water sufficient to entrain the pollutant even if the viscosity of the latter is so high that it occurs in lumps. To prevent the pollutant from progressively obstructing the dip tube 47 by sticking along its internal wall, the tube 47 shown in FIG. 12 is double-walled and has an internal conduit 54 for supplying steam which escapes towards the top by a series of holes 55 formed in an internal rim of the tube, at the bottom of the latter. This injection of steam simultaneously heats the pollutant and makes handling easier. It should be noted in passing that the driving water sucked in by the dip tube tends to occupy the central part of the tube and that consequently the injection of steam at the periphery preferentially heats the pollutant. To prevent steam from coming out of the holes 55 at too high a speed, calibrated inlet throttles can be provided on the duct 54: the corresponding lamination is adiabatic and does not significantly modify the heat input from the steam.

On voit que la couche de liquide léger palluant se concentre dans le séparateur pour former un noyau dont l'épaisseur et le valu lume correspondent à un équilibre entre le débit aspiré par le tube 47 et un débit injecté qui peut varier très rapidement, puisqu'il est sensiblement proportionnel à chaque instant à l'épaisseur de la couche de liquide polluant, elle-même en gros cinquante fois plus grande que l'épaisseur moyenne de la nappe polluante au droit de l'étrave 20. Ce noyau constitueunvolu- metampon. Il est normalement maintenu entre des limites déterminées en commandant la pompe (non représentée) d'aspiration du liquide léger par un relais actionné par des moyens de détermination de niveau de l'interface,, indiqués schématiquement en 56. Ces moyens peuvent être constitués notamment par une cellule électrique ou par un flotteur dont la densité moyenne est comprise entre celle de l'eau et celle du liquide léger, relié à un relais de commande du moteur de la pompe.We see that the layer of palliative light liquid is concentrated in the separator to form a core whose thickness and lume value correspond to a balance between the flow aspirated by the tube 47 and an injected flow which can vary very quickly, since it is appreciably proportional at each instant to the thickness of the layer of polluting liquid, itself roughly fifty times greater than the average thickness of the polluting layer in line with the stem 20. This nucleus constitutes a volumetampon. It is normally maintained between limits determined by controlling the pump (not shown) for the suction of the light liquid by a relay actuated by means for determining the level of the interface, indicated diagrammatically at 56. These means can be constituted in particular by an electric cell or by a float whose average density is between that of water and that of light liquid, connected to a control relay of the pump motor.

La totalité du liquide léger polluant doit être aspirée par le tube 47. Pour remplir cette condition à coupsûr, alors que le débit de ce liquide subit des variations impossibles à mesurer, il faut admettre dans l'écoulementaspiré une proportion d'eau, qui en règle générale sera inférieure à deux tiers. Cette proportion est suffisamment faible pour que l'eau résiduelle puisse être éliminée par un séparateur centrifuge classique (non représenté) fonctionnant en veine fermée, interposé entre le tube 47 et la pompe d'aspiration.All of the light polluting liquid must be sucked through the tube 47. To fulfill this condition without fail, while the flow of this liquid undergoes variations that are impossible to measure, a proportion of water must be admitted into the aspirated flow, which general rule will be less than two thirds. This proportion is low enough that the residual water can be removed by a conventional centrifugal separator (not shown) operating in a closed vein, interposed between the tube 47 and the suction pump.

Le liquide léger finalement obtenu sera stocké. Ce stockage peut s'effectuer dans des citernes placées à bord de l'engin dépollueur, d'où le polluant sera ultérieurement transvasé dans des réservoirs placés à terre. On peut toutefois, surtout dans le cas d'engins de petite dimension, stocker le polluant dans des conteneurs qui sont fermés et lestés. Ces conteneurs sont ensuite immergés au fur et à mesure de leur remplissage à des emplacements repérés par des bouées. Les conteneurs sont ensuite repêchés par des navires non spécialisés.The light liquid finally obtained will be stored. This storage can be carried out in tanks placed on board the abatement machine, from where the pollutant will later be transferred to tanks placed on the ground. However, especially in the case of small vehicles, the pollutant can be stored in containers that are closed and ballasted. These containers are then submerged as they are filled in locations marked with buoys. The containers are then recovered by non-specialized vessels.

Il faut remarquer que le volume tampon représenté par le noyau sera généralement suffisant pour autoriser un arrêt momentané de la pompe d'aspiration pendant le temps nécessaire à un changement de récipient de stockage de liquide léger polluant.It should be noted that the buffer volume represented by the core will generally be sufficient to allow a temporary stop of the suction pump for the time necessary for a change of container for storing light polluting liquid.

Jusqu'à présent, il a essentiellement été question des moyens permettant d'épaissir l'épaisseur de la couche polluante, puis de l'extraire en même temps qu'un débit aussi faible que possible d'eau. Il s'agit là des moyens dont le rôle est essentiel en eau calme. Mais, dans les conditions de travail à la mer, il faut de plus éviter le déferlement et la formation de ressauts à des emplacements où ils risquent de provoquer un brassage nuisible à la séparation, en particulier dans les conduits et à leur entrée constituant orifice de prise.So far, we have mainly discussed the means of thickening the thickness of the polluting layer, then extracting it at the same time as the lowest possible flow of water. These are the means whose role is essential in calm water. However, under working conditions at sea, it is also necessary to avoid breaking and the formation of projections in locations where they risk causing mixing which is detrimental to separation, in particular in the conduits and their entry constituting orifice of taken.

Un premier remède consiste à réduire l'amplitude de la houle provenant de l'arrière en allure de fuite, au cours de son trajet le long de la coque avant qu'elle n'atteigne les orifices de prise. Dans le mode de réalisation montré en figures 1, 2 et 3, l'engin comporte une aile arrière 57. Il est préférable que cette aile ne déborde pas de l'engin vers l'arrière. L'épaisseur de l'aile 57 augmente de l'arrière vers l'avant et l'aile est placée à une profondeur légèrement inférieure au tirant d'eau de l'engin. En allure de fuite par rapport à la houle, surtout sur des engins de grande longueur, l'aile 57 amortit le mouvement absolu de la houle dans une zone de pénombre qui recouvre tout l'écoulement en veine libre avant entrée dans les orifices de captation des conduits.A first remedy consists in reducing the amplitude of the swell coming from the rear in the appearance of a leak, during its journey along the hull before it reaches the grip orifices. In the embodiment shown in Figures 1, 2 and 3, the machine comprises a rear wing 57. It is preferable that this wing does not project beyond the machine towards the rear. The thickness of the wing 57 increases from the rear to the front and the wing is placed at a depth slightly less than the draft of the craft. In the appearance of a leak compared to the swell, especially on very long vehicles, the wing 57 dampens the absolute movement of the swell in a half-light zone which covers all the flow in free vein before entering the collection orifices conduits.

De plus, sur les engins de grande longueur, l'aile réduit l'amplitude du tangage. Sur les engins de faible longueur, elle amortit le mouvement relatif du navire par rapport à la mer, surtout si elle présente une portance positive. L'aile joue enfin un rôle de quille anti-roulis.In addition, on very long gear, the wing reduces the amplitude of the pitch. On short vehicles, it dampens the relative movement of the ship relative to the sea, especially if it has a positive lift. The wing finally plays the role of anti-roll keel.

Un second remède tient compte de ce que les perturbations les plus dangereuses du point de vue du risque de déferlement sont celles qui remontent l'écoulement général. De telles perturbations peuvent apparaître dans les conduits par suite de la réflexion des ondes qui descendent le conduit, puis le sous-canal d'échappement vers la partie en charge de ce dernier.A second remedy takes into account that the most dangerous disturbances from the point of view of the risk of surge are those which go up the general flow. Such disturbances can appear in the conduits as a result of the reflection of the waves which descend the conduit, then the exhaust sub-channel towards the part in charge of the latter.

Ce résultat peut notamment être atteint grâce à une géométrie du sous-canal d'évacuation qui conduit à un déferlement localisé en arrière de la cloison 37 (dans le sens de l'écoulement général) et à proximité immédiate de cette cloison et à une commande appropriée de la pompe de propulsion, afin de maintenir dans la cuvette 39 une hauteur de charge suffisamment basse pour assurer un écoulement torrentiel.This result can in particular be achieved thanks to a geometry of the evacuation sub-channel which leads to a surge located behind the partition 37 (in the general flow direction) and in the immediate vicinity of this partition and to an order propulsion pump, in order to maintain a sufficiently low head in the bowl 39 to ensure torrential flow.

Les conditions à établir apparaîtront mieux si on analyse l'écoulement d'évacuation vers le sous-canal 40 sur un schéma simplifié du conduit 16, de la cuvette 39 et du sous-canal 40, qui passe en charge en aval de la cuvette. Les figures 14 et 15 schématisent ces composants de l'installation en alignement pour faciliter l'analyse.The conditions to be established will appear better if we analyze the evacuation flow to the subchannel 40 on a simplified diagram of the conduit 16, of the bowl 39 and of the subchannel 40, which passes under load downstream of the bowl. Figures 14 and 15 show these components of the installation in alignment to facilitate analysis.

La pompe d'aspiration du débit qui parcourt le sous-canal 40 est commandée de façon que ce sous-canal reste en charge et qu'il n'y ait pas d'admission d'air dans la pompe et aussi de façon à maintenir immédiatement en amont une vitesse et une hauteur d'eau telles que l'écoulement soit de type fluvial, c'est-à-dire avec un nombre de Froude inférieur à 1. On donne à la cuvette 39 une largeur 12 supérieure à la largeur 1, du conduit et on y place un déversoir noyé 59 qui réduit la profondeur et, corrélativement, provoque un accroissement local de la vitesse. L'élargissement 12/11 et la hauteur du déversoir 59 sont choisis de façon que les variations subies par l'écoulement de l'amont à l'aval soient les suivantes.The flow suction pump which runs through the subchannel 40 is controlled so that this subchannel remains under load and there is no air intake in the pump and also so as to maintain immediately upstream a speed and a height of water such that the flow is of fluvial type, that is to say with a Froude number less than 1. The basin 39 is given a width 1 2 greater than the width 1, of the duct and a flooded weir 59 is placed there which reduces the depth and, correspondingly, causes a local increase in speed. Enlargement 1 2/1 1 and the height of the weir 59 are selected so that the variations undergone by the flow from upstream to downstream are as follows.

Dans le conduit 16, en amont de la cloison 37, la vitesse d'écoulement et la profondeur h1 sont telles que l'écoulement est fluvial (nombre de Froude inférieur à 1 ). Dans la partie amont de la cuvette, ce caractère fluvial est encore accru du fait de la diminution de la vitesse provoquée par l'augmentation de largeur. Par contre, la profondeur h2 de l'écoulement au droit du déversoir devient telle que le nombre de Froude devient égal, puis supérieur, à 1. Il se maintient supérieur à 1, puis l'écoulement redevient fluvial avec formation d'un ressaut 60 qui est susceptible de se déplacer longitudinalement dans un domaine limité. Les perturbations se propageant d'amont en aval traversent le ressaut et peuvent se réfléchir sur l'entrée du sous-canal en charge 40. Mais les perturbations réfléchies ne peuvent franchir le ressaut et venir perturber l'écoulement dans le conduit.In the conduit 16, upstream of the partition 37, the flow speed and the depth h 1 are such that the flow is fluvial (Froude number less than 1). In the upstream part of the bowl, this fluvial character is further increased due to the decrease in speed caused by the increase in width. On the other hand, the depth h 2 of the flow at the right of the spillway becomes such that the Froude number becomes equal, then greater than 1. It remains greater than 1, then the flow becomes fluvial again with the formation of a projection 60 which is capable of moving longitudinally in a limited area. The disturbances propagating from upstream to downstream cross the jump and can be reflected on the entry of the subchannel under load 40. But the reflected disturbances cannot cross the jump and come to disturb the flow in the conduit.

L'invention ne se limite pas aux modes particuliers de réalisation donnés à titre d'exemples mais, au contraire, est susceptible de nombreuses variantes de réalisation. On peut en particulier noter que des moyens autres que les ailes verticales 35 montrées en figures 1 et 10 peuvent être utilisés. La figure 16 montre à titre d'exemple une aile 67 de forme annulaire susceptible d'être utilisée à l'avant du plancher 33. Cette aile se raccorde au plancher 33 par un profil qui peut être similaire à celui montré en figure 1 OG puis l'aile se retourne vers l'avant pour se raccorder à la partie centrale 10 de la coque par un profil proche de l'horizontale, comme indiqué par une coupe rabattue en tirets. A son emplanture sur le plancher 33, l'aile a toutefois une longueur moindre que dans le cas de la figure 10 et une incidence plus forte, de façon que l'aile 61 ne descende pas au-dessous du tirant d'eau de la coque.The invention is not limited to the particular embodiments given by way of examples but, on the contrary, is capable of numerous variant embodiments. It can in particular be noted that means other than the vertical wings 35 shown in FIGS. 1 and 10 can be used. FIG. 16 shows by way of example a wing 67 of annular shape capable of being used at the front of the floor 33. This wing is connected to the floor 33 by a profile which may be similar to that shown in FIG. 1 OG then the wing turns forward to connect to the central part 10 of the hull by a profile close to the horizontal, as indicated by a cut folded in dashes. At its root on the floor 33, the wing has a shorter length than in the case of FIG. 10 and a higher incidence, so that the wing 61 does not descend below the draft of the shell.

Cette disposition apporte un double avantage. L'aile annulaire, encastrée à ses deux extrémités, a une rigidité et une résistance plus importante qu'une aile en porte à faux; on supprime les tourbillons libres qui s'échappent d'une aile du genre montré en figures 1 et 10, tourbillons qui peuvent être dans certains cas gênants, bien qu'ils soient libérés à profondeur importante.This arrangement brings a double advantage. The annular wing, embedded at its two ends, has greater rigidity and resistance than a cantilever wing; the free vortices which escape from a wing of the kind shown in FIGS. 1 and 10 are removed, vortices which can in some cases be troublesome, although they are released at a considerable depth.

Le plancher 33 du mode de réalisation montré en figures 1, 2 et 9 est plein. En dépit du ralentissement de l'écoulement réalisé en amont de la captation, il limite la vitesse à laquelle peut se déplacer l'engin, étant donné qu'il est nécessaire d'éviter un déversement. Dans la variante de réalisation montrée en figures 17 et 18, on écarte dans une large mesure cette limitation en effectuant la captation (c'est-à-dire la séparation entre l'écoulement pollué prélevé et l'eau retournée à la nappe ambiante) en deux étapes. On ferme d'abord latéralement la veine de liquide prélevé par la coque latérale 11, placée obliquement, et on ferme ensuite la veine par le plancher 33 en aval de la proue de la coque latérale. Dans sa partie amont, le plancher 33 se limite à des aubes 65 et 66 inclinées, reliant les deux coques et de profondeur progressivement décroissante (figure 17). Ces aubes ont pour but d'éjecter vers le bas et vers l'extérieur, sous la coque latérale 11, la partie inférieure du débit d'eau de la veine, partie qui ne contient pas de polluant. La partie avant de la coque latérale aura dans ce cas une profondeur comprise entre la moitié et le tiers du tirant d'eau. La partie non rejetée de la veine est dirigée vers les pompes.The floor 33 of the embodiment shown in Figures 1, 2 and 9 is full. Despite the slowing of the flow upstream of the capture, it limits the speed at which the machine can move, since it is necessary to avoid a spill. In the variant embodiment shown in FIGS. 17 and 18, this limitation is largely eliminated by carrying out the capture (that is to say the separation between the polluted flow removed and the water returned to the ambient water table) in two steps. The stream of liquid sampled by the lateral shell 11, placed obliquely, is first closed laterally, and then the vein is closed by the floor 33 downstream from the bow of the lateral shell. In its upstream part, the floor 33 is limited to inclined blades 65 and 66, connecting the two shells and of progressively decreasing depth (FIG. 17). The purpose of these blades is to eject downwards and outwards, under the lateral shell 11, the lower part of the flow of water from the vein, a part which does not contain any pollutant. The front part of the side hull will in this case have a depth of between half and a third of the draft. The non-rejected part of the vein is directed to the pumps.

La courbe en trait plein sur la figure 19 montre ta variation du débit d'alimentation fourni à un sous-canal débouchant dans des moyens de pompage en fonction du temps, en présence d'une houle de période T. Ce débit d'alimentation se déverse dans une cuvette d'amortissement 39 (figure 20) communiquant avec les moyens de pompage 53 par un conduit en charge 40. Les moyens de pompage 53 sont prévus pour aspirer un débit approximativement constant (ligne en tirets sur la figure 19) qui correspond au débit moyen d'alimentation. Le niveau de la masse d'eau contenue dans la cuvette varie donc en fonction du temps, la différence entre le volume moyen et le volume minimal d'eau dans la cuvette étant représentée par la surface hachurée sur la figure 19. A chaque valeur de cette différence de volume correspond une différence entre le niveau moyen m de l'eau dans la cuvette (en aval du ressaut 60 dû notamment à la présence du déversoir noyé 59) et le niveau bas. Cette différence est d'autant plus grande que la surface en plan de la cuvette 39 est plus faible.The curve in solid lines in FIG. 19 shows the variation in the feed rate supplied to a subchannel opening into pumping means as a function of time, in the presence of a swell of period T. This feed rate is pours into a damping bowl 39 (FIG. 20) communicating with the pumping means 53 via a charged duct 40. The pumping means 53 are provided for sucking in an approximately constant flow rate (dashed line in FIG. 19) which corresponds at the average feed rate. The level of the mass of water contained in the bowl therefore varies as a function of time, the difference between the average volume and the minimum volume of water in the bowl being represented by the hatched surface in FIG. 19. At each value of this difference in volume corresponds to a difference between the average level m of the water in the bowl (downstream of the projection 60 due in particular to the presence of the flooded weir 59) and the low level. This difference is all the greater the smaller the surface area of the bowl 39.

Il faut éviter que les moyens de pompage 53 aspirent de l'air, ce qui impose d'interdire au niveau bas de descendre au-dessous d'une limite I au-delà de laquelle le tunnel 40 n'est plus en charge. Il faut remarquer que toute aspiration d'air par la pompe amplifie le phénomène car le canal d'éjection dans lequel est placée la pompe se vide alors partiellement de l'eau qu'il contient, ce qui tend à relever l'arrière de l'engin et, notamment, le seuil du déversoir 59, d'où une diminution supplémentaire du débit d'alimentation.It is necessary to prevent the pumping means 53 from sucking in air, which means that the low level must be prohibited from descending below a limit I beyond which the tunnel 40 is no longer under load. It should be noted that any suction of air by the pump amplifies the phenomenon because the ejection channel in which the pump is placed then partially empties of the water it contains, which tends to raise the back of the 'machine and, in particular, the threshold of the weir 59, hence a further reduction in the feed rate.

Le risque de dénoyage des moyens de pompage 53 est évité en munissant le sous-canal de moyens d'alimentation en eau à partir de la nappe d'eau dans laquelle circule l'engin. Dans le mode de réalisation montré en figure 21, les moyens d'alimentation du sous-canal en eau d'appoint sont constitués par une ouverture 62 ménagée dans le plancher pour réaliser une communication permanente entre le sous-canal et la mer. L'ouverture représentée est placée dans la partie avant du tunnel en charge 40. Le plafond de cette partie avant présente un seuil 61 en saillie vers le bas, permettant de diminuer encore le risque d'aspiration d'air. Pour le niveau moyen m, l'écoulement des filets d'eau au fond du sous-canal s'effectue le long du plancher en amont et en aval de l'ouverture 62 (flèche fo). Lorsque le niveau descend du fait d'une diminution du débitd'alimentation, il y a aspiration d'eau à partir de la nappe ambiante (flèche f1). On peut ainsi, pour le débit qui correspond à la limite 1 dans le cas de la figure 20, maintenir dans la cuvette 39 un niveau bas b suffisant pour éviter toute aspiration d'air.The risk of dewatering the pumping means 53 is avoided by providing the subchannel with water supply means from the water table in which the machine circulates. In the embodiment shown in FIG. 21, the means for supplying the subchannel with make-up water consist of an opening 62 formed in the floor to provide permanent communication between the subchannel and the sea. The opening shown is placed in the front part of the loaded tunnel 40. The ceiling of this front part has a threshold 61 projecting downwards, making it possible to further reduce the risk of air suction. For the medium level m, the flow of the water streams at the bottom of the subchannel takes place along the floor upstream and downstream of the opening 62 (arrow f o ). When the level drops due to a decrease in the feed rate, water is drawn in from the ambient water table (arrow f 1 ). It is thus possible, for the flow rate which corresponds to the limit 1 in the case of FIG. 20, to maintain in the bowl 39 a low level b sufficient to avoid any suction of air.

On peut aisément déterminer expérimentalement les dimensions optimales à donner à l'ouverture 62. En règle générale, cette ouverture sera soit à l'entrée de la partie en charge 40, soit immédiatement en amont, en partie sous le seuil 61. Lorsque te niveau de l'eau dans la cuvette d'amortissement 39 est supérieur au niveau moyen, il y a éjection d'eau par l'ouverture 62: cette éjection est sans inconvénient, ce débit d'eau étant dépourvu de polluant.We can easily determine experimentally the optimal dimensions to give to the opening 62. As a general rule, this opening will be either at the entrance to the loaded part 40, or immediately upstream, partly below the threshold 61. When the level water in the damping bowl 39 is higher than the average level, there is ejection of water through the opening 62: this ejection is without drawback, this water flow being devoid of pollutant.

Suivant la position relative en hauteur et en angle d'incidence du bord d'attaque 63 en aval de l'ouverture 62 et du bord de fuite 64 en amont, on peut donner au débit d'appoint vers les moyens de pompage 53 une valeur moyenne dans le temps qui est positive, nulle ou même négative, lorsque l'engin se déplace à sa vitesse de mise en oeuvre normale, le débit d'appoint étant toujours positif dans le cas d'une vitesse nulle. Si par exemple on prévoit l'ouverture 62 pour qu'elle fournisse un débit d'appoint moyen de t'ordre de 10 à 20% du débit total aspiré par tes moyens de pompage 53, on peut obtenir un débit maximal de l'ordre de 50% du débit aspiré par la pompe, ce qui fait clairement apparaître une incidence très importante sur le maintien du niveau dans la cuvette d'amortissement 39 à une hauteur suffisante.Depending on the relative position in height and angle of incidence of the leading edge 63 downstream of the opening 62 and the trailing edge 64 upstream, it is possible to give the additional flow rate to the pumping means 53 a value mean over time which is positive, zero or even negative, when the machine moves at its normal operating speed, the make-up flow being always positive in the case of a zero speed. If, for example, provision is made for the opening 62 so that it provides an average additional flow rate of around 10 to 20% of the total flow aspirated by your pumping means 53, a maximum flow rate of around 50% of the flow sucked by the pump, which clearly shows a very significant impact on maintaining the level in the damping bowl 39 at a sufficient height.

L'ouverture d'entrée d'un débit d'apport peut être munie de volets oscillants évitant l'éjection d'une fraction du débit qui a franchi le déversoir noyé. Ces volets peuvent être munis de vérins qui les maintiennent fermés lorsque l'engin se déplace sans fonctionner pour prélever une couche de liquide léger, par exemple pour aller vers un lieu d'intervention.The inlet opening of a supply flow can be fitted with oscillating flaps preventing the ejection of a fraction of the flow that has crossed the flooded weir. These flaps can be fitted with jacks which keep them closed when the machine moves without operating to take a layer of light liquid, for example to go to a place of intervention.

Claims (16)

1. A device for selectively taking up a layer of light liquid floating on the surface of a sheet of water likely to be subjected to swell, comprising a hull (12) having propulsion means for maintaining it running before the sea, the hull having a central part (10) which projects forwards with respect to two lateral parts (11) which define with the central part ducts (16) for supplying separators and the central part having deflecting means, such as a wing (17), for creating swirls whose orientation tends to reduce the divergence of the surface flow about the hull, characterized in that each duct (16) comprises a floor (33) with a negative lift profile whose leading edge projects upstream of the intake orifice of the duct, which floor is intended to slow down the flow upstream of the leading edge and to cause a progressive thickening of the light liquid layer and in that an approximately vertical dividing wall (37) terminating above the upper limit and under the lower limit of the water stream which flows through the duct separates the latter, over a fraction of its height, into two sub-channels (38,40) one of which (38) communicates downstream with the separator and the other (40) opens downstream into pumping means (53) for pumping water and discharging it at the rear of the device to cause a propulsive effect.
2. Device according to claim 1, characterized in that the dividing wall (37) terminates at a distance from the floor and is bulged in its lower part to define the curvature of the liquid streams which pass from the duct and from the first sub-channel (38) to the second sub-channel (40), the total cross-sectional area of the two sub-channels being substantially constant along the flow and the cross-sectional area of the sub-channel directed towards the separator decreasing whereas the other one increases.
3. Device according to claim 1, characterized in that the floor (33) is in the form of a wing whose leading edge has a negative sweep back in the vicinity of the central part of the hull.
4. Device according to claim 3, characterized in that the outermost fraction (34) of the leading edge of the floor has a positive sweep back at the level of the stem (30) of the lateral part (11) of the hull and in that the floor carries, in the vicinity of the leading edge, an approximately vertical wing (35) for compensating the surface divergence effects due to the leading edge of the floor.
5. Device according to claim 1, characterized in that the floor has a profile with a downwardly directed sweep back, whose under surface has a sill at a depth substantially equal to half the draft of the ship, then deepening to the maximum distance compatible with the mechanical strength of the floor.
6. Device according to claim 1 or 5, characterized in that the deflector means are formed by a wing with positive lift whose leading edge is situated forwardly of the point where the stem (20) of the central part (10) of the hull intersects the waterline, the spread of the fin being substantially equal to the overall width of the hull.
7. Device according to claim 6, characterized in that the wing (17) is at a depth of the same order as the draft of the hull so as to avoid breakers and in that the fin carries substantially vertical winglets presenting considerable forward convergence, projecting upwards from the wing in the vicinity of the ends thereof to raise the swirls.
8. Device according to claim 1 or 6, characterized in that the wing has a depth of the same order as the draft of the hull at the root and a rolled up part for presenting a dihedron progressively increasing towards its ends.
9. Device according to claim 1, characterized in that the stem (20) of the central part (10) forms, below the waterline, a bulb connected to the wing.
10. Device according to claim 1, characterized in that the sub-channel which opens into the pumping means comprises a sunken overfall for causing the disturbances to break which travel up the flow.
11. Device according to claim 1, characterized in that it comprises a rear fin (57) immersed at a depth of the same order as the draft of the hull, for weakening the swell when running before the sea and for reducing the disturbances at the inlet of the ducts.
12. Device according to claim 1, characterized in that each separator comprises a cavity (45) with a vertical axis (46) separated by a horizontal plate (50) formed with a central hole into a supply chamber into which opens the sub-channel (38) and a discharge chamber opening into a tangential discharge channel (52), the separator further comprising a central tube (47) dipping into the top part of the swirling flow with free surface in the supply chamber and communicating with a light liquid suction pump.
13. Device according to claim 12, characterized in that the tube (47) has a double wall and has an internal duct (54) for supplying steam which escapes upwardsthrough holes formed in an internal flange of the tube at the lower part thereof.
14. Device according to claim 1, characterized in that the sub-channel (40) which opens into the pumping means is provided with means for supplying water from the water sheet arranged for supplying a make-up flow to the pumping means at least when the level in that channel drops to a predetermined height and below.
15. Device according to claim 14, characterized in that the means for supplying a make-up flow are formed by an opening (62) formed in the wall of the sub-channel.
16. Device according to claim 1, characterized in that the floor (33) is formed in its front part by vanes (65, 66) each connecting the central part (10) to one of the lateral parts (11) and in that each lateral part is extended forwardly into said front part and presents, in its part connected to the vanes, a depth between one third and one half of the draft of the device.
EP82903459A 1981-11-23 1982-11-23 Device for selectively removing a light liquid layer at the surface of a water sheet Expired EP0093759B1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FR8121905 1981-11-23
FR8121905A FR2516889A1 (en) 1981-11-23 1981-11-23 Vessel for skimming oil from waste surface - uses integral hull extensions to scoop top layer of liquid into eye of separator pumps
FR8123741A FR2518488B2 (en) 1981-12-18 1981-12-18 APPARATUS FOR THE SELECTIVE COLLECTION OF A LIGHTWEIGHT LIQUID LAYER ON THE SURFACE OF A BODY OF WATER
FR8123741 1981-12-18

Publications (2)

Publication Number Publication Date
EP0093759A1 EP0093759A1 (en) 1983-11-16
EP0093759B1 true EP0093759B1 (en) 1986-01-29

Family

ID=26222633

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82903459A Expired EP0093759B1 (en) 1981-11-23 1982-11-23 Device for selectively removing a light liquid layer at the surface of a water sheet

Country Status (8)

Country Link
US (1) US4491518A (en)
EP (1) EP0093759B1 (en)
JP (1) JPS58502010A (en)
BR (1) BR8207983A (en)
DE (1) DE3268897D1 (en)
DK (1) DK331983D0 (en)
NO (1) NO157342C (en)
WO (1) WO1983001799A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2551479B1 (en) * 1983-09-01 1985-12-06 Benaroya Henry APPARATUS FOR COLLECTING A POLLUTANT LAYER ON THE SURFACE OF A BODY OF WATER
US4623459A (en) * 1981-11-23 1986-11-18 Henry Benaroya Apparatus for selectively taking up a layer of pollutant from the surface of a body of water
US4661013A (en) * 1985-07-02 1987-04-28 The Regents Of The University Of California Apparatus for impeding fine sediment deposition in harbors and navigational channels
US5133882A (en) * 1990-09-26 1992-07-28 Pec Research, Inc. Barge mounted oil recovery and recycle system
US5664910A (en) * 1987-05-27 1997-09-09 Light Wave, Ltd. Boat activated wave generator
AU5829890A (en) * 1989-06-13 1991-01-08 Farm Fish S.R.L. Device for organic neutralization and removal of phosphorus compounds present in water basins
US6105527A (en) * 1996-12-18 2000-08-22 Light Wave Ltd. Boat activated wake enhancement method and system
US7163637B2 (en) * 2003-12-22 2007-01-16 Technische Unversitat Berlin Apparatus and process for taking up particles from a water surface
DE202018107123U1 (en) 2017-12-30 2019-01-08 Knowles Electronics, Llc Electroacoustic transducer with improved shock protection

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB730375A (en) * 1949-06-07 1955-05-25 Hoechst Ag Improved heat exchange apparatus
US3789988A (en) * 1970-10-02 1974-02-05 Grenobloise D Etudes D Applic Apparatus for removing surface pollutants from water and other liquids
US4151081A (en) * 1971-06-04 1979-04-24 Seaclean Sa Process and plant for hydromechanical recovery of a fluid spread in a thin layer on the surface of another liquid
US3774767A (en) * 1971-11-30 1973-11-27 B Field Skimmer trap
US3744254A (en) * 1972-05-17 1973-07-10 R Fennelly Process and apparatus for containment of aqueous pollutants
US3823828A (en) * 1973-05-08 1974-07-16 A Derzhavets Propelling arrangement for oil and garbage skimmer craft
US4126552A (en) * 1975-04-04 1978-11-21 Ballast Nedam Groep N.V. Method for collecting light-weight substances floating on a liquid surface
JPS5845396B2 (en) * 1977-02-21 1983-10-08 三菱重工業株式会社 Spilled oil recovery equipment
JPS52120460A (en) * 1976-04-01 1977-10-08 Mitsubishi Heavy Ind Ltd Flow out oil retrieving device
US4139470A (en) * 1977-03-21 1979-02-13 Oil Spill Recovery, Inc. System for separating, removing and recovering contaminant materials from a body of water
FR2437976A1 (en) * 1978-10-03 1980-04-30 Foll Jean Le APPARATUS FOR THE SELECTIVE COLLECTION OF A LIGHTWEIGHT LIQUID LAYER ON THE SURFACE OF A BODY OF WATER
FR2467769B1 (en) * 1979-10-18 1985-09-06 Foll Jean Le APPARATUS FOR THE SELECTIVE COLLECTION OF A LIGHTWEIGHT LIQUID LAYER ON THE SURFACE OF A BODY OF WATER
FR2482154A1 (en) * 1980-05-08 1981-11-13 Grihangne Andre HIGH FLOW PETROLEUM RECOVERER FOR DEPOLLUTION ON SOFT WATER

Also Published As

Publication number Publication date
EP0093759A1 (en) 1983-11-16
US4491518A (en) 1985-01-01
NO157342C (en) 1988-03-02
NO832660L (en) 1983-07-21
DK331983A (en) 1983-07-19
NO157342B (en) 1987-11-23
DE3268897D1 (en) 1986-03-13
JPS58502010A (en) 1983-11-24
WO1983001799A1 (en) 1983-05-26
DK331983D0 (en) 1983-07-19
BR8207983A (en) 1983-10-04

Similar Documents

Publication Publication Date Title
EP0206915B1 (en) Cleaning apparatus for water surfaces
EP0093759B1 (en) Device for selectively removing a light liquid layer at the surface of a water sheet
EP0527897B1 (en) Multi-hull sailing vessel
EP1123863B1 (en) Vessel for collecting floating hydrocarbons and mobile facility using such a collecting vessel
CA1136060A (en) Device for selective scooping of a light liquid floating on a water body
EP0712457B1 (en) Device for recovering pollutants spilled on water or on the ground
EP0694008B1 (en) Wind-propelled hydrofoil
EP0055638B1 (en) High lift device for wind-driven ships and other applications
WO1984001338A1 (en) Fast boat
FR2516889A1 (en) Vessel for skimming oil from waste surface - uses integral hull extensions to scoop top layer of liquid into eye of separator pumps
FR2837782A1 (en) TRIMARAN TYPE HIGH SPEED SHIP HULL
WO2015107125A1 (en) Marine propulsion multihull ship
FR2471911A1 (en) CLEANING BARGE
EP0140732A1 (en) Device for picking up a polluting layer from the water surface
FR3081147A1 (en) DEVICE FOR PLACING IN A MOVING FLUID TO GENERATE A HIGH PORT WITH NO EXTERNAL ENERGY TO ENSURE THE WIND PROPULSION OF A SHIP.
EP0687330B1 (en) Floating skimmer device
WO2008074886A1 (en) Swell attenuating device onboard a floating structure for facilitating the transloading between the structure and a transfer ship, and floating structure comprising the same
FR2849827A1 (en) Wheel with lifting flights for recovery of floating oil, is positioned with its axis horizontal and parallel to progress of boat
FR2467769A2 (en) Oil slick separation skimmer and agglomeration float - is fitted with separating fins fixed by ribs causing turbulence
WO2013061006A1 (en) Device for raising sediment from the bottom of the sea
FR2881468A1 (en) Oil separator for internal combustion engine of motor vehicle, has settlers provided with oil recovery containers that have oil evacuation holes for alternate/sequential evacuation of oil quantities accumulated at bases of settlers
WO2021152263A1 (en) Dynamic artificial wave facility for surfing practice
WO2020084123A1 (en) Hull of a high-speed ship, with exhaust gas injection beneath each connecting arm
WO2020084127A1 (en) Hull of a high-speed ship, provided with a front hydrojet
FR2518488A2 (en) Vessel for skimming oil from waste surface - uses integral hull extensions to scoop top layer of liquid into eye of separator pumps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

17P Request for examination filed

Effective date: 19831111

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Designated state(s): BE DE FR GB NL SE

REF Corresponds to:

Ref document number: 3268897

Country of ref document: DE

Date of ref document: 19860313

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19861130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19861130

Year of fee payment: 5

26N No opposition filed
BERE Be: lapsed

Owner name: CADOUX JEAN-ELIE

Effective date: 19861130

Owner name: LE FOLL JEAN

Effective date: 19861130

Owner name: BENAROYA HENRY

Effective date: 19861130

GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19870801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19871124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19880601

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19880729

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19881122

EUG Se: european patent has lapsed

Ref document number: 82903459.4

Effective date: 19880913