EP0072734B1 - Procédé de préparation de latex de copolymères acétate de vinyle-oléfine - Google Patents

Procédé de préparation de latex de copolymères acétate de vinyle-oléfine Download PDF

Info

Publication number
EP0072734B1
EP0072734B1 EP82401469A EP82401469A EP0072734B1 EP 0072734 B1 EP0072734 B1 EP 0072734B1 EP 82401469 A EP82401469 A EP 82401469A EP 82401469 A EP82401469 A EP 82401469A EP 0072734 B1 EP0072734 B1 EP 0072734B1
Authority
EP
European Patent Office
Prior art keywords
weight
water
polymer
amide
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP82401469A
Other languages
German (de)
English (en)
Other versions
EP0072734A1 (fr
Inventor
Jean-Luc Schuppiser
Jean-Claude Daniel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhone Poulenc Specialites Chimiques
Original Assignee
Rhone Poulenc Specialites Chimiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rhone Poulenc Specialites Chimiques filed Critical Rhone Poulenc Specialites Chimiques
Priority to AT82401469T priority Critical patent/ATE14018T1/de
Publication of EP0072734A1 publication Critical patent/EP0072734A1/fr
Application granted granted Critical
Publication of EP0072734B1 publication Critical patent/EP0072734B1/fr
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F218/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F218/02Esters of monocarboxylic acids
    • C08F218/04Vinyl esters
    • C08F218/08Vinyl acetate

Definitions

  • the subject of the invention is a process for preparing latexes of vinyl acetate-olefin copolymers, as well as the latexes of copolymers obtained by said process.
  • the latexes of vinyl acetate-olefin copolymers are generally used as binders in the manufacture of adhesives, paints, textiles and papers. They are prepared by emulsion polymerization of vinyl acetate and olefin, in the presence of cellulose ethers, polyvinyl alcohols, or polyvinylpyrrolidone as protective colloids. These protective colloids give the latexes good stability in storage and handling, as well as a certain viscosity necessary for their applications, but also a sensitivity to water of the copolymer films harmful to the envisaged applications.
  • the process which is the subject of the invention makes it possible to obtain latexes of vinyl acetate-olefin copolymers which have good storage and handling stability and the viscosity necessary for their applications and whose copolymer films have very good resistance to l 'water.
  • the method according to the invention consists in copolymerizing in aqueous emulsion vinyl acetate with at least one olefin and optionally at least one other monomer copolymerizable in the presence of an initiator, an emulsifier and a protective colloid and is characterized in that the protective colloid consists of a) a water-soluble polymer of the amides of acrylic and methacrylic acids and their substituted or unsubstituted N-alkylated derivatives and b) of an ethylene glycol polymer, molecular mass between 1,000 and 50,000, soluble in water.
  • amides may be mentioned, for example, acrylamide, methacrylamide, N-methylacrylamide, N, N-dimethylacrylamide, N-isopropylacrylamide, N-methylaminoisopropylacrylamide, N-methylolacrylamide, N-methyloimethacrylamide , N-methoxymethylacrylamide and N-isobutoxymethylethylacrylamide.
  • the water-soluble amide polymer can be prepared for example by polymerization in aqueous solution of at least one amide, at a concentration of 0.1 to 7% by weight, in the presence of a water-soluble radical initiator and / or ultra-violet radiation, at a temperature between 0 and 90 ° C.
  • the initiator to be used is a conventional water-soluble radical initiator for solution polymerization, such as hydrogen peroxide, alkaline persulfates, water-soluble diazo derivatives or redox systems based on oxidants such as oxygenated water, organic peroxides or hydroperoxides and reducing agents such as alkali sulfites and bisulfites, amines, hydrazine or metal formaldehyldesulfoxylates. All these initiators are used alone or as a mixture, at a rate of 0.1 to 10% by weight of the amide (s).
  • the water-soluble amide polymer can be crosslinked by amounts of up to 50% by weight of the amide (s) of water-soluble crosslinking agents represented by N, N'-alkylidene having 1 to 4 carbon atoms bis (unsaturated acid amide having 3 to 5 carbon atoms) such as N, N'-methylene bis (acrylamide) or N, N'-methylene bis (methacrylamide), diallyl ether, diallyl sulfosuccinate or polyallylic oxyethane.
  • the amide (s) of water-soluble crosslinking agents represented by N, N'-alkylidene having 1 to 4 carbon atoms bis (unsaturated acid amide having 3 to 5 carbon atoms) such as N, N'-methylene bis (acrylamide) or N, N'-methylene bis (methacrylamide), diallyl ether, diallyl sulfosuccinate or polyallylic oxyethane.
  • the ethylene glycol polymer is soluble in water and has a molecular mass of between 1,000 and 50,000 and preferably between 3,000 and 35,000. It is represented by homopolymers of ethylene glycol and mixtures of at least two homopolymers of different molecular weights. These polymers are products in themselves known and marketed.
  • the protective colloid consists of 15 to 70% by weight of the amide polymer and 30 to 85% by weight of the ethylene glycol polymer and it is used in an amount of 0.1 to 5 % and preferably 0.5 to 3% by weight of the monomers to be polymerized.
  • the two constituents of the protective colloid are used in the form of aqueous solutions.
  • the solution of the amide polymer can be used at any time after its preparation, but, according to a preferred form of the invention, it is used immediately after its preparation.
  • the two solutions can be introduced separately into the emulsion polymerization medium, or the ethylene glycol polymer can be dissolved in the amide polymer solution, or alternatively, and this constitutes a preferred form of the invention, the ethylene glycol polymer can be added to the solution of amide (s) before polymerization. These introductions are carried out either all at once before polymerization, or during polymerization by successive fractions or continuously.
  • the amide polymer plus the ethylene glycol polymer represent from 0.1 to 15% by weight of the water.
  • the olefins which can be copolymerized with vinyl acetate, by the new process have 2 to 4 carbon atoms and are represented by ethylene, propylene and butenes.
  • other copolymerizable monomers means vinyl esters of branched or unbranched saturated monocarboxylic acids having from 1 to 12 carbon atoms, such as propionate, “Versatate (registered trademark for mixtures of esters of branched acids C 6 to C 11 ), pivalate, vinyl laurate and / or esters of unsaturated mono-or dicarboxylic acids having 3 to 6 carbon atoms and of alcohols having 1 to 10 carbon atoms, such as acrylates, methacrylates , methyl, ethyl, butyl or ethylhexyl maleates or fumarates, as well as vinyl and vinylidene halides, such as vinyl chloride or vinylidene chloride.
  • the olefins and other comonomers are used in amounts such that the glass transition temperature of the copolymer obtained is between - 30 and 50 ° C and preferably between - 20 and 35 ° C.
  • the monomers are introduced into the polymerization medium, under pressure if the monomer is gaseous, either entirely before polymerization, or during polymerization by successive fractions or continuously, or partly before polymerization and the other part during polymerization by successive fractions or continuously.
  • the crosslinking monomer used in proportions of between 0 and 10% and preferably between 0 and 3% by weight relative to the monomers, is represented more particularly by vinyl acrylate and methacrylate, divinyl ether, acrylates and methacrylates of mono- or poly-alkylene (C 2 -C 4 ) glycol, allyl phthalate, triallyl cyanurate, tetraallyloxyethane, alkaline diallylsulfosuccinates and condensates of unsaturated (C 3 -C S ) carboxylic acids and polyols, such as, for example, trimethylolpropane acrylate and methacrylate.
  • crosslinking monomer and / or the chain limiting agent are introduced alone or as a mixture, in any known manner either, before or during polymerization, for example at the same time as the monomers or at the same time as one of the monomers, either simultaneously or more particularly in solution in one of the monomers or in solution in the mixture of monomers.
  • the concentration of monomers in the polymerization medium is advantageously between 10 and 70% by weight.
  • one or more emulsifying agents may or may be present in the reaction medium.
  • These emulsifying agents can be anionic and / or nonionic and are conventional products of emulsion polymerizations.
  • anionic emulsifying agents there may be mentioned the fatty acid salts; alkylsulfates, alkylsulfonates, alkylarylsulfonates, alkylsulfosuccinates, alkaline alkylphosphates; sulfonates of alkylphenolpolyglycolic ethers; ester salts of alkylsulfopolycarboxylic acids; the condensation products of fatty acids with oxy- and amino-alkane-sulfonic acids; sulfated derivatives of polyglycolic ethers; sulfated esters of fatty acids and polyglycols; alkanolamides of sulfated fatty acids.
  • nonionic emulsifying agents the fatty esters of polyalcohols, the alkanolamides of fatty acids, the copolyoxides of ethylene and propylene, the oxyethylenated alcohols and alkylphenols, the oxyethylenated and sulfated alcohols and alkylphenols are to be mentioned.
  • the amounts of emulsifying agent (s) to be used are of the order of 0.1 to 3% by weight relative to the monomers and their introduction into the reaction medium can be carried out either completely before the polymerization , or in part before the polymerization, the additional part being added to the reaction medium during polymerization by successive fractions or continuously, or even entirely during polymerization by successive fractions or continuously, depending on the average diameter of the latex particles to be obtained.
  • the emulsifying agent is added to the preparation medium of the amide polymer (s), the first constituent of the protective colloid.
  • the polymerization medium may be advantageous to maintain the polymerization medium at a pH of 3 to 7.
  • a regulator to the medium of pH represented in particular by a base, such as sodium hydroxide or ammonia and / or by a buffer, such as sodium acetate, sodium bicarbonate or borax.
  • the regulator is added to the medium, alone or as a mixture, in whole or in part before the polymerization, the additional part being added during the polymerization by successive fractions or continuously, or even completely during the polymerization by successive fractions or continuously and more particularly.
  • the first constituent of the protective colloid in the preparation medium of the amide polymer, the first constituent of the protective colloid.
  • the air is removed by passing a stream of nitrogen, which is maintained and the mixture is stirred. After dissolution, the solution is heated to 60 ° C.
  • the air is removed by passing a stream of nitrogen which is maintained and the mixture is stirred. After dissolution, the reaction mixture is heated to 60 ° C, which temperature is maintained. As soon as the mixture is at 60 ° C., 0.8 g of ammonium persulfate dissolved in 100 cm 3 of water is introduced into the reactor. After 1 hour of reaction, the passage of the nitrogen stream and the stirring are interrupted.
  • ethylene is introduced until a pressure of 13 bars is reached in the reactor, which pressure is kept constant for the duration of the polymerization by the addition of ethylene.
  • the air is eliminated by passing a stream of nitrogen which. is maintained during the preparation of the colloid.
  • the mixture is stirred.
  • the solution is heated to 60 ° C, which temperature is maintained.
  • reaction medium After 20 minutes, the reaction medium is heated to 80 ° C., maintained at this temperature for 1 hour, then cooled to room temperature.
  • the mixture is stirred and heated to 80 ° C., a temperature which is maintained for the duration of the reaction.
  • reaction mixture is cooled.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Paper (AREA)
  • Materials For Medical Uses (AREA)
  • Paints Or Removers (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Description

  • L'invention a pour objet un procédé de préparation de latex de copolymères acétate de vinyle-oléfine, ainsi que les latex de copolymères obtenus par ledit procédé.
  • Les latex de copolymères acétate de vinyle-oléfine sont généralement utilisés comme liants dans la fabrication de colles, peintures, textiles et papiers. Ils sont préparés par polymérisation en émulsion de l'acétate de vinyle et de l'oléfine, en présence d'éthers de cellulose, d'alcools polyvinyliques, ou de polyvinylpyrrolidone comme colloîdes protecteurs. Ces colloîdes protecteurs confèrent aux latex une bonne stabilité au stockage et aux manipulations, ainsi qu'une certaine viscosité nécessaire à leurs applications, mais également une sensibilité à l'eau des films de copolymères nuisible aux applications envisagées.
  • Il est également connu d'après le brevet français n° 1 479 750 de préparer des latex de polymères ou copolymères d'esters vinyliques en présence d'un colloïde protecteur obtenu par copolymérisation dans l'eau d'acrylamide, méthacrylamide et d'acide acrylique et/ou méthacrylique en présence d'un dérivé tensio-actif non ionique et/ou anionique de polyalcoylène-oxyde.
  • Le procédé objet de l'invention permet d'obtenir des latex de copolymères acétate de vinyle-oléfine qui possèdent une bonne stabilité au stockage et aux manipulations et la viscosité nécessaire à leurs applications et dont les films de copolymères présentent une très bonne tenue à l'eau.
  • Le procédé selon l'invention consiste à copolymériser en émulsion aqueuse de l'acétate de vinyle avec au moins une oléfine et éventuellement au moins un autre monomère copolymérisable en présence d'un initiateur, d'un émulsifiant et d'un colloîde protecteur et est caractérisé en ce que le colloïde protecteur est constitué a) d'un polymère soluble dans l'eau des amides des acides acrylique et méthacrylique et de leurs dérivés N-alkylés substitués ou non et b) d'un polymère d'éthylène glycol, de masse moléculaire comprise entre 1 000 et 50 000, soluble dans l'eau.
  • Le polymère d'amide soluble dans l'eau, premier constituant du colloïde protecteur, est un homopolymère ou un copolymère en toutes proportions ou encore un mélange d'au moins un homopolymère et/ou d'au moins un copolymère des amides des acides acrylique et méthacrylique et de leurs dérivés N-alkylés, dont le groupe alkyle possède 1 à 4 atomes de carbone et peut être substitué par des groupes amine, hydroxy ou alcoxy possédant 1 à 4 atomes de carbone.
  • Parmi ces amides peuvent être cités, par exemple, l'acrylamide, le méthacrylamide, le N-méthylacry- lamide, le N,N-diméthylacrylamide, le N-isopropylacrylamide, le N-méthylaminoisopropylacrylamide, le N-méthylolacrylamide, le N-méthyloiméthacrylamide, le N-méthoxyméthylacrylamide et le N-isobutoxymé- thylacrylamide.
  • Le polymère d'amide soluble dans l'eau peut être préparé par exemple par polymérisation en solution aqueuse d'au moins un amide, à une concentration de 0,1 à 7 % en poids, en présence d'un initiateur radicalaire hydrosoluble et/ou de rayonnements ultra-violets, à une température comprise entre 0 et 90 °C.
  • L'initiateur à mettre en oeuvre est un initiateur radicalaire hydrosoluble classique de la polymérisation en solution, tel que l'eau oxygénée, les persulfates alcalins, les dérivés diazoïques hydrosolubles ou les systèmes redox à base d'oxydants comme l'eau oxygénée, les peroxydes ou hydroperoxydes organiques et de réducteurs comme les sulfites et bisulfites alcalins, les amines, l'hydrazine ou les formaldéhyldesul- foxylates métalliques. Tous ces initiateurs sont mis en oeuvre seuls ou en mélange, à raison de 0,1 à 10 % en poids du ou des amide(s).
  • Le polymère d'amide soluble dans l'eau peut être réticulé par des quantités pouvant aller jusqu'à 50 % en poids du ou des amides d'agents réticulants hydrosolubles représentés par les N,N'-alkylidène ayant 1 à 4 atomes de carbone bis(amide d'acide insaturé ayant 3 à 5 atomes de carbone) tels que N,N'- méthylène bis (acrylamide) ou N,N'-méthylène bis (méthacrylamide), l'éther diallylique, le sulfosuccinate diallylique ou l'oxyéthane polyallylique.
  • Le polymère d'éthylène glycol, deuxième constituant du colloide protecteur, est soluble dans l'eau et possède une masse moléculaire comprise-entre 1 000 et 50 000 et de préférence entre 3 000 et 35 000. Il est représenté par les homopolymères d'éthylène glycol et les mélanges d'au moins deux homopolymères de masse moléculaire différente. Ces polymères sont des produits en eux-mêmes connus et commercialisés.
  • Dans le nouveau procédé de polymérisation, le colloïde protecteur est constitué de 15 à 70 % en poids du polymère d'amide et de 30 à 85 % en poids du polymère d'éthylène glycol et il est utilisé à raison de 0,1 à 5 % et de préférence 0,5 à 3 % en poids des monomères à polymériser.
  • Les deux constituants du colloïde protecteur sont mis en oeuvre sous forme de solutions aqueuses.
  • La solution du polymère d'amide peut être utilisée à tout moment après sa préparation, mais, selon une forme préférée de l'invention, elle est utilisée immédiatement après sa préparation.
  • Les deux solutions peuvent être introduites séparément dans le milieu de polymérisation en émulsion, ou bien le polymère d'éthylène glycol peut être dissous dans la solution de polymère d'amide, ou encore, et cela constitue une forme préférentielle de l'invention, le polymère d'éthylène glycol peut être ajouté à la solution d'amide(s) avant sa polymérisation. Ces introductions sont effectuées soit en une seule fois avant polymérisation, soit en cours de polymérisation par fractions successives ou en continu.
  • Dans la ou les solutions aqueuses à utiliser, le polymère d'amide plus le polymère d'éthylène glycol représentent de 0,1 à 15 % en poids de l'eau.
  • Les oléfines qui peuvent être copolymérisées avec l'acétate de vinyle, par le nouveau procédé, possèdent 2 à 4 atomes de carbone et sont représentées par l'éthylène, le propylène et les butènes.
  • Par autres monomères copolymérisables, on entend les esters vinyliques d'acides monocarboxyliques saturés ramifiés ou non ayant de 1 à 12 atomes de carbone, comme le propionate, le « Versatate (marque déposée pour des mélanges d'esters d'acides ramifiés en Cg à C11), le pivalate, le laurate de vinyle et/ou les esters d'acides insaturés mono-ou di-carboxyliques possédant 3 à 6 atomes de carbone et d'alcools possédant 1 à 10 atomes de carbone, comme les acrylates, méthacrylates, maléates ou fumarates de méthyle, d'éthyle, de butyle ou d'éthylhexyle, ainsi que les halogénures de vinyle et de vinylidène, comme le chlorure de vinyle ou le chlorure de vinylidène.
  • Ces monomères copolymérisables peuvent être polymérisés avec l'acétate de vinyle et au moins une oléfine, ou bien être greffés sur le copolymère acétate de vinyle-oléfine.
  • Les oléfines et autes comonomères sont mis en oeuvre en quantités telles que la température de transition vitreuse du copolymère obtenu soit comprise entre - 30 et 50 °C et de préférence entre - 20 et 35 °C.
  • Suivant le procédé, les monomères sont introduits dans le milieu de polymérisation, sous pression si le monomère est gazeux, soit en totalité avant polymérisation, ou en cours de polymérisation par fractions successives ou en continu, soit en partie avant polymérisation et l'autre partie en cours de polymérisation par fractions successives ou en continu.
  • Suivant le polymère à obtenir, il est possible d'ajouter aux monomères un monomère réticulant et/ou un agent limiteur de chaîne.
  • Le monomère réticulant, mis en oeuvre en proportions comprises entre 0 et 10 % et de préférence entre 0 et 3 % en poids par rapport aux monomères, est représenté plus particulièrement par les acrylate et méthacrylate de vinyle, le divinyléther, les acrylates'et méthacrylates de mono- ou poly-alkylène (C2-C4) glycol, le phtalate d'allyle, le cyanurate de triallyle, le tétraallyloxyéthane, les diallylsulfosuccinates alcalins et les condensats d'acides carboxyliques (C3-CS) insaturés et de polyols, comme par exemple, les acrylate et méthacrylate de triméthylolpropane.
  • L'agent limiteur de chaîne, mis en oeuvre en proportions comprises entre 0 et 10 et de préférence entre 0 et 3 % en poids par rapport aux monomères, est représenté, entre autres par les hydrocarbures halogénés, tels que chlorure de méthylène, chloroforme, tétrachlorure de carbone, bromoforme, tétrabromure de carbone, dichloréthane et trichloréthane, les alcools aliphatiques ayant 1 à 4 atomes de carbone, tels que alcool méthylique et alcool allylique, et de préférence par les mercaptans, tels que laurylmercaptan, dodécylmercaptan et aminophénylmercaptan.
  • Le monomère réticulant et/ou l'agent limiteur de chaîne sont introduits seuls ou en mélange, de toute façon connue en soit, avant ou en cours de polymérisation, par exemple en même temps que les monomères ou en même temps que l'un des monomères, soit simultanément, soit plus particulièrement en solution dans l'un des monomères ou en solution dans le mélange des monomères.
  • La concentration en monomères du milieu de polymérisation est avantageusement comprise entre 10 et 70 % en poids.
  • En tant qu'initiateur, on utilise un initiateur hydrosoluble classique de la polymérisation en émulsion et plus particulièrement l'eau oxygénée, les persulfates alcalins, les dérivés diazoïques hydrosolubles ou les systèmes redox à base d'oxydants comme l'eau oxygénée, les peroxydes ou hydroperoxydes organiques et de réducteurs comme les sulfites et bisulfites alcalins, les amines, l'hydrazine ou les formaldéhydesulfoxylates métalliques. L'initiateur est mis en oeuvre dans des proportions de l'ordre de 0,05 à 4,5 % et de préférence 0,1 à 2% en poids des monomères. Il est introduit dans le milieu de polymérisation en totalité avant polymérisation ou en cours de polymérisation par fractions successives ou en continu, ou encore en partie avant polymérisation, l'autre partie étant ajoutée en cours de polymérisation par fractions successives ou en continu, parrticulièrement lorsque la durée de vie de l'initiateur à la température de polymérisation est faible.
  • Afin d'assurer la stabilité du milieu réactionnel et du latex à obtenir, un ou plusieurs agents émulsifiants peut ou peuvent être présents dans le milieu réactionnel. Ces agents émulsifiants peuvent être anioniques et/ou non ioniques et sont des produits classiques des polymérisations en émulsion.
  • Parmi les agents émulsifiants anioniques, peuvent être cités les sels d'acides gras ; les alkylsulfates, alkylsulfonates, alkylarylsulfonates, alkylsulfosuccinates, alkylphosphates alcalins ; les sulfonates d'éthers alkylphénolpolyglycoliques ; les sels d'esters d'acides alkylsulfopolycarboxyliques ; les produits de condensation des acides gras avec les acides oxy- et amino-alcane-sulfoniques ; les dérivés sulfatés des éthers polyglycoliques ; les esters sulfatés d'acides gras et de polyglycols ; les alcanolamides d'acides gras sulfatés.
  • Parmi les agents émulsifiants non ioniques, sont à mentionner les esters gras de polyalcools, les alcanolamides d'acides gras, les copolyoxydes d'éthylène et de propylène, les alcools et alkylphénols oxyéthylénés, les alcools et alkylphénols oxyéthylénés et sulfatés.
  • Les quantités d'agent(s) émulsifiant(s) à mettre en oeuvre sont de l'ordre de 0,1 à 3 % en poids par rapport aux monomères et leur introduction dans le milieu réactionnel peut être effectuée soit en totalité avant la polymérisation, soit en partie avant la polymérisation, la partie complémentaire étant ajoutée au milieu réactionnel au cours de la polymérisation par fractions successives ou en continu, soit encore en totalité au cours de la polymérisation par fractions successives ou en continu, suivant le diamètre moyen des particules du latex à obtenir. Selon une forme particulière de réalisation de l'invention, l'agent émulsifiant est ajouté au milieu de préparation du polymère d'amide(s), premier constituant du colloïde protecteur.
  • Selon la nature des monomères mis en oeuvre et afin d'éviter l'hydrolyse du copolymère, il peut être avantageux de maintenir le milieu de polymérisation à un pH de 3 à 7. Ce qui peut être obtenu par addition au milieu d'un régulateur de pH représenté notamment par une base, telle que la soude ou l'ammoniaque et/ou par un tampon, tel que l'acétate de sodium, le bicarbonate de sodium ou le borax. Le régulateur est ajouté au milieu, seul ou en mélange, en totalité ou en partie avant la polymérisation, la partie complémentaire étant ajoutée au cours de la polymérisation par fractions successives ou en continu, ou encore en totalité au cours de la polymérisation par fractions successives ou en continu et plus particulièrement. dans le milieu de préparation du polymère d'amide, premier constituant du colloïde protecteur.
  • La température de polymérisation, fonction de l'initiateur mis en oeuvre et du copolymère à obtenir, est généralement comprise entre 0 et 95 °C et de préférence entre 20 et 90 °C.
  • Selon une variante, le procédé, tel que décrit ci-dessus, est effectué en présence d'un polymère semence, ce qui assure un meilleur contrôle de la granulométrie des particules du latex à obtenir. Ce polymère semence peut être semblable ou différent du polymère à obtenir. Il est obtenu par polymérisation en émulsion aqueuse d'acétate de vinyle ou d'acétate de vinyle et d'oléfine, et/ou d'au moins un des comonomères énumérés plus haut. Le latex de polymère semence obtenu est ajouté au milieu de polymérisation en même temps que l'un des constituants du colloïde protecteur ou en même temps que le mélange de ces deux constituants, ou bien est préparé en présence d'un de ces constituants ou des deux constituants du colloïde protecteur.
  • Suivant l'application envisagée du latex, il est possible d'ajouter, avant, pendant ou après polymérisation, un agent de plastification dans des proportions comprises entre 0 et 20 % et de préférence entre 0 et 10 % en poids par rapport au copolymère. Cet agent de plastification, mis en oeuvre seul ou en mélange, est choisi parmi les plastifiants et agents de coalescence classiques du polyacétate de vinyle, tels que les phatalates d'alkyle (C4-Ce) halogénés ou non, comme les phtalates de dibutyle, de diéthyle et de trichloréthyle, les phtalate, adipate et dibenzoate d'éthylène glycol, l'acétate de butylcarbitoi, le glycolate de butyle, la triacétine de glycérol, les succinates, glutarates, adipates dipropyliques ou diisobutyliques et les phosphates de tricrésyle et de triphényle.
  • Les latex de copolymères acétate de vinyle-oléfine obtenus possèdent une concentration de 10 à 70 % et de préférence 35 à 65 % en poids de particules de copolymères ayant une température de transition vitreuse comprise entre - 30 et 50 °C, dont la granulométrie étroite ou étalée est comprise entre 0,05 et 1 p.m. Les latex présentent un domaine étendu de viscosité allant de quelques mPa.s à 80 000 mPa.s et de préférence de 50 à 30 000 mPa.s, et donnent des films ayant une très bonne tenue à l'eau.
  • Les latex sont utilisés comme liants dans la fabrication des peintures, colles, papiers, textiles, plus particulièrement non tissés, revêtements de sol, additifs pour mortiers.
  • On donne ci-après, à titre indicatif et non limitatif, des exemples de réalisation de l'invention, dans lesquels :
    • - les pourcentages sont en poids ;
    • - la viscosité du latex est mesurée à 20 °C, au viscosimètre Brookfield RVT, vitesse 50 t/min ;
    • - le diamètre des particules est mesuré par microscopie électronique ;
    • - la température de transition vitreuse du copolymère (Tg) est mesurée par analyse calorimétrique différentielle ;
    • - la tenue à l'eau est déterminée en plaçant une goutte d'eau déminéralisée sur un film de 300 gm obtenu par dépôt du latex sur une plaque de verre transparent, suivi d'un séchage 2 h à 50 °C, puis 24 h à température ambiante. La tenue à l'eau est exprimée par le temps nécessaire pour que le film s'opacifie à l'emplacement de la goutte d'eau.
    Exemple 1 Préparation du colloïde protecteur
  • Dans un réacteur muni d'un réfrigérant, d'une arrivée d'azote et d'un agitateur, sont introduits :
    • - 1 050 g d'eau désionisée ;
    • - 13,5 g d'acrylamide ;
    • - 1 g de N,N'-méthylène bis(acrylamide) ;
    • - 0,5 g d'acétate de sodium ;
    • - 71 g d'une solution aqueuse à 26,5 % de tétradécylsulfonate de sodium ;
    • - 19 g.de polyéthylène glycol de masse moléculaire 6 000.
  • L'air est éliminé par passage d'un courant d'azote, qui est maintenu et le mélange est agité. Après dissolution, la solution est chauffée à 60 °C.
  • Dès que la solution est à 60 °C, 0,7 g de persulfate d'ammonium en solution dans 50 cm3 d'eau sont introduits et la solution est maintenue à 60 °C pendant 1 heure. Le passage du courant d'azote est alors interrompu.
  • Polymérisation
  • Le vide est fait dans le réacteur, puis à la solution de colloide obtenue, 5 g de persulfate de potassium en solution dans 50 cm3 d'eau sont ajoutés. Est introduit ensuite, en continu, à débit constant en 3 heures, un mélange de 1 520 g d'acétate de vinyle et de 190 g de « Versatate VEOVA 10 » (marque déposée).
  • Le « Versatate VEOVA 10 est un mélange d'esters vinyliques monocarboxyliques ramifiés en Cg à C11.
  • Après 15 minutes du début de l'introduction, on effectue simultanément :
    • - l'introduction de 190 g d'isobutène à débit constant en 1 heure ;
    • - le chauffage du mélange réactionnel à 80 °C, température qui est ensuite maintenue ;
    • - l'introduction de 19 g de persulfate de potassium dans 200 cm3 d'eau à débit constant en 2 h 45 min.
  • Deux heures après la fin des introductions, le mélange réactionnel est refroidi.
  • Un latex de terpolymère acétate de vinyle/isobutène/« Versatate VEOVA 10 »® 80/10/10 est obtenu, qui présente les caractéristiques suivantes :
    • - pH 2,8
    • - viscosité 1 280 mPa.s
    • - concentration 49,8 %
    • - diamètre des particules 0,1-0,4 µm
    • - Tg du polymère 18 °C
    • - Tenue à l'eau 15 min
  • Un terpolymère acétate de vinyle/isobutène/« Versatate VEOVA 10 »® 80/10/10, préparé par polymérisation en émulsion en présence d'hydroxyéthylcellulose en proportions égales à celles du colloïde protecteur de l'exemple 1, possède une tenue à l'eau de 2 min.
  • Exemple 2 Préparation du colloïde protecteur
  • Dans un réacteur muni d'un agitateur, sont introduits :
    • - 1 000 g d'eau désionisée ;
    • - 19 g d'acrylamide ;
    • - 5,5 g d'acétate de sodium ;
    • - 19 g de tétradécylsulfonate de sodium ;
    • - 19 g de polyéthylène glycol de masse moléculaire 10 000.
  • L'air est éliminé par passage d'un courant d'azote qui est maintenu et le mélange est agité. Après dissolution, le mélange réactionnel est chauffé à 60 °C, température qui est maintenue. Dès que le mélange est à 60 °C, 0,8 g de persulfate d'ammonium en solution dans 100 cm3 d'eau est introduit dans le réacteur. Après 1 heure de réaction, le passage du courant d'azote et l'agitation sont interrompus.
  • Polymérisation
  • Après avoir fait le vide dans le réacteur, de l'éthylène est introduit jusqu"'à avoir une pression de 13 bars dans le réacteur, pression qui est maintenue constante pendant la durée de la polymérisation par l'addition d'éthylène.
  • Au mélange agité sont ajoutés 2 g de persulfate d'ammonium en solution dans 100 cm3 d'eau, puis en continu 1 700 g d'acétate de vinyle à débit constant pendant 10 heures. 20 minutes après le début de cette introduction, le mélange réactionnel est chauffé à 70 °C et maintenu à cette température, alors que sont introduits 5,7 g de persulfate d'ammonium en solution dans 400 cm3 d'eau à débit constant en 10 h.
  • Deux heures après la fin des introductions, le mélange est refroidi, la pression dans le réacteur est de 2 bars.
  • Après dégazage, un latex de copolymère acétate de vinyle/éthylène 88/12 est obtenu, qui présente les caractéristiques suivantes :
    • - pH 2,8
    • - viscosité 700 mPa.s
    • - concentration 52 %
    • - diamètre des particules 0,1-0,4 µm
    • - Tg du copolymère 5 °C
    Exemple 3 Préparation du colloïde protecteur
  • Dans un réacteur muni d'un agitateur, sont introduits :
    • - 1 000 g d'eau désionisée ;
    • - 14,5 g d'acrylamide ;
    • - 5,5 g d'acétate de sodium ;
    • - 19 g de tétradécylsulfonate de sodium ;
    • - 19 g de polyéthylène glycol de masse moléculaire 10000.
  • L'air est éliminé par passage d'un courant d'azote qui est maintenu et le mélange est agité. Après dissolution, le mélange réactionnel est chauffé à 60 °C, température qui est maintenue. Dès que le mélange est à 60 °C, 0,8 g de persulfate d'ammonium en solution dans 100 cm3 d'eau est introduit dans le réacteur. Après 1 heure de réaction, le passage du courant d'azote et l'agitation sont interrompus.
  • Polymérisation
  • Après avoir fait le vide dans le réacteur, de l'éthylène est introduit jusqu'à avoir une pression de 13 bars dans le réacteur, pression qui est maintenue constante pendant la durée de la polymérisation par l'addition d'éthylène.
  • Au mélange agité sont ajoutés 2 g de persulfate d'ammonium en solution dans 100 cm3 d'eau, puis en continu 1 387 g d'acétate de vinyle à débit constant pendant 10 heures. 20 minutes après le début de cette introduction, le mélange réactionnel est chauffé à 70 °C et maintenu à cette température, alors que sont introduits simultanément en continu :
    • - 285 g de chlorure de vinyle à débit constant en 9 h 40 min ;
    • - 5,7 g de persulfate d'ammonium en solution dans 400 cm3 d'eau à débit constant en 10 h.
  • Deux heures après la fin des introductions, le mélange est refroidi, la pression dans le réacteur est de 3,5 bars.
  • Après dégazage, un latex de terpolymère acétate de vinyle/éthylène/chlorure de vinyle 73/12/15 est obtenu, qui présente les caractéristiques suivantes :
    • - pH 2,6
    • - viscosité 500 mPa.s
    • - concentration 51,3 %
    • - diamètre des particules 0,1-0,4 µm
    • - Tg du terpolymère 17 °C
    Exemple 4 Préparation du colloïde protecteur
  • Dans un réacteur muni d'un réfrigérant, d'une arrivée d'azote et d'un agitateur, sont introduits :
    • - 5 890 g d'eau désionisée ;
    • - 107 g d'acrylamide ;
    • - 43 g d'acétate de sodium ;
    • - 488 g d'une solution à 29,5 % de tétradécylsulfonate de sodium ;
    • - 144 g de polyéthylène glycol de masse moléculaire 10 000.
  • L'air est éliminé par passage d'un courant d'azote qui. est maintenu pendant la préparation du colloïde. Le mélange est agité.
  • Après dissolution, la solution est chauffée à 60 °C, température qui est maintenue.
  • Dès que la solution est à 60 °C, 6 g de persulfate d'ammonium dans 20 cm3 d'eau sont introduits.
  • Après 1 heure de réaction, le passage d'azote est arrêté.
  • Préparation d'une semence
  • 3,5 g de persulfate d'ammonium et 144 g d'acétate de vinyle sont ajoutés à la solution de colloïde.
  • Après 20 minutes, le milieu réactionnel est chauffé à 80 °C, maintenu à cette température pendant 1 heure, puis refroidi à température ambiante.
  • Polymérisation
  • Dans un réacteur, dans lequel le vide a été fait, on introduit successivement :
    • - 800 g de la semence obtenue précédemment ;
    • - 800 g d'eau désionisée.
  • Le mélange est agité et chauffé à 80 °C, température qui est maintenue pendant la durée de la réaction.
  • Dès que le mélange est à 80 °C, on lui ajoute 5 g de persulfate de potassium en solution dans 50 cm3 d'eau. On introduit alors simultanément, en continu et à débit constant :
    • - 197 g d'isobutène en 1 heure ;
    • - 19 g de persulfate de potassium dans 200 cm3 d'eau en 2 h 45 min ;
    • - un mélange de 1 506 g d'acétate de vinyle et de 197 g de « Versatate VEOVA 10 » ® en 3 heures.
  • Deux heures après la fin des introductions, le mélange réactionnel est refroidi.
  • Un latex de terpolymère acétate de vinyle/isobutène/« Versatate VEOVA 10 » ® 80/10/10 est obtenu, qui présente les caractéristiques suivantes :
    • - pH 2,7
    • - viscosité 1 080 mPa.s
    • - concentration 52,8 %
    • - diamètre des particules 0,1-0,4 µm
    • - Tg du terpolymère 18 °C
    • - tenue à l'eau 15 min

Claims (8)

1. Procédé de préparation de latex de copolymères acétate de vinyle-oléfine qui consiste à copolymériser en émulsion aqueuse de l'acétate de vinyle avec au moins une oléfine et éventuellement au moins un monomère copolymérisable en présence de 0,05 à 4,5 parties en poids d'un initiateur, de 0,1 à 3 parties en poids d'un émulsifiant et de 0,1 à 5 parties en poids d'un colloïde protecteur pour 100 parties en poids de monomères et est caractérisé en ce que le colloïde protecteur est constitué a) de 15 à 70 % d'un polymère d'amide soluble dans l'eau et b) de 30 à 85 % en poids d'un polymère d'éthylène glycol, de masse moléculaire comprise entre 1 000 et 50 000, soluble dans l'eau, ledit polymère d'amide étant au moins un homopolymère d'un amide choisi parmi l'acrylamide, le méthacrylamide, les dérivés N-alkylés éventuellement substitués de l'acrylamide ou du méthacrylamide et/ou au moins un copolymère d'au moins deux desdits amides entre eux, ledit colloïde protecteur étant mis en oeuvre sous forme d'une solution aqueuse contenant de 0,1 à 15 parties en poids de colloïde pour 100 parties d'eau.
2. Procédé selon la revendication 1, caractérisé en ce que les dérivés Ñ-alkylés d'acrylamide ou de méthacrylamide sont des dérivés N-alkylés (C1-C2 éventuellement substitués par des groupes aminé, hydroxy, alcoxy (Cl-C4).
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le polymère d'amide est éventuellement réticulé par un agent de réticulation hydrosoluble.
4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le polymère d'amide est obtenu par polymérisation en solution aqueuse d'au moins un amide, à une concentration de 0,1 à 7 % en poids, en présence de 0,1 à 10 % en poids du ou des amides d'un initiateur radicalaire hydrosoluble et/ou de rayonnements ultra-violets à une température de 0 à 90 °C.
5. Procédé selon l'une des revendications 1 à 4, caractérisé en ce que l'homopolymère d'éthylène glycol est un mélange d'homopolymères d'éthylène glycol.
6. Procédé selon l'une des revendications 1 à 5, caractérisé en ce que l'oléfine possède 2 à 4 atomes de carbone.
7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le monomère copolymérisable avec l'acétate de vinyle est choisi parmi les esters vinyliques d'acides monocarboxyliques (C1-C12) ramifiés ou non et/ou les esters d'acides insaturés mono- ou dicarboxyliques (C3-Ce) et d'alcool (C1-C10) et/ou les halogénures de vinyle et de vinylidène.
8. Procédé selon l'une des revendications 1 à 7, caractérisé en ce qu'un polymère semence, semblable ou différent du polymère à obtenir, est présent dans le milieu de polymérisation.
EP82401469A 1981-08-10 1982-08-04 Procédé de préparation de latex de copolymères acétate de vinyle-oléfine Expired EP0072734B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT82401469T ATE14018T1 (de) 1981-08-10 1982-08-04 Verfahren zur herstellung eines latex von vinylacetat-olefin-copolymeren.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8115437 1981-08-10
FR8115437A FR2511011B1 (fr) 1981-08-10 1981-08-10 Procede de preparation de latex de copolymeres acetate de vinyle-olefine

Publications (2)

Publication Number Publication Date
EP0072734A1 EP0072734A1 (fr) 1983-02-23
EP0072734B1 true EP0072734B1 (fr) 1985-06-26

Family

ID=9261321

Family Applications (1)

Application Number Title Priority Date Filing Date
EP82401469A Expired EP0072734B1 (fr) 1981-08-10 1982-08-04 Procédé de préparation de latex de copolymères acétate de vinyle-oléfine

Country Status (15)

Country Link
US (1) US4439574A (fr)
EP (1) EP0072734B1 (fr)
JP (1) JPS5837014A (fr)
AT (1) ATE14018T1 (fr)
BR (1) BR8204666A (fr)
CA (1) CA1186835A (fr)
DE (1) DE3264422D1 (fr)
DK (1) DK356082A (fr)
EG (1) EG16195A (fr)
ES (1) ES8305789A1 (fr)
FI (1) FI70908C (fr)
FR (1) FR2511011B1 (fr)
GR (1) GR78001B (fr)
MA (1) MA19568A1 (fr)
NO (1) NO822267L (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4798782A (en) * 1986-02-08 1989-01-17 The British Petroleum Company P.L.C. Poly(acetylene) films having localized zones of a low conductivity material
US4745025A (en) * 1986-02-19 1988-05-17 Air Products And Chemicals, Inc. Nonwoven products bonded with binder emulsions of vinyl acetate/ethylene copolymers having improved solvent resistance
US4698384A (en) * 1986-02-19 1987-10-06 Air Products And Chemicals, Inc. Nonwoven binder emulsions of vinyl acetate/ethylene copolymers having improved solvent resistance
US4774283A (en) * 1987-03-02 1988-09-27 Air Products And Chemicals, Inc. Nonwoven binders of vinyl acetate/ethylene/self-crosslinking monomers/acrylamide copolymers having improved blocking resistance
US4814226A (en) * 1987-03-02 1989-03-21 Air Products And Chemicals, Inc. Nonwoven products bonded with vinyl acetate/ethylene/self-crosslinking monomer/acrylamide copolymers having improved blocking resistance
CN1072689A (zh) * 1991-11-27 1993-06-02 罗姆和哈斯公司 降低胶乳膨胀性的方法
US5415926A (en) * 1993-02-25 1995-05-16 National Starch And Chemical Investment Holding Corporation Process for reducing the free aldehyde content in N-alkylol amide monomers
WO1997025470A1 (fr) * 1996-01-05 1997-07-17 Reichhold Chemicals, Inc. Textile de latex
DE19823099A1 (de) * 1998-05-22 1999-11-25 Wacker Chemie Gmbh Verfahren zur Herstellung von vernetzbaren Bindemitteln
EP2108662A1 (fr) * 2008-04-10 2009-10-14 Hexion Specialty Chemicals Research Belgium S.A. Processus de copolymérisation dans une émulsion d'alcènes 1 et esters vinyles avec forte conversion
DE102009008143A1 (de) * 2009-02-09 2010-08-19 Celanese Emulsions Gmbh Vinylacetat-Ethylen-Copolymerdispersionen und damit behandelte textile Flächengebilde

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL292308A (fr) * 1962-05-05
FR1479750A (fr) * 1965-05-13 1967-05-05 Basf Ag Procédé de préparation de dispersions aqueuses de polymères d'esters vinyliques
DE1301064B (de) * 1965-05-13 1969-08-14 Basf Ag Verfahren zur Herstellung waessriger Dispersionen von Vinylesterpolymerisaten
US3547845A (en) * 1969-07-18 1970-12-15 Du Pont Vinyl ester/ethylene copolymer aqueous dispersions
JPS497078B1 (fr) * 1970-12-29 1974-02-18
US4085074A (en) * 1976-03-29 1978-04-18 National Casein Of New Jersey Pre-mixed catalyzed vinyl acetate polymer adhesive composition
JPS57138059A (en) * 1981-02-20 1982-08-26 Matsushita Electric Ind Co Ltd Manufacture for magnetic recording medium

Also Published As

Publication number Publication date
CA1186835A (fr) 1985-05-07
BR8204666A (pt) 1983-08-02
FR2511011A1 (fr) 1983-02-11
DE3264422D1 (en) 1985-08-01
FI70908C (fi) 1986-10-27
GR78001B (fr) 1984-09-26
DK356082A (da) 1983-02-11
NO822267L (no) 1983-02-11
FR2511011B1 (fr) 1985-10-04
ATE14018T1 (de) 1985-07-15
EP0072734A1 (fr) 1983-02-23
EG16195A (en) 1989-12-30
FI70908B (fi) 1986-07-18
ES514839A0 (es) 1983-04-16
JPS5837014A (ja) 1983-03-04
FI822789L (fi) 1983-02-11
FI822789A0 (fi) 1982-08-10
JPS6244005B2 (fr) 1987-09-17
ES8305789A1 (es) 1983-04-16
US4439574A (en) 1984-03-27
MA19568A1 (fr) 1983-04-01

Similar Documents

Publication Publication Date Title
EP0072317B1 (fr) Latex de copolymères acétate de vinyle-oléfine et procédé de préparation
JP2624741B2 (ja) 酢酸ビニルエチレン共重合エマルジョン
EP0072735B1 (fr) Latex de polymères d'acétate de vinyle et procédé de préparation
EP0072734B1 (fr) Procédé de préparation de latex de copolymères acétate de vinyle-oléfine
EP1067147A2 (fr) Emulsions d'acetate de vinyle/éthylène à taux en matières solides élevées
EP0050548B1 (fr) Colles à prise rapide à base de latex aqueux de polymère d'acetate de vinyle plastifié
EP0073702B1 (fr) Procédé de préparation de latex de polymères d'acétate de vinyle
US3094500A (en) Vinyl ester polymer emulsions containing polyvinyl alcohol
JPH0680709A (ja) 分散剤
US4746705A (en) Vinyl chloride polymer composition containing (meth)acrylate-alpha methyl styrene copolymer
FR2508478A2 (fr) Colles a prise rapide a base de latex aqueux de copolymere d'acetate de vinyle plastifie et leur procede de fabrication
JP2528892B2 (ja) 塩化ビニル系化合物の懸濁重合用分散安定剤
EP4091704A1 (fr) Résine d'alcool polyvinylique, procédé de production de résine d'alcool polyvinylique, dispersant et dispersant de polymérisation en suspension
JP2005089540A (ja) 酢酸ビニル樹脂系エマルジョンとその製造方法
JP3240176B2 (ja) ビニル系化合物の懸濁重合用分散助剤
JPH09208631A (ja) 塩化ビニル系重合体
FR2492398A1 (fr) Colles a prise rapide a base de latex aqueux de polyacetate de vinyle plastifie et leur procede de preparation
JP2002003515A (ja) ビニルエステル系樹脂エマルジョン
IE45992B1 (en) Preparation of dispersions
FR2645159A1 (fr) Procede pour la fabrication de polymeres du chlorure de vinyle modifies par des polymeres de lactones

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19830402

ITF It: translation for a ep patent filed

Owner name: D. PERROTTA & C. S.A.S.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 14018

Country of ref document: AT

Date of ref document: 19850715

Kind code of ref document: T

RIN1 Information on inventor provided before grant (corrected)

Inventor name: DANIEL, JEAN-CLAUDE

Inventor name: SCHUPPISER, JEAN-LUC

REF Corresponds to:

Ref document number: 3264422

Country of ref document: DE

Date of ref document: 19850801

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19860828

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870831

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19890630

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Effective date: 19890804

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890805

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19890831

Ref country code: CH

Effective date: 19890831

Ref country code: BE

Effective date: 19890831

BERE Be: lapsed

Owner name: RHONE-POULENC SPECIALITES CHIMIQUES

Effective date: 19890831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19900301

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19900427

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19900501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19900804

GBPC Gb: european patent ceased through non-payment of renewal fee
EUG Se: european patent has lapsed

Ref document number: 82401469.0

Effective date: 19900418