EP0033279B1 - Système de guidage d'engin par faisceau lumineux - Google Patents

Système de guidage d'engin par faisceau lumineux Download PDF

Info

Publication number
EP0033279B1
EP0033279B1 EP81400103A EP81400103A EP0033279B1 EP 0033279 B1 EP0033279 B1 EP 0033279B1 EP 81400103 A EP81400103 A EP 81400103A EP 81400103 A EP81400103 A EP 81400103A EP 0033279 B1 EP0033279 B1 EP 0033279B1
Authority
EP
European Patent Office
Prior art keywords
sight
missile
detector
transparent
sectors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP81400103A
Other languages
German (de)
English (en)
Other versions
EP0033279A1 (fr
Inventor
Wladimir Koreicho
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Societe Anonyme de Telecommunications SAT
Original Assignee
Societe Anonyme de Telecommunications SAT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Societe Anonyme de Telecommunications SAT filed Critical Societe Anonyme de Telecommunications SAT
Publication of EP0033279A1 publication Critical patent/EP0033279A1/fr
Application granted granted Critical
Publication of EP0033279B1 publication Critical patent/EP0033279B1/fr
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G7/00Direction control systems for self-propelled missiles
    • F41G7/20Direction control systems for self-propelled missiles based on continuous observation of target position
    • F41G7/24Beam riding guidance systems
    • F41G7/26Optical guidance systems

Definitions

  • the present invention relates to a machine guidance system comprising a source emitting a light beam whose axis defines the direction of sight, a modulation pattern placed on the path of the beam, means for producing a relative rotational movement between the target and beam, means arranged to provide an angular reference on the machine, and, on the machine, at least one detector and a calculation circuit for determining, from the detector output signal, the coordinates of the detector relative to the direction of sight, the control surfaces of the machine being actuated according to said coordinates in order to control the trajectory of the machine on the direction of sight.
  • French patent 2 339 832 discloses such a guidance system comprising, for the modulation of the beam, a rotating target in the form of a spiral. Measuring the illumination times of each detector makes it possible to determine the distance from the detector to the beam axis, since, given the shape of the target, the lighting duration is a function of the distance to the axis.
  • the duration of illumination is very variable compared to the total duration of measurement and in particular the duration of relative illumination is close to 100% on the axis of the beam and decreases as one s 'deviates from the axis until it is close to 0 at the edge of the field.
  • This is very disadvantageous in terms of the link budget because in this regard, the optimal value of the relative illumination duration is equal to 50%.
  • the present invention relates to a guidance system of the type described above, in which the relative illumination duration of the detector remains equal to 50% regardless of the position of the detector.
  • the present invention relates to a system of the type defined above, characterized in that the target is formed as the superposition of a first target divided into a transparent sector and a partially transparent semi-circular sector, and d '' a second target divided into four equal sectors, namely two transparent sectors and two partially transparent sectors, by two curves symmetrical with respect to the center of the target, of equation f (p, ⁇ modulo n) - 0, where p varies monotonically as a function of ⁇ , your modulation pattern thus comprising transparent, partially transparent and opaque sectors, delimited by symmetrical curves with respect to the center of the pattern and defining equal angles at the center whatever the radius considered of so that the relative illumination duration of the detector remains equal to 50% whatever its position.
  • the guidance system shown diagrammatically in FIG. 1 comprises a light source 1, for example a laser source emitting in the infrared such as a CO 2 laser.
  • a laser source emitting in the infrared
  • a continuous emission laser is used in the invention.
  • a light-emitting diode of the AsGa type is also possible to envisage using a light-emitting diode of the AsGa type as a source.
  • the beam emitted by the source 1 is amplitude modulated at a high frequency by an electro-optical modulator 2 which is designed to provide an angular reference.
  • the modulation frequency of the beam is modified in a determined manner, in synchronism with the rotation of the target described below.
  • the beam from the modulator 2 is modulated by a rotating target 3 driven in rotation at an angular speed o by a mechanism 4 and described in more detail below.
  • a relative rotational movement takes place between the test pattern 3 and the beam, one could also leave the test pattern fixed and rotate the beam for example by means of a Wollaston prism.
  • the resulting beam then passes through an emission optic 5.
  • the machine E goes towards the target C on which the beam is pointed. It carries one (or more) detector D which transforms the light radiation which it receives coming from source 1 into an electrical signal. Because the light beam is modulated, so is the electrical signal and the modulation principle, set out below, is such that the polar coordinates (p, 9) of detector D relative to the beam axis can be derived from the detector output signal.
  • the signals representing said coordinates are applied to the control circuit for the control surfaces provided on the vehicle, so as to control the trajectory of the vehicle on the beam axis.
  • the emission optics 5 is designed to keep the section of the beam projected at the detector substantially constant, and therefore the light power received by the detector.
  • Optics 5 is provided for this purpose with a zoom type device.
  • the test pattern 3 shown in FIG. 3 can be considered as the superposition of two test patterns 6 and 7 shown respectively in FIGS. 4a and 4b.
  • the first is made up of a transparent sector and a semi-transparent sector of semi-circular shape.
  • the resulting modulation component in the output signal of the detector D is the signal S 1 ( ⁇ t) (see fig. 5).
  • the processing circuit provided on the machine produces a reference signal R 1 ( ⁇ t) of the same frequency corresponding to the axis x H and it is clear that the polar angle 6 can be easily determined by measuring the phase shift between S 1 ( ⁇ t) and R 1 ( ⁇ t).
  • modulo n The corresponding modulation component is represented by the signal S 2 (mt) and it is easy to understand that the phase shift of S 2 (ot) with respect to a reference signal R 2 ( ⁇ t), whose frequency is double that of R 1 ( ⁇ t), is a function of the vector radius p. This phase shift is given by the relation
  • the signals S, and S 2 are easily deduced from the signal S ( ⁇ t) which is obtained at the output of the detector D after amplification and appropriate shaping.
  • test pattern in Figure 3 should not be considered as formed by the superposition of the patterns in Figures 4a and 4b, since the superposition of two semi-transparent sectors would not give complete opacity.
  • the patterns of Figures 4a and 4b are fictitious and are shown only for the purpose of explanation.
  • the duration of total illumination corresponding to the total of the angles at the center defined by the transparent sectors would be equal to the duration of semi-illumination, corresponding to the total of the angles in the center defined by the semi-transparent sectors, whatever the radius considered.
  • the relative illumination duration of the target of FIG. 3 is equal to 50% whatever the radius considered, this relative duration being equal to 100. ⁇ ET + 50.
  • ⁇ SE, ⁇ ET and ⁇ SE denoting the total of the center angles defined respectively by the transparent sectors and the semi-transparent sectors of the target.
  • the invention makes it possible to obtain a maximum signal variation, as well as a variation of the parameters p and ⁇ in also maximum measurement ranges.
  • Figures 6a and 6b illustrate another embodiment of the modulation means.
  • two patterns 14a and 14b are provided which are moved in a clocked fashion by a switching mechanism, not shown, so that the beam is modulated in turn by the pattern 14a and by the pattern 14b.
  • the two patterns are phase shifted by a given angle, which is equal to 90 ° in the example shown.
  • Means are of course provided for creating a rotational movement between the beam and the targets, for example an optical member rotating the beam or a mechanism for driving the targets in rotation in the same direction at the same angular speed ⁇ .
  • the components attributable to the respective patterns are deduced from the output signal of the detector D and their phase shift ⁇ a, ⁇ b is determined with respect to a reference signal.
  • Figs. 6a and 6b requires only one reference signal R ( ⁇ t) instead of two in the embodiment of figs. 3a and 3b. It is also more advantageous in terms of diffraction.
  • the curves delimiting the sectors are sections of Archimedes' spiral, which provides a linear relationship between p and 0.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

  • La présente invention concerne un système de guidage d'engin comprenant une source émettant un faisceau lumineux dont l'axe définit la direction de visée, une mire de modulation placée sur la trajectoire du faisceau, des moyens pour produire un mouvement de rotation relatif entre la mire et le faisceau, des moyens agencés pour fournir sur l'engin une référence angulaire, et, sur l'engin, au moins un détecteur et un circuit de calcul pour déterminer, à partir du signal de sortie du détecteur, les coordonnées du détecteur par rapport à la direction de visée, les gouvernes de l'engin étant actionnées en fonction des dites coordonnées en vue d'asservir la trajectoire de l'engin sur la direction de visée.
  • On connaît par le brevet français 2 339 832 un tel système de guidage comprenant, pour la modulation du faisceau, une mire tournante en forme de spirale. La mesure des durées d'éclairement de chaque détecteur permet de déterminer la distance du détecteur à l'axe du faisceau, puisque, étant donné la forme de la mire, la durée d'éclairement est fonction de la distance à l'axe.
  • Mais dans ce système connu, la durée d'éclairement est très variable par rapport à la durée totale de mesure et en particulier la durée d'éclairement relative est voisine de 100 % sur l'axe du faisceau et diminue à mesure qu'on s'écarte de l'axe jusqu'à être voisine de 0 à la limite du champ. Ceci est très désavantageux sur le plan du bilan de liaison car à cet égard, la valeur optimale de la durée d'éclairement relative est égale à 50 %.
  • La présente invention vise un système de guidage du type décrit plus haut, dans lequel la durée d'éclairement relative du détecteur reste égale à 50 % quelle que soit la position du détecteur.
  • A cet effet, la présente invention concerne un système du type défini ci-dessus, caractérisé par le fait que la mire est formée comme la superposition d'une première mire divisée en un secteur transparent et un secteur partiellement transparent semi-circulaires, et d'une seconde mire divisée, en quatre secteurs égaux, à savoir deux secteurs transparents et deux secteurs partiellement transparents, par deux courbes symétriques par rapport au centre de la mire, d'équation f (p , σ modulo n) - 0, où p varie de façon monotone en fonction de σ, ta mire de modulation comportant ainsi des secteurs transparents, partiellement transparents et opaques, délimités par des courbes symétriques par rapport au centre de la mire et définissant des angles au centre égaux quel que soit le rayon considéré de manière que la durée d'éclairement relatif du détecteur reste égale à 50 % quelle que soit sa position.
  • La présente invention concerne également un système du type défini ci-dessus, caractérisé par le fait qu'il est prévu deux mires de modulation qui sont axialement symétriques et déphasées l'une par rapport à l'autre d'un angle donné et occupent à tour de rôle une position active d'interception du faisceau, chaque mire étant divisée en deux secteurs identiques, l'un transparent l'autre opaque, respectivement par une courbe d'équation f (p, a modulo π) = 0 et une courbe d'équation f (p, - σ modulo π) = 0, où p varie de façon monotone en fonction de a, ces courbes étant symétriques par rapport au centre de la mire et définissant des angles au centre égaux quel que soit le rayon considéré de manière que la durée d'éclairement relatif du détecteur reste égale à 50 % quelle que soit la position.
  • L'invention sera bien comprise à la lecture de la description ci-après d'exemples de réalisation représentés sur les dessins.
  • Sur les dessins:
    • - La figure 1 est une vue schématique du système de guidage selon l'invention;
    • - La figure 2 montre la section du faisceau de guidage au niveau du détecteur de l'engin;
    • - La figure 3 représente une première forme de réalisation de la mire de modulation;
    • - les figures 4a et 4b montrent les dessins de mire dont la superposition donne la mire de la figure 3.
    • - la figure 5 est un diagramme de signaux illustrant le principe de modulation.
    • - les figures 6a et 6b illustrent une autre forme de réalisation des moyens de modulation.
  • Le système de guidage schématisé à la figure 1 comprend une source lumineuse 1, par exemple une source laser émettant dans t'infrarouge telle qu'un laser à C02. On utilise de préférence dans l'invention un laser à émission continue. Mais on peut aussi envisager d'utiliser comme source une diode électroluminescente du type AsGa.
  • Le faisceau émis par la source 1 est modulé en amplitude à une fréquence élevée par un modulateur électro-optique 2 qui est conçu pour fournir une référence angulaire. A cet effet, la fréquence de modulation du faisceau est modifiée d'une façon déterminée, en synchronisme avec la rotation de la mire décrite ci-après.
  • Le faisceau issu du modulateur 2 est modulé par une mire tournante 3 entraînée en rotation à une vitesse angulaire o par un mécanisme 4 et décrite plus en détail ci-après. L'important étant qu'un mouvement de rotation relatif ait lieu entre la mire 3 et le faisceau, on pourrait aussi laisser la mire fixe et faire tourner le faisceau par exemple au moyen d'un prisme de Wollaston. Le faisceau résultant traverse ensuite une optique d'émission 5.
  • L'engin E se dirige vers la cible C sur laquelle est pointé le faisceau.II porte un (ou plusieurs) détecteur D qui transforme le rayonnement lumineux qu'il reçoit en provenance de la source 1 en un signal électrique. Du fait que le faisceau lumineux est modulé, le signal électrique l'est aussi et le principe de modulation, exposé ci-après, est tel que les coordonnées polaires (p, 9) du détecteur D par rapport à l'axe du faisceau puissent être déduites du signal de sortie du détecteur.
  • Les signaux représentatifs des dites coordonnées sont appliqués au circuit de commande des gouvernes prévues sur l'engin, de manière à asservir la trajectoire de l'engin sur l'axe du faisceau.
  • Il faut noter que l'optique d'émission 5 est conçue pour maintenir sensiblement constante la section du faisceau projetée au niveau du détecteur, et donc la puissance lumineuse reçue par le détecteur. L'optique 5 est munie à cet effet d'un dispostitif du type zoom.
  • La mire 3 représentée à la fig. 3 peut être considérée comme la superposition de deux mires 6 et 7 représentées respectivement aux fig. 4a et 4b.
  • La première est composée d'un secteur transparent et d'un secteur semi-transparent de forme semi-circulaire. La composante de modulation résultante dans le signal de sortie du détecteur D est le signal S1 (ω t) (voir fig. 5).
  • Grâce à la variation de fréquence effectuée par le modulateur 2 en synchronisme avec la rotation de la mire 3, le circuit de traitement prévu sur l'engin élabore un signal de référence R1 (ω t) de même fréquence correspondant à l'axe xH et il est clair que l'angle polaire 6 peut être déterminé facilement en mesurant le déphasage entre S1 (ω t) et R1 (ωt).
  • La mire 7 représenteé à la figure 4b définit quatre secteurs identiques, alternativement transparents et semitransparents qui sont délimités par des sections de spirale d'Archimède d'équations p = a (θ modulo π) et
    Figure imgb0001
  • modulo n). La composante de modulation correspondante est représentée par le signal S2 (mt) et il est facile de comprendre que le déphasage de S2 (o t) par rapport à un signal de référence R2 (ω t), dont la fréquence est double de celle de R1 (ω t), est fonction du rayon vecteur p. Ce déphasage est donné par la relation
    Figure imgb0002
  • et comme on peut déterminer 0 par le déphasage entre S1 (ωt) et R1 (ωt), il est facile également de déterminer p.
  • Les signaux S, et S2 sont facilement déduits du signal S (ωt) que l'on obtient à la sortie du détecteur D après amplification et mise en forme appropriée.
  • Il faut noter, en ce qui concerne la mire représentée à la figure 3, qu'elle comporte des secteurs transparents (éclairement à 100 %), des secteurs semi-transparents (éclairement à 50 %), représentés en hachures espacées, et des secteurs opaques (éclairement à 0 %), représentés en hachures serrées. Au plan des opacités, il ne faut pas considérer la mire de la figure 3 comme formée de la superposition des mires des figures 4a et 4b, car la superposition de deux secteurs semi-transparents ne donnerait pas une opacité complète. Les mires des figures 4a et 4b sont fictives et ne sont représentées que dans un but d'explication.
  • Il faut souligner que, pour chacune des mires fictives des figures 4a et 4b, la durée d'éclairement total, correspondant au total des angles au centre définis par les secteurs transparents serait égale à la durée de semi- éclairement, correspondant au total des angles au centre définis par les secteurs semi- transparents, quel que soit le rayon considéré. Il en résulte que la durée d'éclairement relative de la mire de la figure 3 est égale à 50 % quel que soit le rayon considéré, cette durée relative étant égale à 100 . Σ ET + 50. ΣSE, ΣET et ΣSE désignant le total des angles au centre définis respectivement par les secteurs transparents et les secteurs semi-transparents de la mire.
  • Comme on l'a indiqué précédemment, il s'agit là d'une caractéristique très avantageuse sur le plan du bilan de liaison du système.
  • En outre, et toujours sur le plan du bilan de liaison, l'invention permet d'obtenir une variation de signal maximale, ainsi qu'une variation des paramètres p et σ dans des étendues de mesure aussi maximales.
  • Les figures 6a et 6b illustrent une autre forme de réalisation des moyens de modulation. Dans ce cas, il est prévu deux mires 14a et 14b qui sont mues de façon cadencée par un mécanisme de commutation, non représenté, de manière que le faisceau soit modulé tour à tour par la mire 14a et par la mire 14b.
  • Les mires 14a et 14b sont axialement symétriques et formées chacune de deux secteurs identiques délimités par une courbe 15a, 15b, formée de deux sections de spirale d'Archimède p = a θ et p = - a σ symétriques par rapport au centre de la mire. Les deux mires sont déphasées d'un angle donné, qui vaut 90° dans l'exemple représenté. Des moyens sont prévus bien entendu pour créer un mouvement de rotation entre le faisceau et les mires, par exemple un organe optique faisant tourner le faisceau ou un mécanisme pour entraîner les mires en rotation dans le même sens à la même vitesse angulaire ω.
  • Comme indiqué précédemment, on déduit du signal de sortie du détecteur D les composantes imputables aux mires respectives et on détermine leur déphasage ϕa, ϕb par rapport à un signal de référence.
  • Les déphasages sont donnés par les relations
    Figure imgb0003
    et
    Figure imgb0004
    On en tire
    Figure imgb0005
    et
    Figure imgb0006
  • Le circuit de traitement permettant le calcul de p et θ n'est pas décrit ici, car il est tout à fait à la portée de l'homme de l'art.
  • La forme de réalisation représentée aux figs. 6a et 6b ne nécessite qu'un seul signal de référence R (ω t) au lieu de deux dans la réalisation des figs. 3a et 3b. Elle est en outre plus avantageuse sur le plan de la diffraction.
  • On peut aussi envisager, en variante, de faire tourner les mires 14a et 14b à la même vitesse, mais en sens inverses.
  • Dans les réalisations décrites, les courbes délimitant les secteurs sont des sections de spirale d'Archimède, ce qui fournit une relation linéaire entre p et 0. Mais l'invention n'est pas limitée à ce type de courbes et on peut envisager de façon plus générale toute courbe d'équation f (p, θ) = O où p varie de façon monotone en fonction de θ .

Claims (5)

1.- Système de guidage d'engin comprenant une source émettant un faisceau lumineux dont l'axe définit la direction de visée, une mire de modulation placée sur la trajectoire du faisceau, des moyens pour produire un mouvement de rotation relatif entre la mire et le faisceau, des moyens agencés pour fournir sur l'engin une référence angulaire, et, sur l'engin, au moins un détecteur et un circuit de calcul.pour déterminer, à partir du signal de sortie du détecteur, les coordonnées du détecteur par rapport à la direction de visée, les gouvernes de l'engin étant actionnées en fonction des dites coordonnées en vue d'asservir la trajectoire de l'engin sur la direction de visée, caractérise par le fait que la mire est formée comme la superposition d'une première mire divisée en un secteur transparent et un secteur partiellement transparent semicirculaires, et d'une seconde mire divisée, en quatre secteurs égaux, à savoir deux secteurs transparents et deux secteurs partiellement transparents, par deux courbes symétriques par rapport au centre de la mire, d'équation f (p, 8 modulo π) = O, où p varie de façon monotone en fonction de 9, la mire de modulation comportant ainsi des secteurs transparents, partiellement transparents et opaques, délimités par des courbes symétriques par rapport au centre de la mire et définissant des angles au centre égaux quel que soit le rayon considéré de manière que la durée d'éclairement relatif du détecteur reste égale à 50 % quelle que soit sa position.
2.- Système de guidage d'engin comprenant une source émettant un faisceau lumineux dont l'axe définit la direction de visée, au moins une mire de modulation placée sur la trajectoire du faisceau, des moyens pour produire un mouvement de rotation relatif entre la mire et le faisceau, des moyens agencés pour fournir sur l'engin une référence angulaire, et, sur l'engin, au moins un détecteur et un circuit de calcul pour déterminer, à partir du signal de sortie du détecteur, les coordonnées du détecteur par rapport à la direction de visée, les gouvernes de l'engin étant actionnées en fonction des dites coordonnées en vue d'asservir la trajectoire de l'engin sur la direction de visée, caractérisé par le fait qu'il est prévu deux mires de modulation qui sont axialement symétriques et déphasées l'une par rapport à l'autre d'un angle donné et occupent à tour de rôle une position active d'interception du faisceau, chaque mire étant divisée en deux secteurs identiques, l'un transparent l'autre opaque, reapectivement par une courbe d'équation f (p , θ modulo π) = 0 et une courbe d'équation f (p, - 8 modulo n ) = O, où p varie de façon monotone en fonction de 0, ces courbes étant symétriques par rapport au centre de la mire et définissant des angles au centre égaux quel que soit le rayon considéré de manière que la durée d'éclairement relatif du détecteur reste égale à 50 % quelle que aoit la position.
3.- Système selon la revendication 2, caractérisé par le fait que les deux mires tournent dans le même sens.
4.- Système selon la revendication 2, caractérisé par le fait que les deux mires tournent en sens inverse.
5.- Système selon l'une des revendications 1 à 4, caractérisé par le fait que chacune des dites courbes est formée de deux sections de spirale d'Archimède d'équations p = a θ et p = -a θ .
EP81400103A 1980-01-29 1981-01-26 Système de guidage d'engin par faisceau lumineux Expired EP0033279B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8001840 1980-01-29
FR8001840A FR2474681A1 (fr) 1980-01-29 1980-01-29 Systeme de guidage d'engin par faisceau lumineux

Publications (2)

Publication Number Publication Date
EP0033279A1 EP0033279A1 (fr) 1981-08-05
EP0033279B1 true EP0033279B1 (fr) 1986-11-05

Family

ID=9237976

Family Applications (1)

Application Number Title Priority Date Filing Date
EP81400103A Expired EP0033279B1 (fr) 1980-01-29 1981-01-26 Système de guidage d'engin par faisceau lumineux

Country Status (4)

Country Link
US (1) US4408734A (fr)
EP (1) EP0033279B1 (fr)
DE (1) DE3175568D1 (fr)
FR (1) FR2474681A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2539864B1 (fr) * 1983-01-20 1987-01-09 Telecommunications Sa Systeme de guidage d'engin par faisceau lumineux
DE3441921A1 (de) * 1984-11-16 1986-05-28 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Leitstrahl- und nachfuehreinrichtung
US5427328A (en) * 1985-02-12 1995-06-27 Northrop Grumman Corporation Laser beam rider guidance utilizing beam quadrature detection
GB8724077D0 (en) * 1987-10-14 1988-02-17 British Aerospace Roll orientation
US5685504A (en) * 1995-06-07 1997-11-11 Hughes Missile Systems Company Guided projectile system
US8536501B2 (en) * 2003-10-22 2013-09-17 The Boeing Company Virtually attached node
WO2006088687A1 (fr) * 2005-02-07 2006-08-24 Bae Systems Information And Electronic Systems Integration Inc. Munitions guidees optiquement
US7946209B2 (en) * 2006-10-04 2011-05-24 Raytheon Company Launcher for a projectile having a supercapacitor power supply
DE102010004820A1 (de) * 2010-01-15 2011-07-21 Rheinmetall Air Defence Ag Verfahren zur Flugbahnkorrektur eines insbesondere endphasengelenkten Geschosses sowie Geschoss zur Durchführung des Verfahrens
IL236338B (en) * 2014-12-18 2018-12-31 Israel Aerospace Ind Ltd Guidance system and method

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3000255A (en) * 1955-05-31 1961-09-19 Lloyd A Iddings Scanning devices for optical search
DE977909C (de) * 1959-12-18 1972-11-02 Eltro Gmbh Einrichtung zur Koordinatenmessung
GB1071268A (en) * 1962-12-11 1967-06-07 Galileo Societa Per Azioni Off Guidance systems for vehicles and the like
GB1315351A (en) * 1963-05-10 1973-05-02 Eltro Gmbh Method and apparatus for determining co-ordinates
US3690594A (en) * 1964-05-20 1972-09-12 Eltro Gmbh Method and apparatus for the determination of coordinates
FR2339832A1 (fr) * 1976-01-27 1977-08-26 Emile Stauff Perfectionnements apportes au guidage d'un projectile vers son objectif
US4014482A (en) * 1975-04-18 1977-03-29 Mcdonnell Douglas Corporation Missile director
US4243187A (en) * 1978-05-01 1981-01-06 Mcdonnell Douglas Corporation Missile director with beam axis shift capability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Livre de C. Lebasse IC. Héméry "Géométrie" (1962), éd. Fernand Nathan, page 214 *

Also Published As

Publication number Publication date
FR2474681A1 (fr) 1981-07-31
FR2474681B1 (fr) 1983-12-23
DE3175568D1 (en) 1986-12-11
US4408734A (en) 1983-10-11
EP0033279A1 (fr) 1981-08-05

Similar Documents

Publication Publication Date Title
EP0004227B1 (fr) Appareil de détection optoélectrique et de localisation angulaire d'un objet lumineux et son utilisation
EP0033279B1 (fr) Système de guidage d'engin par faisceau lumineux
EP0033282A1 (fr) Système de guidage d'engin au moyen d'un faisceau lumineux modulé
FR2773213A1 (fr) Procede et dispositif pour la mesure par infrarouge de la temperature d'une surface
FR2565356A1 (fr) Moyens pour guider un vehicule
EP0419320A1 (fr) Dispositif d'harmonisation automatique pour un système optronique
FR2559577A1 (fr) Procede de mesure par trace polygonal et dispositif de mesure
FR2756920A1 (fr) Procede et dispositif pour la mesure par infrarouge de la temperature d'une surface
EP0255792A1 (fr) Système de repérage utilisant un ensemble rétroréflecteur, et modulateur d'un faisceau laser
EP0485292B1 (fr) Dispositif optique de mesure de l'angle de roulis d'un projectile
EP0015820A1 (fr) Dispositif pour la mesure des vitesses linéaires sans contact et sans marquage
FR2630245A1 (fr) Appareil d'enregistrement optique
EP0241374A1 (fr) Système optronique d'écartométrie assurant la discrimination spatiale et spectrale des sources lumineuses infrarouges
FR2495797A1 (fr) Systeme de pilotage automatique d'un vehicule terrestre autonome
CA1073085A (fr) Guidage d'un projectile vers son objectif
EP0702246B1 (fr) Dispositif embarquable de mesure de rétrodiffusion de lumière
EP0012060A1 (fr) Système de détection optoélectrique et de localisation angulaire d'un objet lumineux
FR2539864A1 (fr) Systeme de guidage d'engin par faisceau lumineux
FR2542878A1 (fr) Dispositif de balayage
FR2535467A1 (fr) Dispositif destine a etre adjoint a un instrument optique d'observation pour faire reconnaitre celui-ci
FR2503857A1 (fr) Dispositif pour guider un engin mobile
FR2798193A1 (fr) Procede d'acquisition multiple de signaux optoelectroniques et dispositif pour la mise en oeuvre du procede
FR2601786A1 (fr) Systeme de balayage optico-mecanique pour balayer selon deux directions une region de l'espace
EP0052551A2 (fr) Réfractomètre utilisant la méthode de l'angle limite
FR2525339A1 (fr) Dispositif laser pour guider un missile sur une cible

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): DE GB IT NL

17P Request for examination filed

Effective date: 19810901

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT NL

REF Corresponds to:

Ref document number: 3175568

Country of ref document: DE

Date of ref document: 19861211

ITF It: translation for a ep patent filed

Owner name: STUDIO TORTA SOCIETA' SEMPLICE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870131

Year of fee payment: 7

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19890126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890801

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19891003