EP0040736A1 - Procédé pour faire fonctionner une installation de brûleur à gazéification/chaudière de chauffage - Google Patents

Procédé pour faire fonctionner une installation de brûleur à gazéification/chaudière de chauffage Download PDF

Info

Publication number
EP0040736A1
EP0040736A1 EP81103529A EP81103529A EP0040736A1 EP 0040736 A1 EP0040736 A1 EP 0040736A1 EP 81103529 A EP81103529 A EP 81103529A EP 81103529 A EP81103529 A EP 81103529A EP 0040736 A1 EP0040736 A1 EP 0040736A1
Authority
EP
European Patent Office
Prior art keywords
air
burner
probe
heating oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP81103529A
Other languages
German (de)
English (en)
Inventor
Alfred Dr. Michel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0040736A1 publication Critical patent/EP0040736A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/44Preheating devices; Vaporising devices
    • F23D11/441Vaporising devices incorporated with burners
    • F23D11/448Vaporising devices incorporated with burners heated by electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/13Measuring temperature outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/14Ambient temperature around burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/12Controlling catalytic burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/20Controlling one or more bypass conduits

Definitions

  • the invention relates to a method for operating a gasification burner / boiler system.
  • Oil burners are widely used in conventional boiler systems.
  • Conventional medium-power oil burners atomize the heating oil using a nozzle and burn it when there is excess air to keep soot formation low.
  • the atomizing burner output can be controlled only with great difficulty and only within narrow limits. For this reason, atomizing burners for boiler systems are operated intermittently, so that the average power value corresponds to the heat output requirement.
  • the oil mass flow is given by the viscosity of the heating oil, the cross section of the atomizing nozzle and the oil pressure.
  • the air mass flow is only set during the commissioning and maintenance for the instantaneous value of pressure and temperature of the intake air as a volume flow and to such a high value of the excess air ( ⁇ 1.2 to 1.5) that the CO content and the soot number of the exhaust gas does not exceed predetermined limits.
  • a regulation of the mass ratio between fuel, ie oil, and air does not take place here, so that the combustion air number with the viscosity and the H / C and S / C ratio of the fuel and with the temperature, pressure and water vapor content of the intake combustion air uncontrolled changes. With this uncontrolled change, however, there is a risk of soot formation and a fluctuation in efficiency.
  • a continuously adjustable gasification burner is known from DE-AS 28 11 273. This burner is based on the principle of two-stage combustion, in the first stage heating oil in a catalytic reactor gasified by partial oxidation with air (gasification or primary air) at air ratios between 0.05 and 0.2, preferably around 0.1 becomes.
  • the product gas obtained in this way, the so-called fuel gas is then stoichiometrically burned in the second stage with the remaining air (combustion or secondary air), with high combustion temperatures being reached.
  • the exhaust gas composition corresponds essentially to that of the thermodynamic equilibrium at the combustion temperature.
  • the object of the invention is to operate a gasification burner / boiler system in a controllable manner, i.e. in such a way that continuous heat output control of a stoichiometric fuel oil gasification burner and regulation of the stoichiometry of the fuel and air supply is made possible.
  • the required burner output is determined from the outside air temperature, that the mass flows of heating oil and air are controlled as a function of the (required) burner output and that deviations from the stoichiometric ratio between heating oil and air are arranged by means of an arranged in the exhaust gas flow A probe can be regulated.
  • the required fuel and air mass flow - with constant system efficiency - is directly proportional to the heating power requirement.
  • the heating power requirement for example of a residential building, in turn - like the boiler flow temperature - depends approximately linearly on the outside air temperature. This relationship is shown schematically in FIG. 1. From Fig. 1 it can be seen that the power requirement fluctuates approximately between 15 and 100% of the burner output (outside air temperature: +15 to -15 0 C).
  • the burner output required to control the heating output is therefore first determined from the outside air temperature.
  • the corresponding air and heating oil mass flows are preferably set by controlling the speed of a drive common to the air compressor and the oil pump.
  • the delivery rates can be set, for example, by map control of the speed.
  • the delivery rate - at constant speed - can also be advantageously achieved by controlling shunts to the air compressor and the oil pump.
  • deviations from the stoichiometric ratio between fuel and air are advantageously corrected by changing a shunt to the air compressor or to the oil pump.
  • the control signal provides a so-called l-probe (lambda probe), which is arranged in the hot exhaust gas stream.
  • the fuel oil mass flow can also be promoted with an electrically driven oscillating piston pump are, the delivery rate is set by map control of the frequency and / or the amplitude of the drive current.
  • the air mass flow can then be supplied, for example, by a compressor, the delivery rate of which is set by map control of the speed.
  • deviations from the stoichiometric ratio between fuel and air are corrected by changing the frequency and / or the amplitude of the drive current of the oscillating piston pump or by changing the speed of the compressor or by changing a shunt to the oil pump and / or the air compressor.
  • the 2-probe delivers the control signal.
  • a ⁇ probe is an oxygen-sensitive electrochemical element that has a solid electrolyte that conducts oxygen ions at the measurement temperature and two oxygen-dissolving catalyst electrodes. Such an element generates an electromotive force (EMF) as long as the oxygen partial pressure at the two electrodes is different. If, as in the present case, one of the two electrodes is in contact with the exhaust gas from the burner and the other is in contact with the intake air atmosphere, the EMF increases abruptly during the transition from lean exhaust gas ( ⁇ > 1) to rich exhaust gas ( ⁇ ⁇ 1). This voltage jump is used in the method according to the invention for regulating the stoichiometry of the feed mixture. The voltage jump is limited during the transition to the rich exhaust gas in that the electrochemical element acts as a fuel cell as a result of the combustible components then occurring in the exhaust gas.
  • EMF electromotive force
  • the A-probe is advantageously arranged in the combustion chamber of the boiler, at least partially. This ensures with certainty that the minimum operating temperature and thus the functionality of the probe is given in all operating conditions.
  • the method according to the invention offers the particular advantage that - due to the use of a ⁇ probe - the regulation of the stoichiometry of the feed mixture is independent of the temperature, pressure and water vapor content of the intake air and also independent of the viscosity and the H / C and the S / C ratio of the heating oil. There is therefore neither the risk of soot formation nor a fluctuation in the efficiency.
  • this process offers both safety, heating oil storage and the advantages of gas operation.
  • FIG. 1 shows the boiler water temperature and the heating output of a boiler system as a function of the outside air temperature.
  • FIG. 2 - based on an embodiment of a gasification burner / boiler system - the control and regulation scheme corresponding to the method according to the invention is shown schematically.
  • a gasification burner 12 is arranged in the combustion chamber 11 of the boiler 10.
  • the burner 12 is supplied with fuel in the form of heating oil through a line 13 and air through a line 14.
  • the oil pump 15 and the air compressor 16 serve to supply the air.
  • the oil pump 15 and the air compressor 16 are located together on the drive shaft 17 of a motor 18.
  • On the fuel feed 13 there is a line 19 with a valve as a shunt to the pump 15 20 arranged and on the air supply 14 - as a shunt to the compressor 16 - a line 21 with a valve 22.
  • a valve 23 is attached in the air supply line 14, which the total air flow in Splits gasification and combustion air, which are fed to the burner 12 separately through lines 24 and 25, respectively.
  • a circulation pump 27 is arranged in the water circuit 26 of the boiler 10; the load, i.e. the consumer, is identified by paragraph 28.
  • the ⁇ probe 30 is exposed to the exhaust gas flow from the burner 12, and can therefore be located, for example, in the exhaust pipe 29 of the boiler 10.
  • the outside air temperature is determined by a sensor 31 and the boiler flow temperature by sensor 32 and transmitted to a control and regulating unit 35 by lines 33 and 34, respectively.
  • the signal of the ⁇ probe 30 is fed to the control and regulating unit 35 through a line 36.
  • the control and regulating unit 35 controls the speed of the motor 18 via a line 37, as a result of which the delivery quantities of fuel and air are controlled as a function of the burner output.
  • a line 38 leads from the control and regulating unit 35 to the valve 20 (in the shunt line 19 of the fuel supply 13) and a line 39 to Valve 22 (in the shunt line 21 of the air supply 14).
  • a line 40 leads from the control and regulating unit 35 to the valve 23 in the air supply 14.
  • the valve 23 can be used to set the ratio between the gasification air and the combustion air, which is generally approximately 1: 9.
  • FIG 3 shows a preferred embodiment of the gasification burner used in the method according to the invention (cf. DE-OS 28 41 105).
  • the gasification burner 50 essentially consists of two stages, a gasification part 51 with a centrally arranged reactor chamber 53, which contains a catalyst, and a combustion part 52, which has a mixing chamber 54, an ignition chamber 55 and a combustion chamber 56.
  • the reactor chamber or catalytic converter device 53 is preceded by an antechamber 57 for mixing the fuel with gasification air.
  • a heating source 62 is provided for preheating the air when the burner is started up and when the load changes.
  • a so-called front space 63 is connected upstream thereof, which merges into an annular channel 64.
  • the ring channel 64, to which the fuel is supplied through a line 65 is provided with a heat source 66 for evaporating the liquid fuel during the starting process.
  • the fuel is converted by partial oxidation into a fuel gas which is fed to the mixing chamber 54 and mixed with the combustion air at a homogenization device 67, for example a swirl orifice provided with oblique slots.
  • the combustion air is fed to the mixing chamber 54 through a nozzle 68.
  • the fuel gas / combustion air mixture passes from the mixing chamber 54 through a perforated disk 69 serving as a non-return safety device into the ignition chamber 55 and from there through a so-called perforated wall 70 into the combustion chamber 56, which is closed off to the outside by a gas-permeable burner plate 71.
  • the fuel gas / combustion air mixture burns and then occurs as exhaust gas in the interior of the boiler, ie into the combustion chamber (see Fig. 2, number 11), above where it is used to heat the boiler water.
  • the A probe in the combustion chamber of the boiler.
  • a satisfactory functioning of the ⁇ probe is namely achieved only at temperatures above about 300 0 C.
  • the ⁇ probe is therefore preferably installed in the combustion chamber in the vicinity of the last flame plate, ie the so-called burner plate (cf. FIG. 3, number 71). If this is not possible due to space reasons, the operating temperature of the ⁇ probe advantageously also be maintained by an electric heater.
  • thermodynamic equilibrium must be set in the sample gas at temperatures so low that practically only C0 2 and H 2 0 occur as combustion products. This is the case at temperatures between about 300 and 1000 ° C, preferably at about 500 ° C, when the sample gas is fed to the measuring electrode of the ⁇ -probe via a catalyst that adjusts the low-temperature equilibrium, or when the electrode material itself adjusts the low-temperature equilibrium.
  • catalysts or electrode materials are, for example, platinum and rhodium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Combustion Of Fluid Fuel (AREA)
  • Regulation And Control Of Combustion (AREA)
EP81103529A 1980-05-22 1981-05-08 Procédé pour faire fonctionner une installation de brûleur à gazéification/chaudière de chauffage Withdrawn EP0040736A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803019622 DE3019622A1 (de) 1980-05-22 1980-05-22 Verfahren zum betrieb einer vergasungsbrenner/heizkesselanlage
DE3019622 1980-05-22

Publications (1)

Publication Number Publication Date
EP0040736A1 true EP0040736A1 (fr) 1981-12-02

Family

ID=6103091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81103529A Withdrawn EP0040736A1 (fr) 1980-05-22 1981-05-08 Procédé pour faire fonctionner une installation de brûleur à gazéification/chaudière de chauffage

Country Status (6)

Country Link
US (1) US4406611A (fr)
EP (1) EP0040736A1 (fr)
JP (1) JPS5719522A (fr)
DE (1) DE3019622A1 (fr)
DK (1) DK223581A (fr)
NO (1) NO811678L (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156515A2 (fr) * 1984-03-08 1985-10-02 Davair Heating Limited Brûleur à mazout
EP0209771A1 (fr) * 1985-07-24 1987-01-28 Bieler + Lang GmbH Procédé et dispositif de régulation fine du débit de carburant pour des dispositifs de combustion à brûleurs par la mesure de l'oxygène résiduel et de la concentration du monoxyde dans les gaz d'échappement
EP0275439A1 (fr) * 1987-01-02 1988-07-27 Karl Dungs GmbH & Co. Dispositif de régulation de puissance de générateurs de chaleur à carburant
EP0281823A2 (fr) * 1987-03-12 1988-09-14 Karl Dungs GmbH & Co. Dispositif de régulation de puissance de producteurs de chaleur chauffés au carburant
EP0282758A2 (fr) * 1987-03-17 1988-09-21 Karl Dungs GmbH & Co. Agencement de soupape

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3208765A1 (de) * 1982-03-11 1983-09-22 Ruhrgas Ag, 4300 Essen Verfahren zur ueberwachung von feuerungsanlagen
US4631022A (en) * 1983-12-15 1986-12-23 Gte Products Corporation Heat recuperator with compensator for pressure operated fuel regulator
NL8400406A (nl) * 1984-02-08 1985-09-02 Veg Gasinstituut Nv Gasbrander.
US4585161A (en) * 1984-04-27 1986-04-29 Tokyo Gas Company Ltd. Air fuel ratio control system for furnace
US4645450A (en) * 1984-08-29 1987-02-24 Control Techtronics, Inc. System and process for controlling the flow of air and fuel to a burner
US5400962A (en) * 1993-10-27 1995-03-28 Pvi Industries, Inc. System and method for reduced purge operation of a forced draft burner in a water heater
US6095793A (en) * 1998-09-18 2000-08-01 Woodward Governor Company Dynamic control system and method for catalytic combustion process and gas turbine engine utilizing same
US6213758B1 (en) 1999-11-09 2001-04-10 Megtec Systems, Inc. Burner air/fuel ratio regulation method and apparatus
DE10007766A1 (de) * 2000-02-20 2001-08-23 Gen Motors Corp Brenneranordnung
US8075304B2 (en) * 2006-10-19 2011-12-13 Wayne/Scott Fetzer Company Modulated power burner system and method
US20080141584A1 (en) * 2006-12-14 2008-06-19 Texaco Inc. Methods for Using a Catalyst Preburner in Fuel Processing Applications
DE102010017239B4 (de) * 2010-06-04 2017-09-21 Océ Printing Systems GmbH & Co. KG Vorrichtung und Verfahren zum Fixieren von Druckbildern auf einem Aufzeichnungsträger
GB2484957A (en) * 2010-10-28 2012-05-02 Autoflame Eng Ltd Burner control with stored values for valve settings and pressures
ITBO20120128A1 (it) * 2012-03-13 2013-09-14 Riello Spa Apparecchiatura di combustione di combustibili liquidi e relativo metodo per modulare la potenza di tale apparecchiatura
ES2540702B1 (es) * 2012-09-11 2016-05-12 Fundacion Cidaut Caldera de combustible sólido
EP3207806A1 (fr) * 2013-01-25 2017-08-23 Bühler Barth GmbH Procédé et dispositif destinés au séchage et/ou au grillage d'un aliment
US20160305655A1 (en) 2015-04-14 2016-10-20 Oilon Oy Method for reducing nitrogen oxide(s) and carbon monoxide from flue gases and flue gas composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2262330A1 (de) * 1972-12-20 1974-06-27 Schirmer Wilhelm Dipl Ing Verfahren und vorrichtung zum betreiben eines brenners
DE2528749A1 (de) * 1975-06-27 1977-01-13 Buderus Eisenwerk Heizungsanlage mit einem in abhaengigkeit von der aussentemperatur regelbaren heizkessel
DE2510717B2 (de) * 1975-03-12 1979-06-28 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Vorrichtung für Brenner zum Regem des Brennstoff-Luft-Mengenverhältnisses
DE2752021B2 (de) * 1977-10-28 1979-11-15 Lgz Landis & Gyr Zug Ag, Zug (Schweiz) Einrichtung zum Regeln der Größe des Luftüberschußes in den Verbrennungsgasen einer Verbrennungsanlage
WO1980001603A1 (fr) * 1979-01-31 1980-08-07 Jydsk Varmekedelfab As Methode et appareil de regulation de la combustion dans un four

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1515302A (en) * 1975-06-09 1978-06-21 Hawker Siddeley Dynamics Eng Combustion control system
GB1571906A (en) * 1977-11-22 1980-07-23 British Gas Corp Air fuel gas ratio controls for burners
DE2811273C2 (de) * 1978-03-15 1980-01-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Vergasungsbrenner
NL7811831A (nl) * 1978-12-04 1980-06-06 Itho B V Regelinrichting voor een brander.
JPS5582226A (en) * 1978-12-18 1980-06-20 Osaka Gas Co Ltd Method of controlling air/fuel ratio
DE2915211A1 (de) * 1979-04-14 1980-10-23 Heinz Boecking Verfahren und vorrichtung zum automatischen regeln der zuflussmenge leichten heizoels

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2262330A1 (de) * 1972-12-20 1974-06-27 Schirmer Wilhelm Dipl Ing Verfahren und vorrichtung zum betreiben eines brenners
DE2510717B2 (de) * 1975-03-12 1979-06-28 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Vorrichtung für Brenner zum Regem des Brennstoff-Luft-Mengenverhältnisses
DE2528749A1 (de) * 1975-06-27 1977-01-13 Buderus Eisenwerk Heizungsanlage mit einem in abhaengigkeit von der aussentemperatur regelbaren heizkessel
DE2752021B2 (de) * 1977-10-28 1979-11-15 Lgz Landis & Gyr Zug Ag, Zug (Schweiz) Einrichtung zum Regeln der Größe des Luftüberschußes in den Verbrennungsgasen einer Verbrennungsanlage
WO1980001603A1 (fr) * 1979-01-31 1980-08-07 Jydsk Varmekedelfab As Methode et appareil de regulation de la combustion dans un four

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156515A2 (fr) * 1984-03-08 1985-10-02 Davair Heating Limited Brûleur à mazout
EP0156515A3 (fr) * 1984-03-08 1987-03-04 Davair Heating Limited Brûleur à mazout
EP0209771A1 (fr) * 1985-07-24 1987-01-28 Bieler + Lang GmbH Procédé et dispositif de régulation fine du débit de carburant pour des dispositifs de combustion à brûleurs par la mesure de l'oxygène résiduel et de la concentration du monoxyde dans les gaz d'échappement
EP0275439A1 (fr) * 1987-01-02 1988-07-27 Karl Dungs GmbH & Co. Dispositif de régulation de puissance de générateurs de chaleur à carburant
EP0281823A2 (fr) * 1987-03-12 1988-09-14 Karl Dungs GmbH & Co. Dispositif de régulation de puissance de producteurs de chaleur chauffés au carburant
EP0281823A3 (fr) * 1987-03-12 1988-12-07 Karl Dungs GmbH & Co. Dispositif de régulation de puissance de producteurs de chaleur chauffés au carburant
EP0282758A2 (fr) * 1987-03-17 1988-09-21 Karl Dungs GmbH & Co. Agencement de soupape
EP0282758A3 (en) * 1987-03-17 1988-12-14 Karl Dungs Gmbh & Co. Valve arrangement

Also Published As

Publication number Publication date
DK223581A (da) 1981-11-23
DE3019622A1 (de) 1981-11-26
US4406611A (en) 1983-09-27
JPS5719522A (en) 1982-02-01
NO811678L (no) 1981-11-23

Similar Documents

Publication Publication Date Title
EP0040736A1 (fr) Procédé pour faire fonctionner une installation de brûleur à gazéification/chaudière de chauffage
DE69314903T2 (de) Verbrennungsverfahren mit thermischer Düse
EP1621811B1 (fr) Procédé de fonctionnement pour un dispositif de combustion
DE3885117T2 (de) Verfahren und Gerät zur Verbrennung von gasförmigem Brennstoff mit schwankender Zusammensetzung.
EP1173710B1 (fr) Installation permettant de modifier le melange oxydant/combustible dans la conduite d'alimentation d'un bruleur
DE2337283C3 (de) Vorrichtung zum Verbrennen von aus einem Schornstein kommenden Abgasen
DE3937290A1 (de) Verfahren und einrichtung zur herstellung eines einer verbrennung zuzufuehrenden brennstoff-verbrennungsluft-gemisches
DE69517731T2 (de) Katalytische Gasturbinenbrennkammer
EP1800060A1 (fr) Procede pour faire fonctionner un bruleur, en particulier un bruleur d'une turbine a gaz, et dispositif permettant de mettre en oeuvre ce procede
EP1393002A1 (fr) Procede et dispositif pour la combustion non catalytique peu polluante d'un combustible liquide
EP0663562A2 (fr) Procédé et brûleur pour la réduction des émissions des gaz nocifs pendant la combustion
DE3125513A1 (de) "verfahren zum betrieb einer vergasungsbrenner/heinzkesselanlage"
DE19921045A1 (de) Brenner zur Verbrennung von flüssigen und/oder gasförmigen Brennstoffen in Feuerungsanlagen
EP1923946A1 (fr) Utilisation d'un dispositif de brûleur dans un système de cellules combustibles
DE3435902A1 (de) Anordnung zum selbsttaetigen regeln des luftueberschusses einer verbrennung
DE19854035A1 (de) Heizeinrichtung
DE2821367A1 (de) Verfahren und vorrichtung zum kontinuierlichen verbrennen eines brennstoffes
DE2841385A1 (de) Brenner mit ultraschallzerstaeubung eines fluessigen brennstoffes
AT413440B (de) Verfahren zur anpassung des brenngas-luft- verhältnisses an die gasart bei einem gasbrenner
WO2011051232A1 (fr) Brûleur à huile, dispositif de régulation ainsi que procédé de régulation associé
DE8809874U1 (de) Gasbrenner
DE662249C (de) OEldruckzerstaeuberbrenner mit vor der Zerstaeuberduese angeordneter Zuendkammer
AT409294B (de) Kraftanlage sowie verfahren zur verfeuerung von brennstoffen
DE102006006661A1 (de) Nachverbrennungsanlage für ein Verbrennungsfluid mit einer Brennervorrichtung für flüssigen Brennstoff
DE29924386U1 (de) Brenner zur Verbrennung von flüssigen und/oder gasförmigen Brennstoffen in Feuerungsanlagen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT SE

17P Request for examination filed

Effective date: 19820521

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19831227

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MICHEL, ALFRED, DR.