EP0040736A1 - Process for the operation of a gasified-oil burner/heating boiler equipment - Google Patents

Process for the operation of a gasified-oil burner/heating boiler equipment Download PDF

Info

Publication number
EP0040736A1
EP0040736A1 EP81103529A EP81103529A EP0040736A1 EP 0040736 A1 EP0040736 A1 EP 0040736A1 EP 81103529 A EP81103529 A EP 81103529A EP 81103529 A EP81103529 A EP 81103529A EP 0040736 A1 EP0040736 A1 EP 0040736A1
Authority
EP
European Patent Office
Prior art keywords
air
burner
probe
heating oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP81103529A
Other languages
German (de)
French (fr)
Inventor
Alfred Dr. Michel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0040736A1 publication Critical patent/EP0040736A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/44Preheating devices; Vaporising devices
    • F23D11/441Vaporising devices incorporated with burners
    • F23D11/448Vaporising devices incorporated with burners heated by electrical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/025Regulating fuel supply conjointly with air supply using electrical or electromechanical means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/13Measuring temperature outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/08Measuring temperature
    • F23N2225/14Ambient temperature around burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/12Controlling catalytic burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2237/00Controlling
    • F23N2237/20Controlling one or more bypass conduits

Definitions

  • the invention relates to a method for operating a gasification burner / boiler system.
  • Oil burners are widely used in conventional boiler systems.
  • Conventional medium-power oil burners atomize the heating oil using a nozzle and burn it when there is excess air to keep soot formation low.
  • the atomizing burner output can be controlled only with great difficulty and only within narrow limits. For this reason, atomizing burners for boiler systems are operated intermittently, so that the average power value corresponds to the heat output requirement.
  • the oil mass flow is given by the viscosity of the heating oil, the cross section of the atomizing nozzle and the oil pressure.
  • the air mass flow is only set during the commissioning and maintenance for the instantaneous value of pressure and temperature of the intake air as a volume flow and to such a high value of the excess air ( ⁇ 1.2 to 1.5) that the CO content and the soot number of the exhaust gas does not exceed predetermined limits.
  • a regulation of the mass ratio between fuel, ie oil, and air does not take place here, so that the combustion air number with the viscosity and the H / C and S / C ratio of the fuel and with the temperature, pressure and water vapor content of the intake combustion air uncontrolled changes. With this uncontrolled change, however, there is a risk of soot formation and a fluctuation in efficiency.
  • a continuously adjustable gasification burner is known from DE-AS 28 11 273. This burner is based on the principle of two-stage combustion, in the first stage heating oil in a catalytic reactor gasified by partial oxidation with air (gasification or primary air) at air ratios between 0.05 and 0.2, preferably around 0.1 becomes.
  • the product gas obtained in this way, the so-called fuel gas is then stoichiometrically burned in the second stage with the remaining air (combustion or secondary air), with high combustion temperatures being reached.
  • the exhaust gas composition corresponds essentially to that of the thermodynamic equilibrium at the combustion temperature.
  • the object of the invention is to operate a gasification burner / boiler system in a controllable manner, i.e. in such a way that continuous heat output control of a stoichiometric fuel oil gasification burner and regulation of the stoichiometry of the fuel and air supply is made possible.
  • the required burner output is determined from the outside air temperature, that the mass flows of heating oil and air are controlled as a function of the (required) burner output and that deviations from the stoichiometric ratio between heating oil and air are arranged by means of an arranged in the exhaust gas flow A probe can be regulated.
  • the required fuel and air mass flow - with constant system efficiency - is directly proportional to the heating power requirement.
  • the heating power requirement for example of a residential building, in turn - like the boiler flow temperature - depends approximately linearly on the outside air temperature. This relationship is shown schematically in FIG. 1. From Fig. 1 it can be seen that the power requirement fluctuates approximately between 15 and 100% of the burner output (outside air temperature: +15 to -15 0 C).
  • the burner output required to control the heating output is therefore first determined from the outside air temperature.
  • the corresponding air and heating oil mass flows are preferably set by controlling the speed of a drive common to the air compressor and the oil pump.
  • the delivery rates can be set, for example, by map control of the speed.
  • the delivery rate - at constant speed - can also be advantageously achieved by controlling shunts to the air compressor and the oil pump.
  • deviations from the stoichiometric ratio between fuel and air are advantageously corrected by changing a shunt to the air compressor or to the oil pump.
  • the control signal provides a so-called l-probe (lambda probe), which is arranged in the hot exhaust gas stream.
  • the fuel oil mass flow can also be promoted with an electrically driven oscillating piston pump are, the delivery rate is set by map control of the frequency and / or the amplitude of the drive current.
  • the air mass flow can then be supplied, for example, by a compressor, the delivery rate of which is set by map control of the speed.
  • deviations from the stoichiometric ratio between fuel and air are corrected by changing the frequency and / or the amplitude of the drive current of the oscillating piston pump or by changing the speed of the compressor or by changing a shunt to the oil pump and / or the air compressor.
  • the 2-probe delivers the control signal.
  • a ⁇ probe is an oxygen-sensitive electrochemical element that has a solid electrolyte that conducts oxygen ions at the measurement temperature and two oxygen-dissolving catalyst electrodes. Such an element generates an electromotive force (EMF) as long as the oxygen partial pressure at the two electrodes is different. If, as in the present case, one of the two electrodes is in contact with the exhaust gas from the burner and the other is in contact with the intake air atmosphere, the EMF increases abruptly during the transition from lean exhaust gas ( ⁇ > 1) to rich exhaust gas ( ⁇ ⁇ 1). This voltage jump is used in the method according to the invention for regulating the stoichiometry of the feed mixture. The voltage jump is limited during the transition to the rich exhaust gas in that the electrochemical element acts as a fuel cell as a result of the combustible components then occurring in the exhaust gas.
  • EMF electromotive force
  • the A-probe is advantageously arranged in the combustion chamber of the boiler, at least partially. This ensures with certainty that the minimum operating temperature and thus the functionality of the probe is given in all operating conditions.
  • the method according to the invention offers the particular advantage that - due to the use of a ⁇ probe - the regulation of the stoichiometry of the feed mixture is independent of the temperature, pressure and water vapor content of the intake air and also independent of the viscosity and the H / C and the S / C ratio of the heating oil. There is therefore neither the risk of soot formation nor a fluctuation in the efficiency.
  • this process offers both safety, heating oil storage and the advantages of gas operation.
  • FIG. 1 shows the boiler water temperature and the heating output of a boiler system as a function of the outside air temperature.
  • FIG. 2 - based on an embodiment of a gasification burner / boiler system - the control and regulation scheme corresponding to the method according to the invention is shown schematically.
  • a gasification burner 12 is arranged in the combustion chamber 11 of the boiler 10.
  • the burner 12 is supplied with fuel in the form of heating oil through a line 13 and air through a line 14.
  • the oil pump 15 and the air compressor 16 serve to supply the air.
  • the oil pump 15 and the air compressor 16 are located together on the drive shaft 17 of a motor 18.
  • On the fuel feed 13 there is a line 19 with a valve as a shunt to the pump 15 20 arranged and on the air supply 14 - as a shunt to the compressor 16 - a line 21 with a valve 22.
  • a valve 23 is attached in the air supply line 14, which the total air flow in Splits gasification and combustion air, which are fed to the burner 12 separately through lines 24 and 25, respectively.
  • a circulation pump 27 is arranged in the water circuit 26 of the boiler 10; the load, i.e. the consumer, is identified by paragraph 28.
  • the ⁇ probe 30 is exposed to the exhaust gas flow from the burner 12, and can therefore be located, for example, in the exhaust pipe 29 of the boiler 10.
  • the outside air temperature is determined by a sensor 31 and the boiler flow temperature by sensor 32 and transmitted to a control and regulating unit 35 by lines 33 and 34, respectively.
  • the signal of the ⁇ probe 30 is fed to the control and regulating unit 35 through a line 36.
  • the control and regulating unit 35 controls the speed of the motor 18 via a line 37, as a result of which the delivery quantities of fuel and air are controlled as a function of the burner output.
  • a line 38 leads from the control and regulating unit 35 to the valve 20 (in the shunt line 19 of the fuel supply 13) and a line 39 to Valve 22 (in the shunt line 21 of the air supply 14).
  • a line 40 leads from the control and regulating unit 35 to the valve 23 in the air supply 14.
  • the valve 23 can be used to set the ratio between the gasification air and the combustion air, which is generally approximately 1: 9.
  • FIG 3 shows a preferred embodiment of the gasification burner used in the method according to the invention (cf. DE-OS 28 41 105).
  • the gasification burner 50 essentially consists of two stages, a gasification part 51 with a centrally arranged reactor chamber 53, which contains a catalyst, and a combustion part 52, which has a mixing chamber 54, an ignition chamber 55 and a combustion chamber 56.
  • the reactor chamber or catalytic converter device 53 is preceded by an antechamber 57 for mixing the fuel with gasification air.
  • a heating source 62 is provided for preheating the air when the burner is started up and when the load changes.
  • a so-called front space 63 is connected upstream thereof, which merges into an annular channel 64.
  • the ring channel 64, to which the fuel is supplied through a line 65 is provided with a heat source 66 for evaporating the liquid fuel during the starting process.
  • the fuel is converted by partial oxidation into a fuel gas which is fed to the mixing chamber 54 and mixed with the combustion air at a homogenization device 67, for example a swirl orifice provided with oblique slots.
  • the combustion air is fed to the mixing chamber 54 through a nozzle 68.
  • the fuel gas / combustion air mixture passes from the mixing chamber 54 through a perforated disk 69 serving as a non-return safety device into the ignition chamber 55 and from there through a so-called perforated wall 70 into the combustion chamber 56, which is closed off to the outside by a gas-permeable burner plate 71.
  • the fuel gas / combustion air mixture burns and then occurs as exhaust gas in the interior of the boiler, ie into the combustion chamber (see Fig. 2, number 11), above where it is used to heat the boiler water.
  • the A probe in the combustion chamber of the boiler.
  • a satisfactory functioning of the ⁇ probe is namely achieved only at temperatures above about 300 0 C.
  • the ⁇ probe is therefore preferably installed in the combustion chamber in the vicinity of the last flame plate, ie the so-called burner plate (cf. FIG. 3, number 71). If this is not possible due to space reasons, the operating temperature of the ⁇ probe advantageously also be maintained by an electric heater.
  • thermodynamic equilibrium must be set in the sample gas at temperatures so low that practically only C0 2 and H 2 0 occur as combustion products. This is the case at temperatures between about 300 and 1000 ° C, preferably at about 500 ° C, when the sample gas is fed to the measuring electrode of the ⁇ -probe via a catalyst that adjusts the low-temperature equilibrium, or when the electrode material itself adjusts the low-temperature equilibrium.
  • catalysts or electrode materials are, for example, platinum and rhodium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zum Betrieb einer Vergasungsbrenner/Heizkesselanlage, bei dem aus der Aussenlufttemperatur die erforderliche Brennerleistung ermittelt und dann in Abhängigkeit von der geforderten Brennerleistung die Massenströme von Heizöl und Luft gesteuert werden, wobei Abweichungen vom stöchiometrischen Verhältnis zwischen Heizöl und Luft mittels einer im Abgasstrom angeordneten λ-Sonde (30) geregelt werden.The invention relates to a method for operating a gasification burner / boiler system, in which the required burner output is determined from the outside air temperature and then the mass flows of heating oil and air are controlled as a function of the required burner output, with deviations from the stoichiometric ratio between heating oil and air by means of an Exhaust gas flow λ probe (30) can be regulated.

Description

Die Erfindung betrifft ein Verfahren zum Betrieb einer Vergasungsbrenner/Heizkesselanlage.The invention relates to a method for operating a gasification burner / boiler system.

In herkömmlichen Heizkesselanlagen werden im großen Umfang Ölbrenner eingesetzt. Konventionelle Ölbrenner mittlerer Leistung zerstäuben dabei das Heizöl mit Hilfe einer Düse und verbrennen es bei Luftüberschuß, um die Rußbildung niedrig zu halten. Die Zerstäubungsbrennerleistung kann aber nur sehr schwer und nur in engen Grenzen kontinuierlich gesteuert werden. Aus diesem Grunde werden Zerstäubungsbrenner für Heizkesselanlagen intermittierend betrieben, so daß der Leistungsmittelwert dem Wärmeleistungsbedarf entspricht.Oil burners are widely used in conventional boiler systems. Conventional medium-power oil burners atomize the heating oil using a nozzle and burn it when there is excess air to keep soot formation low. The atomizing burner output can be controlled only with great difficulty and only within narrow limits. For this reason, atomizing burners for boiler systems are operated intermittently, so that the average power value corresponds to the heat output requirement.

Beim Betrieb der konventionellen Zerstäubungsbrenner ist der Ölmassenstrom durch die Viskosität des Heizöls, den Querschnitt der Zerstäuberdüse und den Öldruck gegeben. Der Luftmassenstrom wird nur bei der Inbetriebnahme und bei der Wartung für den Momentanwert von Druck und Temperatur der Ansaugluft als Volumenstrom eingestellt und zwar auf einen so hohen Wert des Luftüberschusses (λ≈ 1,2 bis 1,5), daß der CO-Gehalt und die Rußzahl des Abgases vorgegebene Grenzen nicht überschreiten. Eine Regelung des Massenverhältnisses zwischen Brennstoff, d.h. Öl, und Luft findet hierbei nicht statt, so daß sich die Verbrennungsluftzahl mit der Viskosität sowie dem H/C- und dem S/C-Verhältnis des Brennstoffes und mit der Temperatur, dem Druck und dem Wasserdampfgehalt der angesaugten Verbrennungsluft unkontrolliert ändert. Mit dieser unkontrollierten Änderung ist aber die Gefahr der Rußbildung und eine Schwankung des Wirkungsgrades verbunden.When operating the conventional atomizing burner, the oil mass flow is given by the viscosity of the heating oil, the cross section of the atomizing nozzle and the oil pressure. The air mass flow is only set during the commissioning and maintenance for the instantaneous value of pressure and temperature of the intake air as a volume flow and to such a high value of the excess air (λ≈ 1.2 to 1.5) that the CO content and the soot number of the exhaust gas does not exceed predetermined limits. A regulation of the mass ratio between fuel, ie oil, and air does not take place here, so that the combustion air number with the viscosity and the H / C and S / C ratio of the fuel and with the temperature, pressure and water vapor content of the intake combustion air uncontrolled changes. With this uncontrolled change, however, there is a risk of soot formation and a fluctuation in efficiency.

Aus der DE-AS 28 11 273 ist ein kontinuierlich regelbarer Vergasungsbrenner bekannt. Dieser Brenner beruht auf dem Prinzip der zweistufigen Verbrennung, wobei in der ersten Stufe Heizöl in einem katalytischen Reaktor durch partielle Oxidation mit Luft (Vergasungs- oder Primärluft) bei Luftzahlen zwischen 0,05 und 0,2, vorzugsweise etwa bei 0,1, vergast wird. Das dabei erhaltene Produktgas, das sogenannte Brenngas, wird dann in der zweiten Stufe mit der restlichen Luft (Verbrennungs- oder Sekundärluft) stöchiometrisch verbrannt, wobei hohe Brenntemperaturen erreicht werden. Die Abgaszusammensetzung entspricht dabei im wesentlichen der des thermodynamischen Gleichgewichts bei der Verbrennungstemperatur.A continuously adjustable gasification burner is known from DE-AS 28 11 273. This burner is based on the principle of two-stage combustion, in the first stage heating oil in a catalytic reactor gasified by partial oxidation with air (gasification or primary air) at air ratios between 0.05 and 0.2, preferably around 0.1 becomes. The product gas obtained in this way, the so-called fuel gas, is then stoichiometrically burned in the second stage with the remaining air (combustion or secondary air), with high combustion temperatures being reached. The exhaust gas composition corresponds essentially to that of the thermodynamic equilibrium at the combustion temperature.

Aufgabe der Erfindung ist es, eine Vergasungsbrenner/ Heizkesselanlage regelbar zu betreiben, d.h. in der Weise, daß eine kontinuierliche Wärmeleistungssteuerung eines stöchiometrischen Heizölvergasungsbrenners sowie eine Regelung der Stöchiometrie von Brennstoff- und Luftzufuhr ermöglicht wird.The object of the invention is to operate a gasification burner / boiler system in a controllable manner, i.e. in such a way that continuous heat output control of a stoichiometric fuel oil gasification burner and regulation of the stoichiometry of the fuel and air supply is made possible.

Dies wird erfindungsgemäß dadurch erreicht, daß aus der Außenlufttemperatur die erforderliche Brennerleistung ermittelt wird, daß in Abhängigkeit von der (geforderten) Brennerleistung die Massenströme von Heizöl und Luft gesteuert werden und daß Abweichungen vom stöchiometri= schen Verhältnis zwischen Heizöl und Luft mittels einer im Abgasstrom angeordneten A-Sonde geregelt werden.This is achieved according to the invention in that the required burner output is determined from the outside air temperature, that the mass flows of heating oil and air are controlled as a function of the (required) burner output and that deviations from the stoichiometric ratio between heating oil and air are arranged by means of an arranged in the exhaust gas flow A probe can be regulated.

Beim Betrieb einer Heizkesselanlage ist der erforderliche Brennstoff- und Luftmassenstrom - bei konstantem Anlagenwirkungsgrad - dem Heizleistungsbedarf direkt proportional. Der Heizleistungsbedarf, beispielsweise eines Wohngebäudes, wiederum hängt - ebenso wie die Kesselvorlauftemperatur - näherungsweise linear von der Außenlufttemperatur ab. Dieser Zusammenhang ist in Fig. 1 schematisch dargestellt. Aus Fig. 1 läßt sich entnehmen, daß der Leistungsbedarf etwa zwischen 15 und 100 % der Brennerleistung schwankt (Außenlufttemperatur: +15 bis -150C).When operating a boiler system, the required fuel and air mass flow - with constant system efficiency - is directly proportional to the heating power requirement. The heating power requirement, for example of a residential building, in turn - like the boiler flow temperature - depends approximately linearly on the outside air temperature. This relationship is shown schematically in FIG. 1. From Fig. 1 it can be seen that the power requirement fluctuates approximately between 15 and 100% of the burner output (outside air temperature: +15 to -15 0 C).

Beim erfindungsgemäßen Verfahren wird daher zur Steuerung der Heizleistung zunächst aus der Außenlufttemperatur die notwendige Brennerleistung ermittelt. Die entsprechenden Luft- und Heizölmassenströme werden vorzugsweise durch Drehzahlregelung eines für den Luftverdichter und die Ölpumpe gemeinsamen Antriebs eingestellt. Die Fördermengen können dabei beispielsweise durch Kennfeldregelung der Drehzahl eingestellt werden. Anstelle der Steuerung der Brennerleistung über die Drehzahlregelung des Pumpen- und Verdichterantriebs kann die Förderleistung - bei konstanter Drehzahl - in vorteilhafter Weise aber auch durch die Steuerung von Nebenschlüssen zum Luftverdichter und zur Ölpumpe bewirkt werden.In the method according to the invention, the burner output required to control the heating output is therefore first determined from the outside air temperature. The corresponding air and heating oil mass flows are preferably set by controlling the speed of a drive common to the air compressor and the oil pump. The delivery rates can be set, for example, by map control of the speed. Instead of controlling the burner output via the speed control of the pump and compressor drive, the delivery rate - at constant speed - can also be advantageously achieved by controlling shunts to the air compressor and the oil pump.

Abweichungen vom stöchiometrischen Verhältnis zwischen Brennstoff und Luft werden beim erfindungsgemäßen Verfahren vorteilhaft durch Veränderung eines Nebenschlusses zum Luftverdichter oder zur Ölpumpe ausgeregelt. Das Regelsignal liefert dabei eine - im heißen Abgasstrom angeordnete - sogenannte l-Sonde (Lambda-Sonde).In the method according to the invention, deviations from the stoichiometric ratio between fuel and air are advantageously corrected by changing a shunt to the air compressor or to the oil pump. The control signal provides a so-called l-probe (lambda probe), which is arranged in the hot exhaust gas stream.

Der Heizölmassenstrom kann ferner auch mit einer elektrisch angetriebenen Schwingkolbenpumpe gefördert werden, wobei die Förderleistung durch Kennfeldsteuerung der Frequenz und/oder der Amplitude des Antriebsstromes eingestellt wird. Der Luftmassenstrom kann dann beispielsweise von einem Verdichter geliefert werden, dessen Förderleistung durch Kennfeldsteuerung der Drehzahl eingestellt wird.The fuel oil mass flow can also be promoted with an electrically driven oscillating piston pump are, the delivery rate is set by map control of the frequency and / or the amplitude of the drive current. The air mass flow can then be supplied, for example, by a compressor, the delivery rate of which is set by map control of the speed.

Abweichungen vom stöchiometrischen Verhältnis zwischen Brennstoff und Luft werden in diesem Fall durch Veränderung der Frequenz und/oder der Amplitude des Antriebsstromes der Schwingkolbenpumpe oder durch Veränderung der Drehzahl des Verdichters oder auch durch Veränderung eines Nebenschlusses zur Ölförderpumpe und/oder zum Luftverdichter ausgeregelt. Auch hierbei liefert die 2-Sonde das Regelsignal.In this case, deviations from the stoichiometric ratio between fuel and air are corrected by changing the frequency and / or the amplitude of the drive current of the oscillating piston pump or by changing the speed of the compressor or by changing a shunt to the oil pump and / or the air compressor. Here, too, the 2-probe delivers the control signal.

Eine λ-Sonde ist ein sauerstoffempfindliches elektrochemisches Element, das einen - bei der MeBtemperatur - sauerstoffionenleitenden Festelektrolyten und zwei sauerstoffauflösende Katalysatorelektroden aufweist. Ein derartiges Element erzeugt solange eine elektromotorische Kraft (EMK), wie der Sauerstoffpartialdruck an den beiden Elektroden verschieden ist. Steht, wie im vorliegenden Fall, eine der beiden Elektroden mit dem Abgas des Brenners und die andere mit der Ansaugluftatmosphäre in Berührung, so steigt die EMK beim Übergang von magerem Abgas (λ> 1) zu fettem Abgas (λ< 1) sprunghaft an. Dieser Spannungssprung wird beim erfindungsgemäßen Verfahren zur Regelung der Stöchiometrie des Einsatzstoffgemisches verwendet. Der Spannungssprung wird beim Übergang ins fette Abgas dadurch begrenzt, daß das elektrochemische Element infolge der dann im Abgas auftretenden brennbaren Bestandteile als Brennstoffzelle wirkt.A λ probe is an oxygen-sensitive electrochemical element that has a solid electrolyte that conducts oxygen ions at the measurement temperature and two oxygen-dissolving catalyst electrodes. Such an element generates an electromotive force (EMF) as long as the oxygen partial pressure at the two electrodes is different. If, as in the present case, one of the two electrodes is in contact with the exhaust gas from the burner and the other is in contact with the intake air atmosphere, the EMF increases abruptly during the transition from lean exhaust gas (λ> 1) to rich exhaust gas (λ <1). This voltage jump is used in the method according to the invention for regulating the stoichiometry of the feed mixture. The voltage jump is limited during the transition to the rich exhaust gas in that the electrochemical element acts as a fuel cell as a result of the combustible components then occurring in the exhaust gas.

Beim erfindungsgemäßen Verfahren wird die A-Sonde vorteilhaft im Feuerraum des Heizkessels angeordnet und zwar zumindest teilweise. Hierdurch wird nämlich mit Sicherheit gewährleistet, daß die Mindestbetriebstemperatur und damit die Funktionsfähigkeit der Sonde bei allen Betriebszuständen gegeben ist.In the method according to the invention, the A-probe is advantageously arranged in the combustion chamber of the boiler, at least partially. This ensures with certainty that the minimum operating temperature and thus the functionality of the probe is given in all operating conditions.

Das erfindungsgemäße Verfahren bietet insbesondere den Vorteil, daß - aufgrund der Verwendung einer λ-Sonde - die Regelung der Stöchiometrie des Einsatzstoffgemisches unabhängig ist von der Temperatur, dem Druck und dem Wasserdampfgehalt der Ansaugluft und auch unabhängig von der Viskosität sowie dem H/C- und dem S/C-Verhältnis des Heizöls. Es ergibt sich hierbei somit weder die Gefahr der Rußbildung noch eine Schwankung des Wirkungsgrades. Darüber hinaus bietet dieses Verfahren - aufgrund der Verwendung eines Vergasungsbrenners - sowohl die Sicherheit, der Heizöllagerung als auch die Vorteile eines Gasbetriebes.The method according to the invention offers the particular advantage that - due to the use of a λ probe - the regulation of the stoichiometry of the feed mixture is independent of the temperature, pressure and water vapor content of the intake air and also independent of the viscosity and the H / C and the S / C ratio of the heating oil. There is therefore neither the risk of soot formation nor a fluctuation in the efficiency. In addition, due to the use of a gasification burner, this process offers both safety, heating oil storage and the advantages of gas operation.

Anhand von Ausführungsbeispielen und Figuren soll die Erfindung noch näher erläutert werden.The invention will be explained in more detail with reference to exemplary embodiments and figures.

In Fig. 1 sind, wie bereits erwähnt, Kesselwassertemperatur und Heizleistung einer Heizkesselanlage als Funktion der Außenlufttemperatur dargestellt.As already mentioned, FIG. 1 shows the boiler water temperature and the heating output of a boiler system as a function of the outside air temperature.

In Fig. 2 ist - anhand einer Ausführungsform einer Vergasungsbrenner/Heizkesselanlage - schematisch das Steuer- und Regelschema entsprechend dem erfindungsge- - mäßen Verfahren dargestellt.In FIG. 2 - based on an embodiment of a gasification burner / boiler system - the control and regulation scheme corresponding to the method according to the invention is shown schematically.

Im Feuerraum 11 des Heizkessels 10 ist ein Vergasungsbrenner 12 angeordnet. Dem Brenner 12 wird durch eine Leitung 13 Brennstoff in Form von Heizöl und durch eine Leitung 14 Luft zugeführt. Zur Förderung des Brennstoffes dient eine Pumpe 15 und zur Zuführung der Luft ein Verdichter 16. Die Ölpumpe 15 und der Luftverdichter 16 befinden sich gemeinsam auf der Antriebswelle 17 eines Motors 18. An der Brennstoffzuführung 13 ist - als Nebenschluß zur Pumpe 15 - eine Leitung 19 mit einem Ventil 20 angeordnet und an der Luftzuführung 14 - als Nebenschluß zum Verdichter 16 - eine Leitung 21 mit einem Ventil 22. Strömungsmäßig hinter dem Nebenschluß 21, d.h. zwischen Verdichter 16 und Brenner 12, ist in der Luftzuführungsleitung 14 ein Ventil 23 angebracht, das den Gesamtluftstrom in Vergasungs- und Verbrennungsluft aufteilt, die dem Brenner 12 getrennt durch Leitungen 24 bzw. 25 zugeführt werden.A gasification burner 12 is arranged in the combustion chamber 11 of the boiler 10. The burner 12 is supplied with fuel in the form of heating oil through a line 13 and air through a line 14. To promote the Brenn A pump 15 and a compressor 16 serve to supply the air. The oil pump 15 and the air compressor 16 are located together on the drive shaft 17 of a motor 18. On the fuel feed 13 there is a line 19 with a valve as a shunt to the pump 15 20 arranged and on the air supply 14 - as a shunt to the compressor 16 - a line 21 with a valve 22. In terms of flow behind the shunt 21, ie between the compressor 16 and the burner 12, a valve 23 is attached in the air supply line 14, which the total air flow in Splits gasification and combustion air, which are fed to the burner 12 separately through lines 24 and 25, respectively.

Im Wasserkreislauf 26 des Heizkessels 10 ist eine Umwälzpumpe 27 angeordnet; die Last, d.h. der Verbraucher, ist mit Ziffer 28 bezeichnet. Die λ-Sonde 30 wird dem Abgasstrom des Brenners 12 ausgesetzt, sie kann sich deshalb beispielsweise im Abgasrohr 29 des Heizkessels 10 befinden.A circulation pump 27 is arranged in the water circuit 26 of the boiler 10; the load, i.e. the consumer, is identified by paragraph 28. The λ probe 30 is exposed to the exhaust gas flow from the burner 12, and can therefore be located, for example, in the exhaust pipe 29 of the boiler 10.

Beim Betrieb der Vergasungsbrenner/Heizkesselanlage wird durch einen Fühler 31 die Außenlufttemperatur und durch einen Fühler 32 die Kesselvorlauftemperatur festgestellt und durch Leitungen 33 bzw. 34 einer Steuer- und Regeleinheit 35 übermittelt. Das Signal der λ-Sonde 30 wird der Steuer- und Regeleinheit 35 durch eine Leitung 36 zugeführt.During operation of the gasification burner / boiler system, the outside air temperature is determined by a sensor 31 and the boiler flow temperature by sensor 32 and transmitted to a control and regulating unit 35 by lines 33 and 34, respectively. The signal of the λ probe 30 is fed to the control and regulating unit 35 through a line 36.

Durch die Steuer- und Regeleinheit 35 erfolgt über eine Leitung 37 eine Drehzahlregelung des Motors 18, wodurch die Fördermengen von Brennstoff und Luft - in Abhängigkeit von der Brennerleistung - gesteuert werden. Von der Steuer- und Regeleinheit 35 führt ferner eine Leitung 38 zum Ventil 20 (in der Nebenschlußleitung 19 der Brennstoffzuführung 13) und eine Leitung 39 zum Ventil 22 (in der Nebenschlußleitung 21 der Luftzuführung 14). Durch Betätigung der Ventile 20 und 22 können dabei Abweichungen vom stöchiometrischen Verhältnis zwischen Brennstoff und Luft geregelt werden. Schließlich führt von der Steuer- und Regeleinheit 35 noch eine Leitung 40 zum Ventil 23 in der Luftzuführung 14. Durch das Ventil 23 kann das Verhältnis zwischen Vergasungsluft und Verbrennungsluft, das im allgemeinen ca. 1:9 beträgt, eingestellt werden.The control and regulating unit 35 controls the speed of the motor 18 via a line 37, as a result of which the delivery quantities of fuel and air are controlled as a function of the burner output. A line 38 leads from the control and regulating unit 35 to the valve 20 (in the shunt line 19 of the fuel supply 13) and a line 39 to Valve 22 (in the shunt line 21 of the air supply 14). By operating the valves 20 and 22, deviations from the stoichiometric ratio between fuel and air can be regulated. Finally, a line 40 leads from the control and regulating unit 35 to the valve 23 in the air supply 14. The valve 23 can be used to set the ratio between the gasification air and the combustion air, which is generally approximately 1: 9.

In Fig. 3 ist eine bevorzugte Ausführungsform des beim erfindungsgemäßen Verfahren eingesetzten Vergasungsbrenners dargestellt (vgl. dazu DE-OS 28 41 105).3 shows a preferred embodiment of the gasification burner used in the method according to the invention (cf. DE-OS 28 41 105).

Der Vergasungsbrenner 50 besteht im wesentlichen aus zwei Stufen, einem Vergasungsteil 51 mit einer zentral angeordneten Reaktorkammer 53, die einen Katalysator enthält, und einem Verbrennungsteil 52, der einen Mischraum 54, eine Zündkammer 55 und einen Brennraum 56 aufweist. Der Reaktorkammer bzw. Katalysatoreinrichtung 53 ist ein-Vorraum 57 zum Mischen des Brennstoffes mit Vergasungsluft vorgeschaltet Die Vergasungsluft wird dazu dem Vorraum 57 von einem sogenannten Ringraum 58 aus durch Radialkanäle 59 zugeführt, die den Vorraum mit dem - vom Vorraum durch eine (Ring-)Wand getrennten - Ringraum 58 verbinden, und an einer Homogenisierungseinrichtung 60, beispielsweise einer mit Schrägschlitzen versehenen Drallblende, mit dem Brennstoff vermischt. Im Ringraum 58, dem die Vergasungsluft durch einen Stutzen 61 zugeführt wird, ist eine Heizquelle 62 zur Vorwärmung der Luft bei der Inbetriebnahme des Brenners und bei Laständerungen vorgesehen. Zur Zuführung des Brennstoffes zum Vorraum 57 ist diesem ein sogenannter Frontraum 63 vorgeschaltet, der in einen Ringkanal 64 übergeht. Der Ringkanal 64, dem der Brennstoff durch eine Leitung 65 zugeführt wird, ist mit einer Heizquelle 66 zur Verdampfung des flüssigen Brennstoffes beim Startvorgang versehen.The gasification burner 50 essentially consists of two stages, a gasification part 51 with a centrally arranged reactor chamber 53, which contains a catalyst, and a combustion part 52, which has a mixing chamber 54, an ignition chamber 55 and a combustion chamber 56. The reactor chamber or catalytic converter device 53 is preceded by an antechamber 57 for mixing the fuel with gasification air. Separate the wall - connect the annular space 58 and mix it with the fuel at a homogenization device 60, for example a swirl aperture provided with oblique slots. In the annular space 58, to which the gasification air is fed through a nozzle 61, a heating source 62 is provided for preheating the air when the burner is started up and when the load changes. To supply the fuel to the vestibule 57, a so-called front space 63 is connected upstream thereof, which merges into an annular channel 64. The ring channel 64, to which the fuel is supplied through a line 65 is provided with a heat source 66 for evaporating the liquid fuel during the starting process.

In der Reaktorkammer 53 wird der Brennstoff durch partielle Oxidation in ein Brenngas umgesetzt, das dem Mischraum 54 zugeführt und dort an einer Homogenisierungseinrichtung 67, beispielsweise einer mit Schrägschlitzen versehenen Drallblende, mit der Verbrennungsluft vermischt wird. Die Verbrennungsluft wird dem Mischraum 54 durch einen Stutzen 68 zugeführt. Das Brenngas/Verbrennungsluft-Gemisch tritt vom Mischraum 54 durch eine als Rückschlagsicherung dienende gelochte Scheibe 69 in die Zündkammer 55 und von dort durch eine sogenannte Lochwand 70 in den - durch eine gasdurchlässige Brennerplatte 71 nach außen abgeschlossenen - Brennraum 56 über. Beim Durchströmen der Zündkammer 55, in die eine Zündelektrode 72 mündet, und des Brennraumes 56, insbesondere beim Durchtritt durch die Lochwand 70 und die Brennerplatte 71, die beide auch als Flammplatten bezeichnet werden, verbrennt das Brenngas/ Verbrennungsluft-Gemisch und tritt dann als Abgas in den Innenraum des Heizkessels, d.h. in den Feuerraum (vgl. dazu Fig. 2, Ziffer 11), über, wo es zur Erwärmung des Kesselwassersdient.In the reactor chamber 53, the fuel is converted by partial oxidation into a fuel gas which is fed to the mixing chamber 54 and mixed with the combustion air at a homogenization device 67, for example a swirl orifice provided with oblique slots. The combustion air is fed to the mixing chamber 54 through a nozzle 68. The fuel gas / combustion air mixture passes from the mixing chamber 54 through a perforated disk 69 serving as a non-return safety device into the ignition chamber 55 and from there through a so-called perforated wall 70 into the combustion chamber 56, which is closed off to the outside by a gas-permeable burner plate 71. When flowing through the ignition chamber 55, into which an ignition electrode 72 opens, and the combustion chamber 56, in particular when passing through the perforated wall 70 and the burner plate 71, both of which are also referred to as flame plates, the fuel gas / combustion air mixture burns and then occurs as exhaust gas in the interior of the boiler, ie into the combustion chamber (see Fig. 2, number 11), above where it is used to heat the boiler water.

Beim erfindungsgemäßen Verfahren hat es sich, wie bereits ausgeführt, als vorteilhaft erwiesen, die A-Sonde im Feuerraum des Heizkessels anzuordnen. Eine zufriedenstellende Funktionsfähigkeit der λ -Sonde wird nämlich erst bei Temperaturen oberhalb ca. 3000C erreicht. Vorzugsweise wird die λ-Sonde deshalb im Feuerraum in der Nähe der letzten Flammplatte, d.h. der sogenannten Brennerplatte (vgl. Fig. 3, Ziffer 71), angebracht. Wenn dies aus räumlichen Gründen nicht möglich ist, dann kann die Betriebstemperatur der λ -Sonde vorteilhaft auch durch eine elektrische Heizung eingehalten werden.In the method according to the invention, as already stated, it has proven to be advantageous to arrange the A probe in the combustion chamber of the boiler. A satisfactory functioning of the λ probe is namely achieved only at temperatures above about 300 0 C. The λ probe is therefore preferably installed in the combustion chamber in the vicinity of the last flame plate, ie the so-called burner plate (cf. FIG. 3, number 71). If this is not possible due to space reasons, the operating temperature of the λ probe advantageously also be maintained by an electric heater.

Voraussetzung für eine einwandfreie Regelung ist ferner, daß bei stöchiometrischem Einsatzstoffgemisch im Abgas kein freier Sauerstoff gemessen wird, wie es beim Einfrieren eines Hochtemperaturgleichgewichts der Fall sein kann. Um diese Voraussetzungen zu erfüllen, muß im Meßgas das thermodynamische Gleichgewicht bei so tiefen Temperaturen eingestellt werden, daß praktisch nur C02 und H20 als Verbrennungsprodukte auftreten. Dies ist bei Temperaturen zwischen ca. 300 und 1000°C, vorzugsweise bei etwa 500°C, dann der Fall, wenn das Meßgas über einen das Tieftemperaturgleichgewicht einstellenden Katalysator der Meßelektrode der Ä-Sonde zugeführt wird oder wenn das Elektrodenmaterial selbst das Tieftemperaturgleichgewicht einstellt. Derartige Katalysatoren bzw. Elektrodenmaterialien sind beispielsweise Platin und Rhodium.A prerequisite for proper control is furthermore that no free oxygen is measured in the exhaust gas in the case of a stoichiometric feed mixture, as can be the case when freezing a high-temperature equilibrium. In order to meet these requirements, the thermodynamic equilibrium must be set in the sample gas at temperatures so low that practically only C0 2 and H 2 0 occur as combustion products. This is the case at temperatures between about 300 and 1000 ° C, preferably at about 500 ° C, when the sample gas is fed to the measuring electrode of the Ä-probe via a catalyst that adjusts the low-temperature equilibrium, or when the electrode material itself adjusts the low-temperature equilibrium. Such catalysts or electrode materials are, for example, platinum and rhodium.

Claims (7)

1. Verfahren zum Betrieb einer Vergasungsbrenner/Heizkesselanlage, dadurch gekennzeichnet , daß aus der Außenlufttemperatur die erforderliche Brennerleistung ermittelt wird, daß in Abhängigkeit von der Brennerleistung die Massenströme von Heizöl und Luft gesteuert werden und daß Abweichungen vom stöchiometrischen Verhältnis zwischen Heizöl und Luft mittels einer im Abgasstrom angeordneten λ-Sonde geregelt werden.1. A method of operating a gasification burner / boiler system, characterized in that the required burner output is determined from the outside air temperature, that the mass flows of heating oil and air are controlled as a function of the burner output and that deviations from the stoichiometric ratio between heating oil and air by means of an Exhaust gas flow arranged λ probe can be regulated. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß die λ-Sonde zumindest teilweise im Feuerraum des Heizkessels angeordnet wird.2. The method according to claim 1, characterized in that the λ probe is at least partially arranged in the combustion chamber of the boiler. 3. Verfahren nach Anspruch 1, dadurch gekennzeichnet , daß die Ä-Sonde elektrisch beheizt wird.3. The method according to claim 1, characterized in that the Ä-probe is electrically heated. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß Abweichungen vom stöchiometrischen Verhältnis zwischen Heizöl und Luft durch Veränderung eines Nebenschlusses zur Ölpumpe oder zum Luftverdichter ausgeregelt werden.4. The method according to any one of claims 1 to 3, characterized in that deviations from the stoichiometric ratio between heating oil and air are corrected by changing a shunt to the oil pump or to the air compressor. 5. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß für Luftverdichter und Ölpumpe ein gemeinsamer Antrieb vorgesehen wird und daß die Luft- und Heizölmassenströme durch Drehzahlregelung des gemeinsamen Antriebs eingestellt werden.5. The method according to one or more of claims 1 to 4, characterized in that a common drive is provided for air compressor and oil pump and that the air and heating oil mass flows are adjusted by speed control of the common drive. 6. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Luft- und Heizölmassenströme durch Steuerung von Nebenschlüssen zum Luftverdichter und zur Ölpumpe eingestellt werden.6. The method according to one or more of claims 1 to 4, characterized in that the air and heating oil mass flows are set by controlling shunts to the air compressor and to the oil pump. 7. Verfahren nach einem oder mehreren der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Luft- und Heizölmassenströme durch Steuerung der Förderleistung von Luftverdichter und/oder Ölpumpe eingestellt werden.7. The method according to one or more of claims 1 to 4, characterized in that the air and heating oil mass flows are adjusted by controlling the delivery rate of the air compressor and / or oil pump.
EP81103529A 1980-05-22 1981-05-08 Process for the operation of a gasified-oil burner/heating boiler equipment Withdrawn EP0040736A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19803019622 DE3019622A1 (en) 1980-05-22 1980-05-22 METHOD FOR OPERATING A GASIFICATION BURNER / BOILER PLANT
DE3019622 1980-05-22

Publications (1)

Publication Number Publication Date
EP0040736A1 true EP0040736A1 (en) 1981-12-02

Family

ID=6103091

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81103529A Withdrawn EP0040736A1 (en) 1980-05-22 1981-05-08 Process for the operation of a gasified-oil burner/heating boiler equipment

Country Status (6)

Country Link
US (1) US4406611A (en)
EP (1) EP0040736A1 (en)
JP (1) JPS5719522A (en)
DE (1) DE3019622A1 (en)
DK (1) DK223581A (en)
NO (1) NO811678L (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156515A2 (en) * 1984-03-08 1985-10-02 Davair Heating Limited Oil burner
EP0209771A1 (en) * 1985-07-24 1987-01-28 Bieler + Lang GmbH Method and circuit for the fine fuel volume flow regulation of burner-activated combustion devices by the measurement of the partial oxygen and the carbon monoxide content in the exhaust gases
EP0275439A1 (en) * 1987-01-02 1988-07-27 Karl Dungs GmbH & Co. Power regulation apparatus for a fuel-heated generator
EP0281823A2 (en) * 1987-03-12 1988-09-14 Karl Dungs GmbH & Co. Power regulation device for fuel-fired heat producers
EP0282758A2 (en) * 1987-03-17 1988-09-21 Karl Dungs GmbH & Co. Valve arrangement

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3208765A1 (en) * 1982-03-11 1983-09-22 Ruhrgas Ag, 4300 Essen METHOD FOR MONITORING COMBUSTION PLANTS
US4631022A (en) * 1983-12-15 1986-12-23 Gte Products Corporation Heat recuperator with compensator for pressure operated fuel regulator
NL8400406A (en) * 1984-02-08 1985-09-02 Veg Gasinstituut Nv GAS BURNER.
US4585161A (en) * 1984-04-27 1986-04-29 Tokyo Gas Company Ltd. Air fuel ratio control system for furnace
US4645450A (en) * 1984-08-29 1987-02-24 Control Techtronics, Inc. System and process for controlling the flow of air and fuel to a burner
US5400962A (en) * 1993-10-27 1995-03-28 Pvi Industries, Inc. System and method for reduced purge operation of a forced draft burner in a water heater
US6095793A (en) * 1998-09-18 2000-08-01 Woodward Governor Company Dynamic control system and method for catalytic combustion process and gas turbine engine utilizing same
US6213758B1 (en) 1999-11-09 2001-04-10 Megtec Systems, Inc. Burner air/fuel ratio regulation method and apparatus
DE10007766A1 (en) * 2000-02-20 2001-08-23 Gen Motors Corp Burner arrangement used for the combustion of a fuel gas/oxygen mixture in a fuel cell comprises a body permeable for the mixture, a feed device for the mixture and a restriking layer connected to the feed device
US8075304B2 (en) * 2006-10-19 2011-12-13 Wayne/Scott Fetzer Company Modulated power burner system and method
US20080141584A1 (en) * 2006-12-14 2008-06-19 Texaco Inc. Methods for Using a Catalyst Preburner in Fuel Processing Applications
DE102010017239B4 (en) * 2010-06-04 2017-09-21 Océ Printing Systems GmbH & Co. KG Apparatus and method for fixing printed images on a record carrier
GB2484957A (en) * 2010-10-28 2012-05-02 Autoflame Eng Ltd Burner control with stored values for valve settings and pressures
ITBO20120128A1 (en) * 2012-03-13 2013-09-14 Riello Spa COMBUSTION EQUIPMENT OF LIQUID FUELS AND ITS METHOD TO MODULATE THE POWER OF SUCH EQUIPMENT
WO2014041213A1 (en) * 2012-09-11 2014-03-20 Fundacion Cidaut Solid fuel boiler
SG11201505716PA (en) * 2013-01-25 2015-09-29 Bühler Barth Gmbh Method and device for drying and/or roasting a food
PL3098511T3 (en) 2015-04-14 2020-08-10 Oilon Technology Oy Method for reducing nitrogen oxide(s) and carbon monoxide from flue gases and according burner automation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2262330A1 (en) * 1972-12-20 1974-06-27 Schirmer Wilhelm Dipl Ing METHOD AND DEVICE FOR OPERATING A BURNER
DE2528749A1 (en) * 1975-06-27 1977-01-13 Buderus Eisenwerk HEATING SYSTEM WITH A HEATING BOILER THAT CAN BE CONTROLLED DEPENDING ON THE OUTSIDE TEMPERATURE
DE2510717B2 (en) * 1975-03-12 1979-06-28 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Device for burners to regulate the fuel-air ratio
DE2752021B2 (en) * 1977-10-28 1979-11-15 Lgz Landis & Gyr Zug Ag, Zug (Schweiz) Device for regulating the size of the excess air in the combustion gases of an incineration plant
WO1980001603A1 (en) * 1979-01-31 1980-08-07 Jydsk Varmekedelfab As Method and apparatus for regulating the combustion in a furnace

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1515302A (en) * 1975-06-09 1978-06-21 Hawker Siddeley Dynamics Eng Combustion control system
GB1571906A (en) * 1977-11-22 1980-07-23 British Gas Corp Air fuel gas ratio controls for burners
DE2811273C2 (en) * 1978-03-15 1980-01-03 Siemens Ag, 1000 Berlin Und 8000 Muenchen Gasification burner
NL7811831A (en) * 1978-12-04 1980-06-06 Itho B V Burner with temp. or pressure controlled fuel and air - varies speed of air blower motor to provide required air amount
JPS5582226A (en) * 1978-12-18 1980-06-20 Osaka Gas Co Ltd Method of controlling air/fuel ratio
DE2915211A1 (en) * 1979-04-14 1980-10-23 Heinz Boecking Automatic fuel supply for light heating oil - has semiconductor thermostat for inside temp. and electronic control for governor control mechanism

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2262330A1 (en) * 1972-12-20 1974-06-27 Schirmer Wilhelm Dipl Ing METHOD AND DEVICE FOR OPERATING A BURNER
DE2510717B2 (en) * 1975-03-12 1979-06-28 Friedrichsfeld Gmbh, Steinzeug- Und Kunststoffwerke, 6800 Mannheim Device for burners to regulate the fuel-air ratio
DE2528749A1 (en) * 1975-06-27 1977-01-13 Buderus Eisenwerk HEATING SYSTEM WITH A HEATING BOILER THAT CAN BE CONTROLLED DEPENDING ON THE OUTSIDE TEMPERATURE
DE2752021B2 (en) * 1977-10-28 1979-11-15 Lgz Landis & Gyr Zug Ag, Zug (Schweiz) Device for regulating the size of the excess air in the combustion gases of an incineration plant
WO1980001603A1 (en) * 1979-01-31 1980-08-07 Jydsk Varmekedelfab As Method and apparatus for regulating the combustion in a furnace

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0156515A2 (en) * 1984-03-08 1985-10-02 Davair Heating Limited Oil burner
EP0156515A3 (en) * 1984-03-08 1987-03-04 Davair Heating Limited Oil burner
EP0209771A1 (en) * 1985-07-24 1987-01-28 Bieler + Lang GmbH Method and circuit for the fine fuel volume flow regulation of burner-activated combustion devices by the measurement of the partial oxygen and the carbon monoxide content in the exhaust gases
EP0275439A1 (en) * 1987-01-02 1988-07-27 Karl Dungs GmbH & Co. Power regulation apparatus for a fuel-heated generator
EP0281823A2 (en) * 1987-03-12 1988-09-14 Karl Dungs GmbH & Co. Power regulation device for fuel-fired heat producers
EP0281823A3 (en) * 1987-03-12 1988-12-07 Karl Dungs GmbH & Co. Power regulation device for fuel-fired heat producers
EP0282758A2 (en) * 1987-03-17 1988-09-21 Karl Dungs GmbH & Co. Valve arrangement
EP0282758A3 (en) * 1987-03-17 1988-12-14 Karl Dungs Gmbh & Co. Valve arrangement

Also Published As

Publication number Publication date
JPS5719522A (en) 1982-02-01
DK223581A (en) 1981-11-23
DE3019622A1 (en) 1981-11-26
NO811678L (en) 1981-11-23
US4406611A (en) 1983-09-27

Similar Documents

Publication Publication Date Title
EP0040736A1 (en) Process for the operation of a gasified-oil burner/heating boiler equipment
EP1621811B1 (en) Operating Method for a Combustion Apparatus
DE3885117T2 (en) Method and device for burning gaseous fuel with a fluctuating composition.
EP1173710B1 (en) Device for adjusting the oxidation agent/fuel mixture in the feeding pipe of a burner
DE2337283C3 (en) Device for burning exhaust gases coming from a chimney
DE3937290A1 (en) METHOD AND DEVICE FOR PRODUCING A FUEL-COMBUSTION AIR MIXTURE TO BE COMBUSED FOR COMBUSTION
EP1800060A1 (en) Method for operation of a burner in particular a burner for a gas turbine and device for carrying out said method
EP1393002A1 (en) Method and device for low-emission non-catalytic combustion of a liquid fuel
EP2665872A2 (en) Axial piston motor and method for operating an axial piston motor
EP0663562A2 (en) Process and burner for reducing harmful gas emissions during combustion
DE3125513A1 (en) Method of operating a gasification burner/heating boiler installation
DE19921045A1 (en) Boiler system fueled by gas of oil uses frequency converter to supply air control fan provides clean, efficient combustion for central heating installation
EP1923946A1 (en) Application of a burner device in a fuel cell system
DE3435902A1 (en) Arrangement for automatic control of the excess air in a combustion
EP2494275B1 (en) Oil burner, controller and control method therefor
DE2821367A1 (en) METHOD AND DEVICE FOR CONTINUOUS BURNING OF A FUEL
DE2841385A1 (en) Liq. fuel burner with ultrasonic atomiser - has plate projecting sideways into airflow gap around vibrator to form oscillating lip
AT413440B (en) Process for controlling a gas burner, especially in a heating system with a fan, uses an electronic control device that at initial start-up with a first ignition
DE3022181C2 (en) Process for regulating the gas-air mixture for gas burners in gas rapid heating furnaces and gas rapid heating furnaces for carrying out this process
DE8809874U1 (en) Gas burner
DE662249C (en) Oil pressure atomizer burner with an ignition chamber in front of the atomizer nozzle
AT409294B (en) Power plant and method for the firing of fuels
DE102006006661A1 (en) Post-combustion installation used as thermal or regenerative post-combustion installation comprises electronic control/regulating device for controlling fuel-pressurized fluid ratio
EP0034786A1 (en) Method of operating a boiler unit and device suited therefor
DE3113172A1 (en) PROCESS FOR HEAT TREATMENT OF FOODSTUFFS

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): AT BE CH DE FR GB IT SE

17P Request for examination filed

Effective date: 19820521

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19831227

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MICHEL, ALFRED, DR.