EP0052553B1 - Générateur de courant intégré en technologie CMOS - Google Patents

Générateur de courant intégré en technologie CMOS Download PDF

Info

Publication number
EP0052553B1
EP0052553B1 EP81401753A EP81401753A EP0052553B1 EP 0052553 B1 EP0052553 B1 EP 0052553B1 EP 81401753 A EP81401753 A EP 81401753A EP 81401753 A EP81401753 A EP 81401753A EP 0052553 B1 EP0052553 B1 EP 0052553B1
Authority
EP
European Patent Office
Prior art keywords
transistors
transistor
current
gate
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81401753A
Other languages
German (de)
English (en)
Other versions
EP0052553A1 (fr
Inventor
Jean-Claude Bertails
Christian Perrin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pour L'etude Et La Fabrication De Circuits Integres Speciaux - Efcis Ste
Original Assignee
Pour L'etude Et La Fabrication De Circuits Integres Speciaux - Efcis Ste
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pour L'etude Et La Fabrication De Circuits Integres Speciaux - Efcis Ste filed Critical Pour L'etude Et La Fabrication De Circuits Integres Speciaux - Efcis Ste
Publication of EP0052553A1 publication Critical patent/EP0052553A1/fr
Application granted granted Critical
Publication of EP0052553B1 publication Critical patent/EP0052553B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/26Current mirrors
    • G05F3/262Current mirrors using field-effect transistors only

Definitions

  • the present invention relates to an integrated circuit capable of developing current sources of constant value, with a view to supplying current, for example, to analog functions of an integrated circuit.
  • CMOS technology is used here, that is to say that the circuits produced essentially comprise N-channel and P-channel MOS (Metal-Oxide-Semiconductor) transistors.
  • MOS Metal-Oxide-Semiconductor
  • the guiding idea of the present invention is that it is known, in CMOS technology, to produce transistors whose threshold voltage can be modified by ion implantation, this operation being carried out during the stages of manufacture of the integrated circuit, so that one can designate by masking certain transistors whose threshold voltage must be higher or lower (in absolute value) than others.
  • the threshold voltage of these chosen transistors can be adjusted to a desired value by acting on the dose of implanted ions.
  • the present invention provides a particularly simple transistor assembly for using this property and producing, from two transistors having different threshold voltages, one or more current sources stable in temperature and independent of the voltage supply.
  • couples of transistors operating in saturated conditions are used and connected to each other by connections such that the current or voltage conditions existing in another can be copied by a transistor, until the terminals appear of a resistance of known value exactly the difference between the threshold voltages of two transitors having undergone a different ion implantation.
  • the current which crosses this resistance is stable and one arranges to make it cross at least one MOS transistor operating in saturated mode and to make recopy this current (with a factor of proportionality near if it is desired) by at least one other transistor MOS having the same gate-source bias voltage as the first and the same threshold voltage.
  • a particularly simple assembly consists in having a voltage source supplying in parallel two sets of MOS transistors in series, each transistor of one of the sets having a counterpart of the same type of channel in the other set. ; each set comprises three transistors and the geometry ratios of the homologous transistors are the same for all the transistors of the sets; the first transistors, of a first type of channel, have the same threshold voltage and have their gates joined, that of the second assembly further having its gate joined to its drain; the second transistors, of a second type of channel opposite to the first, have the same threshold voltage and have their gates joined, that of the first assembly further having its gate joined to its drain; the third transistors, of the second type of channel, have respectively their gate joined to their drain and have different threshold voltages (one of them for example having not undergone like the other transistors of the same type an ion implantation intended to lower its threshold voltage in absolute value, or, conversely, having alone undergone an ion implantation intended to increase its threshold voltage in absolute value).
  • a resistor of known value, integrated or not, is inserted in series between the second and the third transistor of one of the assemblies.
  • at least one additional MOS transistor is provided, apart from the two sets, to serve as a constant and stable supply current generator, this transistor having its source and its gate connected to the source and to the gate of the first or of the third transistor of one of the assemblies and having the same threshold voltage as the transistor to which it is connected in order to copy the current flowing through the latter (to within a proportionality factor known).
  • additional transistors can be provided, each having their gate and their source connected to the gate and to the source respectively of the first or of the third transistor of one of the assemblies.
  • Each of these additional transistors serves as a stable current source since it copies the stable current into the resistor.
  • the additional transistor or transistors have a known geometry factor with respect to the transistors to which they are connected, so that the current which they copy is in a known relationship with the stable current in the resistor.
  • each first or third transistor as well as each additional transistor, that is to say constitute, instead of a single transistor, a plurality of individual transistors. partial dual all connected in parallel (same gate, source and drain connection) playing exactly the same role as a single transistor but can be located in several places. Under these conditions, it is possible to provide side by side a first or third partial transistor and a partial additional transistor associated therewith to constitute an individual stable current source copying the current into the resistor with a proportionality factor which depends on the geometry of this partial additional transistor.
  • the mounting of transistors according to the invention effectively makes it possible to have a stable current in the resistor because it appears at the terminals thereof a voltage which is the difference of the threshold voltages of two MOS transistors of which only one has undergone an adjustment ion implantation.
  • This voltage therefore the current flowing through the resistor, does not depend on the temperature or the supply voltage of the circuit and moreover it is very stable over time.
  • the current produced in the resistor depends on the temperature to the same extent as the resistor, and the latter is chosen to be as stable as possible, whether integrated or external. If it is integrated, one will choose among the resistances diffused that which presents the lowest coefficient of temperature.
  • the arrangement of the invention comprises a first pair of homologous transistors, one of which copies the current of the other (to within a factor), a second pair of homologous transistors, the a copy of the source voltage of the other, a third pair of homologous transistors but at different threshold voltages that generates a voltage difference, a resistance in series with one of the transistors of the third couple to make up for this voltage difference, and at least one additional transistor for copying (to within a factor) of the current in one of the preceding transistors.
  • the key to the invention resides in the correspondence of the ratios of geometry factors of all the pairs of homologous transistors, and in the exact correspondence of the threshold voltages of all the couples of homologous transistors except one of them which must precisely generate a voltage difference. It must also be ensured that the threshold voltage of the additional current copying transistor (s) is indeed the same as the threshold voltage of the transistor to which its gate and its source are connected.
  • the circuit of FIG. 2 is therefore intended to produce a stable current source intended to supply part of the analog circuit 10 which is in principle integrated on the same substrate as the current source according to the invention.
  • This analog circuit can for example be an amplifier part: many differential amplifiers in particular use constant current sources.
  • the entire integrated circuit (analog part 10 and current source according to the invention) is supplied for example by symmetrical voltage levels + V and -V.
  • the transistor Ti is the counterpart of the transistor T ' 1 , the transistor T 2 of the transistor T' 2 and the transistor T 3 of the transistor T ' 3 .
  • the transistors T 1 and T ' 1 are N-channel (for example); the transistors T 2 , T ' 2 and T 3 , T' 3 are of the opposite channel type, in this case P in the example chosen.
  • the transistors T 1 , T 2 and T 3 can have any geometry; the transistors T ' i , T' 2 and T ' 3 have geometries in the same relationship as the transistors T 1 , T 2 and T 3 , that is to say that there exists a constant coefficient of proportionality between the homologous transistors of the two sets in series.
  • the homologous transistors T 1 and T ' 1 have the same threshold voltage; the homologous transistors T 2 and T ' 2 also have the same threshold voltage; on the other hand the transistors T 3 and T ' 3 have different threshold voltages, respectively V T3 and V' T3 .
  • all the P-channel MOS transistors of the integrated circuit, and in particular the transistors T 2 , T ' 2 and T' 3 have undergone ion implantation through their gate isolation to lower their threshold voltage. The transistor T 3 or T ' 3 on the contrary was masked during this operation so that it retains a higher threshold voltage in absolute value than the transistor T' 3 or T 3 and the others.
  • a resistance R 1 has been incorporated in series between the drain of transistor T ' 2 and the source of transistor T'a. It should be noted here that this resistor R 1 can be incorporated in the integrated circuit, and then be produced in the form of a portion of doped silicon, or it can be external to the circuit and connected to the latter by means of pins of external connection and metallic connections.
  • the transistor T ' i has its drain connected to its gate which itself is connected to the gate of the transistor T i , according to a conventional arrangement known as "current mirror", so that the current in the transistor T 1 copies the current in the transistor T ' 1 to a factor of proportionality that is the ratio K between the geometry of the transistor T i and the geometry of the transistor T'i (which is also the ratio between T 2 and T' 2 and the ratio between T 3 and T ' 3 ).
  • the current I 1 in T 1 is indeed proportional to the current I ' 1 in T' 1 , the proportionality factor being the ratio of the geometries of the two transistors.
  • the drain of transistor T 2 is connected to its gate, which is itself also connected to the gate of transistor T ' 2 . It is also a mirror assembly of currents, but this time, the sources of the transistors T 2 and T'z are not connected to each other so that the gate-source voltage of the transistors T 2 and T ' 2 is not directly imposed.
  • the current which crosses T 2 is the same as the current which crosses T 1 (I 1 ) and the current which crosses T ' 2 is the same as the current which crosses T' 1 (I ' 1 ).
  • the transistors T 3 and T ' 3 have their sources connected to the supply voltage + V; they preferably have their grid connected to their drain; by always applying the same formula for calculating the current in saturated regime, and taking into account that the currents I 1 and I ' 1 which cross T 3 and T' 3 are in the ratio K of the geometries of the transistors T 3 and T ' 3 , we immediately deduce that it appears between the drains (that is to say the gates) of the transistors T 3 and T' 3 a voltage difference which is precisely equal to the difference of the threshold voltages of these transistors.
  • V 3 V 2
  • the resistance R is inserted between the drain of T ' 3 and the source of T' 2
  • the voltage drop R 1 I' 1 in the resistor R 1 is equal to the difference of the threshold voltages of the transistors T ' 3 and T 3 .
  • the current I ′ 1 is therefore a current of well determined value stable over time, stable in temperature, and independent of the supply voltage + V, -V.
  • the current I 1 in the first set in series of the transistors T i , T 2 , T 3 is also a stable current since it copies the current I ' 1 to a factor of proportionality which is the ratio K between the geometries of the transistors of the first and second set in series. This ratio is independent of the temperature of course.
  • the transistor T " 1 is then placed in series between the analog circuit 10 and the supply connection V +, and a stable current returning i 1 is thus produced in the circuit 10.
  • an outgoing current i ' 1 by connecting a feedback transistor T ′′′ 1 , in series between the supply connection -V and the analog circuit 10.
  • the outgoing current I ' 1 may very well be provided in isolation or in addition to the current I 1 and it is not necessarily equal to the current I 1 .
  • the transistor T ′′′ 1 copies the current in the transistor T ' 1 (or T 1 ) if its gate and its source are connected to the gate and to the source of T' 1 (or T 1 ).
  • K is the ratio between the geometry of transistor T ′′′ 1 and that of transistor T ' 1 , these two transistors having the same threshold voltage, the current i' 1 will be K" I ' 1 .
  • FIG. 1 only one analog circuit 10 is represented, supplied by a re-entering current i 1 and an outgoing current i ' 1 ; it is obviously possible to provide several analog circuits each supplied by a feedback transistor having its gate and its source connected to one of the transistors traversed by the stable currents I 1 or I ' 1 (in practice the transistors T 1 , T' 1 and T ' 3 .
  • FIG 2 there is shown a current supply circuit quite similar to that of Figure 1, in which one seeks to supply several analog circuits 10, 20, etc., each requiring a particular stable current reference and possibly arranged in different places of the global integrated circuit chip.
  • the transistor T '3 is in the form of a plurality of transistors T' 31, T '32... etc. all connected in parallel.
  • the transistor T' 1 arises in the form of a plurality of transistors T '11, T 12,... etc.
  • the transistor T "1 is in the form of several transistorT" 11, T "12. . . etc.
  • the transistor T ′′′ 1 is in the form of several transistors T ′′′ 11 , T ′′′ 12 . . . etc.
  • the resulting stable supply currents i 11 , i 12 . . . or i '11, i' 12. . . are currents of recopy of the, in a proportionality ratio corresponding to the ratio of the geometry factors of the juxtaposed transistors which give rise to these recopy currents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Description

  • La présente invention concerne un circuit intégré capable d'élaborer des sources de courant de valeur constante, en vue d'alimenter en courant par exemple des fonctions analogiques d'un circuit intégré.
  • On utilise ici une technologie CMOS, c'est-à-dire que les circuits réalisés comprennent essentiellement des transistors MOS (Métal-Oxyde-Semiconducteur) à canal N et à canal P.
  • On cherche selon l'invention à réaliser des sources de courant peu dépendantes de la température et de la tension d'alimentation du circuit intégré comportant ces sources.
  • Des sources de courant ont déjà été proposées dans cette technologie CMOS; par exemple, l'article de David Bingham, »CMOS higher speeds, more drive and analog capability expand its horizons«, paru dans »Electronic Design« Vol 26 n° 23 de novembre 1978, décrit une telle source. Cette source utilise deux transistors MOS identiques et deux transistors de géométries très différentes, cette différence étant compensée dans une résistance. Ce dispositif est susceptible de fournir un courant de référence constant, mais ne permet pas une grande liberté de choix de la valeur du courant obtenu (faible tension aux bornes de la résistance) et dépend d'une manière mal connue de la température.
  • L'idée directrice de la présente invention est que l'on sait, en technologie CMOS, réaliser des transistors dont la tension de seuil peut être modifiée par implantation ionique, cette opération se faisant au cours des étapes de fabrication du circuit intégré, de sorte qu'on peut désigner par masquage certains transistors dont la tension de seuil doit être plus forte ou plus faible (en valeur absolue) que d'autres. La tension de seuil de ces transistors choisis peut être ajustée à une valeur désirée par action sur la dose d'ions implantés.
  • La théorie et l'expérience montrent que les tensions de seuil différentes de deux transistors ayant subi une implantation ionique différente varient avec la température mais que leur différence ne varie pas.
  • La présente invention propose un montage à transistors particulièrement simple pour utiliser cette propriété et réaliser, à partir de deux transistors ayant des tensions de seuil différentes, une ou plusieurs sources de courant stables en température et indépendantes de l'alimentation en tension.
  • Pour cela, on utilise des couples de transistors fonctionnant en régime saturé et reliés entre eux par des connexions telles que l'on puisse faire recopier par un transistor les conditions de courant ou de tension existant dans un autre, jusqu'à faire apparaître aux bornes d'une résistance de valeur connue exactement la différence entre les tensions de seuil de deux transitors ayant subi une implantation ionique différente. Le courant qui traverse cette résistance est stable et on s'arrange pour lui faire traverser au moins un transistor MOS fonctionnant en régime saturé et pour faire recopier ce courant (à un facteur de proportionalité près si on le désire) par au moins un autre transistor MOS ayant la même tension de polarisation grille-source que le premier et la même tension de seuil.
  • Plus précisément, un montage particulièrement simple selon l'invention consiste à avoir une source de tension alimentant en parallèle deux ensembles de transistors MOS en série, chaque transistor de l'un des ensembles ayant un homologue de même type de canal dans l'autre ensemble; chaque ensemble comporte trois transistors et les rapports de géométrie des transistors homologues sont les mêmes pour tous les transistors des ensembles; les premiers transistors, d'un premier type de canal, ont la même tension de seuil et ont leurs grilles réunies, celui du second ensemble ayant en outre sa grille réunie à son drain; les seconds transistors, d'un second type de canal opposé au premier, ont la même tension de seuil et ont leurs grilles réunies, celui du premier ensemble ayant en outre sa grille réunie à son drain; les troisième transistors, du second type de canal, ont respectivement leur grille réunie à leur drain et ont des tensions de seuil différentes (l'un d'eux par exemple n'ayant pas subi comme les autres transistors de même type une implantation ionique destinée à abaisser en valeur absolue sa tension de seuil, ou, réciproquement, ayant lui seul subi une implantation ionique destinée à augmenter en valeur absolue sa tension de seuil). Une résistance de valeur connue, intégrée ou non, est insérée en série entre le second et le troi sième transistor de l'un des ensembles. Enfin, au moins un transistors MOS supplémentaire est prévu, en dehors des deux ensembles, pour servir de générateur de courant d'alimentation constant et stable, ce transistor ayant sa source et sa grille reliées à la source et à la grille du premier ou du troisième transistor de l'un des ensembles et ayant même tension de seuil que le transistor auquel il est relié pour recopier le courant qui traverse ce dernier (à un facteur de proportiona lité connu près).
  • Plusieurs transistors supplémentaires peuvent être prévus, ayant chacun leur grille et leur source reliées à la grille et à la source respectivement du premier ou du troisième transistor de l'un des ensembles. Chacun de ces transistors supplémentaires sert de source de courant stable puisqu'il recopie le courant stable dans la résistance. Le ou les transistors supplémentaires ont un facteur de géométrie connu par rapport aux transistors auxquels ils sont reliés, de sorte que le courant qu'ils recopient est dans un rapport connu avec le courant stable dans la résistance.
  • Dans un mode de réalisation plus particulier, on peut »répartir« chaque premier ou troisième transistor, ainsi que chaque transistor supplé mentaire, c'est à dire constituer, au lieu d'un seul transistor, une pluralité de transistors individuels partiels tous connectés en parallèle (même connexion de grille, de source et de drain) jouant exactement le même rôle qu'un transistor unique mais pouvant être localisés en plusieurs endroits. Dans ces conditions, on peut prévoir côte à côte un premier ou troisième transistor partiel et un transistor supplémentaire partiel qui lui est associé pour constituer une source de courant stable individuelle recopiant le courant dans la résistance avec un facteur de proportionalité qui dépend de la géométrie de ce transistor supplémentaire partiel.
  • Le montage de transistors selon l'invention permet effectivement d'avoir un courant stable dans la résistance du fait qu'il apparaît aux bornes de celle-ci une tension qui est la différence des tensions de seuil de deux transistors MOS dont l'un seulement a subi une implantation ionique d'ajustement. Cette tension, donc le courant qui traverse la résistance, ne dépend ni de la température ni de la tension d'alimentation du circuit et de plus elle est bien stable dans le temps. Le courant produit dans la résistance dépend de la température dans la même mesure que la résistance, et celle-ci est choisie aussi stable que possible, qu'elle soit intégrée ou extérieure. Si elle est intégrée, on choisira parmi les résistances diffusées celle qui présente le plus faible coefficient de température.
  • En gros et pour résumer, on peut dire que le montage de l'invention comprend un premier couple de transistors homologues dont l'un recopie le courant de l'autre (à un facteur près), un deuxième couple de transistors homologues dont l'un recopie la tension de source de l'autre, un troisième couple de transistors homologues mais à tensions de seuil différentes que engendre une différence de tension, une résistance en série avec l'un des transistors du troisième couple pour rattraper cette différence de tension, et au moins un transistor supplémentaire de recopie (à un facteur près) du courant dans l'un des transistors précédents. La clef de l'invention réside dans la correspondance des rapports de facteurs de géométrie de tous les couples de transistors homologues, et dans la correspondance exacte des tensions de seuil de tous les couples de transistors homologues sauf l'un d'eux qui doit justement engendrer une différence de tension. Il faut aussi s'assurer que la tension de seuil du ou des transistors supplémentaires de recopie de courant est bien la même que la tension de seuil du transistor auquel sa grille et sa source sont reliées.
  • D'autres caractéristiques et avantages de l'invention apparaitront à la lecture de la description détaillée qui suit et qui est faite en référence au dessin annexé dans lequel:
    • - la figure 1 représente un schéma détaillé d'un exemple de réalisation de l'invention,
    • - la figure 2 représente un autre exemple avec une variante d'exécution.
  • Le circuit de la figure 2 est donc destiné à produire une sourve de courant stable destinée à alimenter une partie de circuit analogique 10 qui est en principe intégrée sur le même substrat que la sourve de courant selon l'invention. Ce circuit analogique peut être par exemple une partie d'amplificateur: de nombreux amplificateurs différentiels notamment utilisent des sources de courant constant.
  • L'ensemble du circuit intégré (partie analogique 10 et source de courant selon l'invention) est alimenté par exemple par des niveaux de tension symétriques +V et -V.
  • Entre les conducteurs d'alimentation à +V et ­V sont connectés en parallèle deux ensembles similaires de trois transistors en série chacun, respectivement T1, T2 et T3 pour le premier ensemble, et T'1, T'2 et T'3 pour le deuxième ensemble. Le transistor Ti est l'homologue du transistor T'1, le transistor T2 du transistor T'2 et le transistor T3 du transistor T'3. Les transistors T1 et T'1 sont à canal N (par exemple); les transistors T2, T'2 et T3, T'3 sont du type de canal opposé, en l'occurence P dans l'exemple choisi.
  • Les transistors T1, T2 et T3 peuvent avoir des géométries quelconques; les transistors T'i, T'2 et T'3 ont des géométries dans le même rapport que les transistors T1, T2 et T3, c'est-à-dire qu'll existe un coefficient de proportionalité constant entre les transistors homologues des deux ensembles en série.
  • De plus, les transistors homologues T1 et T'1 ont une même tension de seuil; les transistors homologues T2 et T'2 ont aussi une même tension de seuil; par contre les transistors T3 et T'3 ont des tensions de seuil différentes, respectivement VT3 et V'T3. Par exemple, tous les transistors MOS à canal P du circuit intégré, et notamment les transistors T2, T'2 et T'3, ont subi une implantation ionique à travers leur isolement de grille pour abaisser leur tension de seuil. Le transistor T3 ou T'3 au contraire a été masqué pendant cette opération de sorte qu'il conserve une tension de seuil plus élevée en valeur absolue que le transistor T'3 ou T3 et les autres.
  • De plus, dans le deuxième ensemble en série T'i, T'2, T'3 on a incorporé une résistance R1 en série entre le drain du transistor T'2 et la source du transistor T'a. Il faut noter ici que cette résistance R1 peut être incorporée au circuit intégré, et être alors réalisée sous forme d'une portion de silicium dopé, ou bien elle peut être extérieure au circuit et reliée à celui-ci par l'intermédiaire de broches de connexion extérieure et de liaisons métallisées.
  • Le transistor T'i a son drain relié à sa grille qui elle-même est reliée à la grille du transistor Ti, selon un montage classique dit »en miroir de courants«, de sorte que le courant dans le transistor T1 recopie le courant dans le transistor T'1 à un facteur de proportionalité près que est le rapport K entre la géométrie du transistor Ti et la géométrie du transistor T'i (qui est aussi le rapport entre T2 et T'2 et le rapport entre T3 et T'3).
  • Cette recopie du courant provient du fait que les transistors T1 et T'1 ont même tension grille-source et même tension de seuil, et qu'ils fonctionnent en régime saturé; or, en régime saturé, le courant est donné par la formule.
    Figure imgb0001
    où VGS est la tension grille-source, VT la tension de seuil, Z/L le facteur de géométrie et k un coefficient qui dépend de la technologie utilisée (technologie qui est la même pour tous les transistors du circuit intégré).
  • Pour un même VGS et un même VT, on voit que le courant I1 dans T1 est bien proportionnel au courant I'1 dans T'1, le facteur de proportionalité étant le rapport des géométries des deux transistors.
  • Le drain du transistor T2 est relié à sa grille, qui est reliée elle-même aussi à la grille du transistor T'2. Il s'agit encore d'un montage en miroir de courants, mais cette fois ci, les sources des transistors T2 et T'z ne sont pas reliées l'une à l'autre de sorte que la tension grille-source des transistors T2 et T'2 n'est pas directement imposée. Par contre, le courant qui traverse T2 est le même que le courant qui traverse T1 (I1) et le courant qui traverse T'2 est le même que le courant qui traverse T'1 (I'1).
  • Les courants dans T2 et T'2 étant imposés et les tensions-grilles étant imposées, la formule de courant donnée précédemment permet de calculer les tensions grille-source des transistors T2 et T'2. Or, ces transistors ont même tension de seuil; ils ont un rapport de géométries K, et ils sont justement parcourus par des courants I1 et I'1 dans un rapport K (I1 = Kl'1). Ceci veut dire que leurs tensions grille-source seront les mêmes. Comme ils ont une tension de grille commune, il en résulte que, sans qu'il y ait une liaison directe entre leurs sources, les tensions V2 et V'2 de leurs sources seront identiques.
  • Par conséquent, de même que le transistor Ti recopiait le courant dans le transistor T'i, de même, le transistor T2 recopie la tension de source du transistor T'2.
  • En ce qui concerne les transistors T3 et T'3, ils ont leurs sources reliées à la tension d'alimentation +V; ils ont de préférence leur grille reliée à leur drain; en appliquant toujours la même formule de calcul du courant en régime saturé, et en tenant compte de ce que les courants I1 et I'1 qui traversent T3 et T'3 sont dans le rapport K des géométries des transistors T3 et T'3, on en déduit immédiatement qu'il apparaît entre les drains (c'est-à-dire les grilles) des transistors T3 et T'3 une différence de tension qui est justement égale à la différence des tensions de seuil de ces transistors. En d'autres mots, si V3 est la tension de drain du transistor T3 et V'3 la tension de drain du transistor T'3 on a
    Figure imgb0002
    Comme le drain de T3 est relié à la source de T2 on a V3=V2; comme d'autre part la résistance R, est insérée entre le drain de T'3 et la source de T'2, on a
    Figure imgb0003
    comme enfin on a dit que V2 = V'2 par recopie de tension, on en déduit immédiatement que la chute de tension R1 I'1 dans la résistance R1 est égale à la différence des tensions de seuil des transistors T'3 et T3. Le courant I'1 est donc un courant de valeur bien déterminée stable dans le temps, stable en température, et indépendant de la tension d'alimentation +V, -V.
  • On notera également que le courant I1 dans le premier ensemble en série des transistors Ti, T2, T3, est également un courant stable puisqu'il recopie le courant I'1 à un facteur de proportionalité près qui est le rapport K entre les géométries des transistors du premier et du second ensemble en série. Ce rapport est indépendant de la température bien entendu.
  • On prévoit alors pour établir un courant d'alimentation constant ii dans une partie de circuit analogique 10, de recopier le courant I1 ou I'1 avec un montage classique en miroir de courants, c'est-à-dire en utilisant au moins un transistor supplémentaire T"1, et on donne à ce transistor T"1 une tension grille-source égale à celle d'un autre transistor parcouru soit par I1 soit par I'1, le transistor T"1 ayant même tension de seuil que le transistor dont il recopiera la tension grille-source. Dans ces conditions, le courant i1 dans le transistor T"1 recopiera le courant I1 ou le courant I'1 avec un facteur de proportionalité qui sera le rapport entre la géométrie du transistor T"1 et le transistor qui aura même tension grille-source que lui.
  • Dans l'exemple représenté sur la figure 1, on a prévu à titre d'exemple de relier la grille du transistor T"i à celle du transistor T'3, les sources de ces deux transistors étant également reliées à la connexion d'alimentation V+. Le transistor T", aura même tension de seuil que le transistor T'3; si le rapport de géométrie entre le transistor T"1 et le transistor T'3 est K', on aura i1 = K' I'1.
  • Le transistor T"1 est alors mis en série entre le circuit analogique 10 et la connexion d'alimentation V+, et on produit ainsi un courant stable rentrant i1 dans le circuit 10.
  • Comme on l'a représenté sur la figure 1, on peut également produire un courant sortant i'1 en connectant un transistor de recopie T‴1, en série entre la connexion d'alimentation -V et le circuit analogique 10. Le courant sortant I'1 peut très bien être prévu isolément ou en plus du courant I1 et il n'est pas forcément égal au courant I1. Le transistor T‴1 recopie le courant dans le transistor T'1 (ou T1) si on relie sa grille et sa source à la grille et à la source de T'1 (ou T1 ).
  • Si K" est le rapport entre la géométrie du transistor T‴1 et celle du transistor T'1, ces deux transistors ayant même tension de seuil, le courant i'1 sera K" I'1.
  • On peut noter qu'on aurait pu produire un autre courant de référence d'alimentation à partir d'un transistor supplémentaire ayant sa grille et sa source connectées à la grille et à la source du transistor T3 au lieu de T'3, mais alors il faudrait prévoir que le transistor supplémentaire de recopie ainsi connceté ait une tension de seuil égale à celle du transistor T3 qui n'est pas la même que les autres.
  • Sur la figure 1 on n'a représenté qu'un seul circuit analogique 10 alimenté par un courant i1 rentrant et un courant i'1 sortant; on peut évidemment prévoir plusieurs circuits analogiques chacun alimenté par un transistor de recopie ayant sa grille et sa source reliées à l'un des transistors parcourus par les courants stables I1 ou I'1 (en pratique les transistors T1,T'1 et T'3.
  • Bien entendu, dans tout ce qui précède, quand on parle d'un transistor de recopie de courant, il s'agit d'un transistor de même type de canal que celui auquel sa grille et sa source sont reliées.
  • A la figure 2, on a représenté un circuit d'alimentation en courant tout à fait analogue à celui de la figure 1, dans lequel on cherche à alimenter plusieurs circuits analogiques 10, 20, etc., nécessitant chacun une référence de courant stable particulière et éventuellement disposés en des endroits différents de la pastille de circuit intégré global.
  • On retrouve sur la figure 2 exactement le premier ensemble en série de trois transistors Ti, T2 et T3 parcourus par le courant I1; on retrouve la résistance en série Ri parcourue par le courant I'1, ainsi que le transistor T'2 parcouru également par ce courant. La différence avec le schéma de la figure 1 réside dans le fait que le transistor T'3 et/ou le transistor T'1 d'une part, ainsi que le transistor T"1 et/ou le transistor T‴1 d'autre part, sont réalisés non pas sous la forme de transistors uniques mais sous la forme d'une pluralité de transistors individuels partiels tous connectés de la même manière (même connexion de grille, de source et de drain) jouant exactement le rôle d'un transistor unique mais pouvant être localisés en plusieurs endroits du circuit intégré. Ainsi, le transistor T'3 se présente sous forme de plusieurs transistors T'31, T'32 . . . etc. tous connectés en parallèle. Le transistor T'1 se présente sous la forme de plusieurs transistors T'11, T 12 . . . etc. Le transistor T"1 se présente sous forme de plusieurs transistorT"11, T"12 . . . etc. Et le transistor T‴1 se présente sous forme de plusieurs transistors T‴11, T‴12 . . . etc.
  • On peut alors s'arranger pour localiser un transistor partiel de la pluralité constituant T'3 à côté d'un transistor partiel respectif de la pluralité du type T"1; de même un transistor partiel de T'i à côté d'un transistor du type de T"'1. Chacun des transistors T"11, T"12 etc., ou T‴11. T‴12 etc., recopie le courant d'un transistor partiel T'31, T'32 . . . etc. ou T'11, T'12 . . . etc.
  • Bien entendu, les courants d'alimentation stables qui en résultent, i11, i12 . . . ou i'11, i'12 . . . sont des courants de recopie de l', dans un rapport de proportionalité correspondant au rapport des facteurs de géométrie des transistors juxtaposés qui donnent naissance à ces courants de recopie.

Claims (6)

1. Générateur de courant intégré en technologie CMOS, comprenant une source de tension (+V, -- V) alimentant en parallèle deux ensembles des transistors MOS en série, chaque transistor de l'un des ensembles ayant un homologue de même type de canal dans l'autre ensemble, caractérisé en ce que chaque ensemble comporte trois transistors (T1, T2, T3, T'1, T'2, T'3), en ce que les rapports de géométrie des transistors homologues sont les mêmes pour tous les transistors des ensembles, en ce que les premiers transistors (T1, T'1), d'un premier type de canal, ont la même tension de seuil et ont leur grilles réunies, celui du second ensemble ayant en outre sa grille réunie à son drain, en ce que les seconds transistors (T2, T'2), d'un second type de canal opposé au premier, ont la même tension de seuil et ont leurs grilles réunies, celui (T2) du premier ensemble ayant en outre sa grille réunie à son drain, en ce que les troisièmes transistors (T3, T'3), du second type de canal, ont respectivement leur grille réunie à leur drain et ont des tensions de seuil différentes, une résistance (R1) de valuer connue étant insérée en série entre le second et le troisième transistor de l'un des ensembles, au moins un transistor MOS supplémentaire (T"1, T"'1) étant prévu en dehors des ensembles pour servir de générateur de courant d'alimentation constant, ce transistor (T"1, T‴1) ayant sa sourve et sa grille respectivement reliées à la source et à la grille du premier ou du troisième transistor (T'1, T'3, T1, T3) de l'un des ensembles et ayant la même tension de seuil que le transistor auquel il est ainsi relié.
2. Générateur de courant selon la revendication 1, caractérisé par le fait que l'un des troisièmes transistors a (T3, T'3) subi une implantation ionique destinée à abaisser, en valeur absolue, sa tension de seuil, l'autre troisième transistor (T'3, T3) ayant été masqué pendant cette opération.
3. Générateur de courant selon la revendication 2, caractérisé par le fait que tous les transistors du deuxième type de canal, opposé au premier, du générateur de courant ont subi ladite implantation ionique, sauf l'un des troisièmes transistors (T3, T'3) qui a été masqué ou réciproquement.
4. Générateur de courant selon la revendication 1, caractérisé par le fait que plusieurs transistors supplémentaires sont prévus (T"11, T"12; T"'11, T"'12), ayant chacun leur grille et leur source respectivement reliées à la grille et à la source du premier ou du troisième transistor de l'un des ensembles, pour produire plusieurs références de courant.
5. Générateur de courant selon la revendication 4, caractérisé par le fait que les transistors supplémentaires ont des géométries dans des rapports connus choisis avec les géométries des transistors auxquels ils sont reliés.
6. Générateur de courant selon l'une des revendications 1 à 5, caractérisé par le fait que le premier et/ou le troisième transistor (T'1, T'3) de l'ensemble incluant la résistance en série sont constitués par plusieurs transistors MOS (T'11, T'12; T'31, T'32) montés en parallèle et connectés de la même façon, et que les transistors supplémentaires sont également constitués par plusieurs transistors MOS partiels (T"11, T"12, T‴11, T"'12) montés en parallèle et connectés de la même façon, un transistor supplémentaire partiel étant associé à chaque premier et/ou troisième transistor partiel (T'31, T'11) pour constituer une source de courant individuelle.
EP81401753A 1980-11-14 1981-10-30 Générateur de courant intégré en technologie CMOS Expired EP0052553B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8024232 1980-11-14
FR8024232A FR2494519A1 (fr) 1980-11-14 1980-11-14 Generateur de courant integre en technologie cmos

Publications (2)

Publication Number Publication Date
EP0052553A1 EP0052553A1 (fr) 1982-05-26
EP0052553B1 true EP0052553B1 (fr) 1985-03-27

Family

ID=9247977

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81401753A Expired EP0052553B1 (fr) 1980-11-14 1981-10-30 Générateur de courant intégré en technologie CMOS

Country Status (5)

Country Link
US (1) US4442398A (fr)
EP (1) EP0052553B1 (fr)
JP (1) JPS57111711A (fr)
DE (1) DE3169594D1 (fr)
FR (1) FR2494519A1 (fr)

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4342926A (en) * 1980-11-17 1982-08-03 Motorola, Inc. Bias current reference circuit
US4450367A (en) * 1981-12-14 1984-05-22 Motorola, Inc. Delta VBE bias current reference circuit
US4532467A (en) * 1983-03-14 1985-07-30 Vitafin N.V. CMOS Circuits with parameter adapted voltage regulator
US4618815A (en) * 1985-02-11 1986-10-21 At&T Bell Laboratories Mixed threshold current mirror
JPS61212907A (ja) * 1985-03-18 1986-09-20 Fujitsu Ltd 半導体集積回路
US4788455A (en) * 1985-08-09 1988-11-29 Mitsubishi Denki Kabushiki Kaisha CMOS reference voltage generator employing separate reference circuits for each output transistor
JPS6324406A (ja) * 1986-07-17 1988-02-01 Seikosha Co Ltd 定電流回路
JP2508077B2 (ja) * 1987-04-22 1996-06-19 日本電気株式会社 定電流源回路
US4837459A (en) * 1987-07-13 1989-06-06 International Business Machines Corp. CMOS reference voltage generation
US4797580A (en) * 1987-10-29 1989-01-10 Northern Telecom Limited Current-mirror-biased pre-charged logic circuit
US4769589A (en) * 1987-11-04 1988-09-06 Teledyne Industries, Inc. Low-voltage, temperature compensated constant current and voltage reference circuit
GB2214018A (en) * 1987-12-23 1989-08-23 Philips Electronic Associated Current mirror circuit arrangement
JP2705169B2 (ja) * 1988-12-17 1998-01-26 日本電気株式会社 定電流供給回路
JP3009109B2 (ja) * 1989-11-07 2000-02-14 富士通株式会社 半導体集積回路
JPH04111008A (ja) * 1990-08-30 1992-04-13 Oki Electric Ind Co Ltd 定電流源回路
JP2978226B2 (ja) * 1990-09-26 1999-11-15 三菱電機株式会社 半導体集積回路
US5257039A (en) * 1991-09-23 1993-10-26 Eastman Kodak Company Non-impact printhead and driver circuit for use therewith
US5362988A (en) * 1992-05-01 1994-11-08 Texas Instruments Incorporated Local mid-rail generator circuit
JP3114391B2 (ja) * 1992-10-14 2000-12-04 三菱電機株式会社 中間電圧発生回路
JPH0793977A (ja) * 1993-04-26 1995-04-07 Samsung Electron Co Ltd 半導体メモリ装置の中間電圧発生回路
US5362990A (en) * 1993-06-02 1994-11-08 Motorola, Inc. Charge pump with a programmable pump current and system
DE4334513C1 (de) * 1993-10-09 1994-10-20 Itt Ind Gmbh Deutsche CMOS-Schaltung mit erhöhter Spannungsfestigkeit
JPH07191769A (ja) * 1993-12-27 1995-07-28 Toshiba Corp 基準電流発生回路
US5541488A (en) * 1994-04-11 1996-07-30 Sundstrand Corporation Method and apparatus for controlling induction motors
FR2721119B1 (fr) * 1994-06-13 1996-07-19 Sgs Thomson Microelectronics Source de courant stable en température.
FR2721773B1 (fr) * 1994-06-27 1996-09-06 Sgs Thomson Microelectronics Dispositif de mise en veille partielle d'une source de polarisation et circuit de commande d'une telle source.
US5635869A (en) * 1995-09-29 1997-06-03 International Business Machines Corporation Current reference circuit
FR2744262B1 (fr) * 1996-01-31 1998-02-27 Sgs Thomson Microelectronics Dispositif de reference de courant en circuit integre
FR2744263B3 (fr) * 1996-01-31 1998-03-27 Sgs Thomson Microelectronics Dispositif de reference de courant en circuit integre
US5777509A (en) * 1996-06-25 1998-07-07 Symbios Logic Inc. Apparatus and method for generating a current with a positive temperature coefficient
US5726563A (en) * 1996-11-12 1998-03-10 Motorola, Inc. Supply tracking temperature independent reference voltage generator
DE19830828A1 (de) * 1997-07-09 1999-02-04 Denso Corp Dauerstromkreis unter Verwendung eines Stromspiegelkreises und dessen Anwendung
US5821823A (en) * 1997-07-31 1998-10-13 Northern Telecom Limited Voltage-controlled oscillator
IT1304670B1 (it) * 1998-10-05 2001-03-28 Cselt Centro Studi Lab Telecom Circuito in tecnologia cmos per la generazione di un riferimento incorrente.
EP1094599B1 (fr) * 1999-10-21 2004-12-22 STMicroelectronics S.r.l. Un circuit pour compenser la différence de tension Vgs de deux transistors MOS
EP1315063A1 (fr) * 2001-11-14 2003-05-28 Dialog Semiconductor GmbH Référence de courant indépendante de la tension de seuil d'un transistor MOS
KR100460458B1 (ko) * 2002-07-26 2004-12-08 삼성전자주식회사 외부 전압 글리치에 안정적인 내부 전압 발생 회로
JP2004274207A (ja) * 2003-03-06 2004-09-30 Renesas Technology Corp バイアス電圧発生回路および差動増幅器
FR2867893A1 (fr) * 2004-03-18 2005-09-23 St Microelectronics Sa Dispositif pour l'etablissement d'un courant d'ecriture dans une memoire de type mram et memoire comprenant un tel dispositif
US20050237106A1 (en) * 2004-04-22 2005-10-27 Oki Electric Industry Co., Ltd. Constant-current generating circuit
US7548051B1 (en) * 2008-02-21 2009-06-16 Mediatek Inc. Low drop out voltage regulator
JP4837111B2 (ja) * 2009-03-02 2011-12-14 株式会社半導体理工学研究センター 基準電流源回路
US9563222B2 (en) * 2014-05-08 2017-02-07 Varian Medical Systems, Inc. Differential reference signal distribution method and system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH657712A5 (de) * 1978-03-08 1986-09-15 Hitachi Ltd Referenzspannungserzeuger.
DE2826624C2 (de) * 1978-06-19 1982-11-04 Deutsche Itt Industries Gmbh, 7800 Freiburg Integrierte IGFET-Konstantstromquelle
JPS562017A (en) * 1979-06-19 1981-01-10 Toshiba Corp Constant electric current circuit
JPS56121114A (en) * 1980-02-28 1981-09-22 Seiko Instr & Electronics Ltd Constant-current circuit
NL8001558A (nl) * 1980-03-17 1981-10-16 Philips Nv Stroomstabilisator opgebouwd met veldeffekttransistor van het verrijkingstype.
US4342926A (en) * 1980-11-17 1982-08-03 Motorola, Inc. Bias current reference circuit

Also Published As

Publication number Publication date
DE3169594D1 (en) 1985-05-02
FR2494519A1 (fr) 1982-05-21
FR2494519B1 (fr) 1984-10-12
JPH0261052B2 (fr) 1990-12-19
EP0052553A1 (fr) 1982-05-26
JPS57111711A (en) 1982-07-12
US4442398A (en) 1984-04-10

Similar Documents

Publication Publication Date Title
EP0052553B1 (fr) Générateur de courant intégré en technologie CMOS
EP0733961B1 (fr) Générateur de courant de référence en technologie CMOS
EP0594834B1 (fr) Circuit intermediaire entre un circuit logique a basse tension et un etage de sortie a haute tension realises dans une technologie cmos standard
EP0438363B1 (fr) Circuit de mesure du courant dans un transistor MOS de puissance
CH697322B1 (fr) Procédé de génération d'un courant sensiblement indépendent de la température et dispositif permettant de mettre en oeuvre ce procédé.
EP0432058B1 (fr) Circuit d'isolation dynamique de circuits intégrés
FR2538191A1 (fr) Amplificateur a paire de transistors a effet de champ de couplage a grilles
FR2670035A1 (fr) Circuit de production de tension de reference d'un dispositif de memoire a semiconducteurs.
EP0424264B1 (fr) Source de courant à faible coefficient de température
EP0700141B1 (fr) Détecteur de température sur circuit intégré
EP2067090B1 (fr) Circuit electronique de reference de tension
FR2842652A1 (fr) Composant a circuit integre semi-conducteur a circuit de polarisation du corps destine a generer une tension de polarisation directe des puits d'un niveau suffisant
FR2529726A1 (fr) Amplificateur a seuil prevu pour la fabrication en circuit integre
FR2832819A1 (fr) Source de courant compensee en temperature
EP0756223A1 (fr) Générateur de référence de tension et/ou de courant en circuit intégré
CH632610A5 (fr) Source de tension de reference realisee sous forme d'un circuit integre a transistors mos.
FR2672749A1 (fr) Amplificateur operationnel a transconductance a grande excursion de mode commun.
EP0188401A2 (fr) Source de tension de référence
EP1416538A2 (fr) Photodétecteur d'un capteur d'images
FR2809833A1 (fr) Source de courant a faible dependance en temperature
EP0687967B1 (fr) Source de courant stable en température
FR2484142A1 (fr) Dispositif en circuit integre
EP0447729A2 (fr) Comparateur à seuil immunisé contre le bruit
FR2542946A1 (fr) Amplificateur differentiel a transistors bipolaires realises en technologie cmos
FR2757964A1 (fr) Regulateur de tension serie

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE FR GB IT NL

17P Request for examination filed

Effective date: 19820611

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 3169594

Country of ref document: DE

Date of ref document: 19850502

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19901031

Year of fee payment: 10

ITTA It: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19920501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: FR

Ref legal event code: D6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20001010

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20001023

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20001025

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20011029

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Effective date: 20011029