EP0030396B1 - Verfahren zur thermischen Behandlung von Pellets - Google Patents

Verfahren zur thermischen Behandlung von Pellets Download PDF

Info

Publication number
EP0030396B1
EP0030396B1 EP80201002A EP80201002A EP0030396B1 EP 0030396 B1 EP0030396 B1 EP 0030396B1 EP 80201002 A EP80201002 A EP 80201002A EP 80201002 A EP80201002 A EP 80201002A EP 0030396 B1 EP0030396 B1 EP 0030396B1
Authority
EP
European Patent Office
Prior art keywords
zone
fuel
cooling
gases
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
EP80201002A
Other languages
English (en)
French (fr)
Other versions
EP0030396A1 (de
Inventor
Alois Dipl.-Ing. Kilian
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GEA Group AG
Original Assignee
Metallgesellschaft AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metallgesellschaft AG filed Critical Metallgesellschaft AG
Priority to AT80201002T priority Critical patent/ATE3446T1/de
Publication of EP0030396A1 publication Critical patent/EP0030396A1/de
Application granted granted Critical
Publication of EP0030396B1 publication Critical patent/EP0030396B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B21/00Open or uncovered sintering apparatus; Other heat-treatment apparatus of like construction
    • F27B21/06Endless-strand sintering machines
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2406Binding; Briquetting ; Granulating pelletizing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B1/00Preliminary treatment of ores or scrap
    • C22B1/14Agglomerating; Briquetting; Binding; Granulating
    • C22B1/24Binding; Briquetting ; Granulating
    • C22B1/2413Binding; Briquetting ; Granulating enduration of pellets

Definitions

  • the invention relates to a method for the thermal treatment of pellets on a pellet burning machine with the passage of hot gases through the pellet bed, solid carbon-containing fuel being burned to produce at least part of the hot gases, the pellets being cooled by means of cooling gases passed through them, and at least part the heated cooling gases is passed into the thermal treatment stage.
  • pellet burning machines have different treatment zones in the direction of travel, namely drying zone, thermal treatment zone and cooling zone. These zones can be divided, e.g. Pre-drying and post-drying zone, heating zone, pre-firing zone, main firing zone, post-firing zone, first and second cooling zones.
  • the required process heat is usually brought into the process exclusively or predominantly by hot gases. These hot gases are generated or distributed and collected in gas hoods above the pellet bed by burning liquid, gaseous or dusty solid fuels. Since the exhaust gases are sometimes very hot, various gas recirculation systems are used to utilize the heat.
  • Such a pellet burning machine is e.g. known from DE-PS 14 33 339.
  • the hot cooling gas is led from the first pressure cooling zone in a common gas hood without the interposition of a blower into the thermal treatment zone - which consists of the heating zone, the combustion zone and the afterburning zone.
  • the hot cooling gas is distributed to the individual zones of the thermal treatment zone by means of internals in the common gas hood, these internals leaving channels to the actual combustion chambers of the individual zones.
  • the hot cooling gases are heated to the required temperature by burners.
  • the hot gases are drawn through the bed in wind boxes. Gases from the second cooling zone and exhaust gases from the afterburning and burning zone are directed into the drying zones. It is also described that the hot cooling gases are discharged from a gas hood above the cooling zone through a gas manifold and are distributed through distribution lines into the individual zones of the thermal treatment zone.
  • the thermal treatment can also be adversely affected or the output reduced or production must be stopped for repair.
  • the burner operation is particularly suitable for relatively expensive gaseous and liquid fuels. In the case of coal dust burners, it is advisable to reduce the number of burners because of the necessary transport and distribution facilities for the fuel.
  • the invention is based on the object of avoiding or substantially reducing the local overheating and the slagging and durability problems which occur in the process.
  • fuel should be able to be used as cheaply as possible, and the process should also be usable for improvements to existing plants without great effort.
  • This object is achieved according to the invention in that at least 10% of the fuel supplied to the process from the outside in the form of solid fuel is applied to the surface of the pellet bed, the task of the solid fuel being controlled in such a way that at least part of the thermal fuel Treatment zone with downward flow of the hot gases and / or at least in a part of the cooling zone with upward gas flow, from which the heated cooling gases are led into the thermal treatment zone, solid fuel is present on the bed.
  • the total heat requirement is covered by the recycled process heat in the recycled gas, plus the fuel heat from any fuel contained in the pellets, plus any reaction heat (e.g. heat of oxidation from Fe 3 0 4 to Fe 2 0 3 ), plus fuel supplied to the process from outside.
  • the characteristic “at least 10%” refers to this externally supplied fuel. All types of coal can be used as solid fuel, even those with a high volatile content.
  • the grain size distribution of the solid fuel, its quantity and the choice of the delivery points are set so that the desired in the individual zones and sections of the zones
  • the amount of heat available is such that there is no solid fuel left in the discharge and that local excess temperatures are avoided as far as possible.
  • the reactivity of the solid fuel and its volatile content must be taken into account - under otherwise identical conditions.
  • the solid fuel can be fed in by mechanical or pneumatic loading.
  • the rest of the fuel "supplied from the outside” is supplied in a conventional manner by means of burners which are operated with liquid or gaseous fuels or with coal dust.
  • the solid fuel can be fed in at one or more points only in the thermal treatment zone, the grain size distribution and feed point then being selected such that a portion of the fuel still reaches the cooling zone on the surface of the bed. From a certain grain size, the solid fuel in the cooling zone is entrained by the cooling gas flowing upwards and burns in the cooling gas on the way to the thermal treatment zone. If the entrained solid fuel has not yet burned out in the thermal treatment zone by the time the cooling gas hits the surface of the pellet bed, it will fall back onto the bed.
  • the solid fuel can also be fed into the thermal treatment zone and the cooling zone.
  • the solid fuel is entrained in the cooling zone when it has reached a certain grain size due to the combustion.
  • the portion that already has this grain size when it is fed in is immediately carried away.
  • the presence of solid fuel in the thermal treatment zone and in the cooling zone causes a “multi-stage combustion”, since the cooling gas emerging from the pellet bed in the cooling stage is further heated by burning solid fuel in the layer of solid fuel on the pellets , then by burning entrained solid fuel on the way to the thermal treatment zone and finally by passing through the layer of solid fuel on the surface of the bed in this zone.
  • there are only slight differences in temperature in the gas stream which significantly reduces the formation of slag from ash and dust and the formation of thermal NO x .
  • a preferred embodiment consists in that the heated cooling gases emerging in the cooling zone above the pellet bed are passed under a common gas hood into the thermal treatment zone with the hot gases flowing downwards, and the distribution of the hot gases by controlling the flow resistance of the pellet. Bed.
  • the flow resistance of the pellet bed in the individual sections of the thermal treatment zone is adjusted by regulating the negative pressure in the corresponding sections.
  • the gas can be distributed in the thermal treatment zone without installations in the gas hood.
  • a lower overpressure in the cooling zone and a lower underpressure in the thermal treatment zone are required, as a result of which the heat losses due to the escape of hot gases and suction of false air are reduced and the energy consumption of the blowers is also reduced.
  • the coldest cooling gases - from the last part of the cooling zone - flow under the ceiling of the gas hood and protect them from high temperatures.
  • a preferred embodiment of the invention consists in that 40 to 80% of the fuel supplied from the outside is applied to the surface of the pellet bed. This area is particularly advantageous if there are no internals in the gas hood in the thermal treatment zone. This results in particularly good operating conditions because a considerable part of the heat is distributed evenly over a larger area of the pellet bed, this part can be generated from cheap fuel, and the remaining heat can be introduced in an easily controllable manner by burners, whereby the burner (s) required to start up can be used anyway.
  • a preferred embodiment is that solid fuel with a high content of volatile constituents is introduced into the thermal treatment zone and the layer thickness and / or grain size of the solid fuel is adjusted so that the flammable volatile constituents expelled predominantly burn in the lower layers of the pellet bed .
  • the desired firing temperature is also achieved in the lower layers of the bed without the upper layers being overheated.
  • the treatment time can also be shortened. With a higher layer height of the added solid fuel and coarser granulation, more volatile constituents are burned in the lower layers of the pellet bed.
  • the temperature of the upper layers of the pellet bed can already be reduced by supplying hot gases with a lower temperature in the afterburning zone.
  • a regulated proportion of fine grain can ensure that part of the solid fuel falls through the gaps into deeper layers and burns out there.
  • the pellet burner had a reaction area of 430 m 2 and a bandwidth of 3.5 m.
  • the unfired pellets 1 are fed onto the traveling grate 3 via a roller grate 2 and dried in the pressure drying zone 4 and the suction drying zone 5 by means of recycled process gases.
  • heated cooling gases are sucked through the pellet layer.
  • These are fed from the cooling zone 8b via a recuperation line 9 and 38 feed channels 10 to the 38 combustion chambers 11, heated there with the 38 oil burners 12 and fed to the heating and combustion zone via the combustion chamber outlets 13. (For a better overview, only one feed channel 10 with combustion chamber outlet 13 is shown in Fig. 1.)
  • heat is transported from the upper to the lower pellet layer by means of hot cooling gases from the cooling zone 8a.
  • the afterburning zone 14 is separated from the firing zone 7 by a separating weir 17, which prevents the cooling gases from the cooling zone 8a and 8b from directly entering the heating or firing zone 6 or 7, and thus the transport of the cooling gases from the cooling zone into the above-mentioned zones allows required pressure drops.
  • the heating and burning zone are separated from one another by the separating weir 20.
  • the larger fuel particles at the feed point 15 (with the downward flow of the cooling gases from FIG. 8a) burn off with weight loss and, if they are not completely burned off at the transition to or within the cooling zone (with the upward flow of the cooling gases) 8a) recirculated to the afterburning zone 14 until they are completely burned out.
  • feed points 15 and 16 In addition to the feed of solid fuel via feed points 15 and 16, a further 30% of the fuel fed into the process from outside is fed in in the form of solid fuel via feed points 18, 19, 21 and 22, i.e. a total of 44%.
  • the fuel addition points 18 and 19 are coated with oil to start up the system. After the operating temperature has been reached, these feed points are switched to solid fuel.
  • the fuel feed point 22 in the suction dryer 5 is designed as a combined burning point, specifically with one for solid fuel and one immediately following for liquid or gaseous fuel for igniting the fuel solid fuel previously charged. This focal point 22 is operated both when starting up the system and in normal operation.
  • the cooling zone 8a, 8b is connected directly to the afterburning zone 14 and the firing zone 7 by means of a common gas hood without internals.
  • the solid fuel is fed through the feed points 15, 16, 18, 21 and 22.
  • the combustion takes place in the manner already described for the area of the afterburning zone in several stages, whereby again the volatile and finest constituents of the coal are burned within the pellet layer, insofar as this occurs in the area of the downward flow of the cooling gases, i.e. at the drop-off points 15, 21 and 22. In this way it is possible to cover up to 100% of the fuel supplied from the outside with solid fuel.
  • the burn rate of the cooling air also being used at the same time as the temperature of the cooling air solid fuel in the cooling gas flow and on the pellet layer is controlled.
  • coal dust, oil or hydrate alcohol is used via the fuel feed points 19 and 23, the liquid fuels being used primarily during start-up operation.
  • the advantages of the invention are that local overheating on the burners and the associated disadvantages can be largely avoided. Even with a 10% solid fuel feed, the burners can be operated with less load and the disadvantages described can be significantly reduced.
  • the heating of the gases during combustion in the fuel layer takes place very evenly, so that this can be compared to a large number of burners. With a multi-stage heating of the gases in several stages in succession, this leveling out is increased considerably.
  • the thermal NO x formation is significantly reduced and the use of cheap fuels is possible.
  • the volume of the gases is only partially increased when the fuel layer heats up and the heat transfer within the pellet bed is improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Metallurgy (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Fuel Combustion (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Treatment Of Sludge (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zur thermischen Behandlung von Pellets auf einer Pelletbrennmaschine unter Hindurchleiten von heissen Gasen durch das Pellets-Bett, wobei fester kohlenstoffhaltiger Brennstoff zur Erzeugung mindestens eines Teiles der heissen Gase verbrannt wird, die Pellets mittels hindurchgeleiteter Kühlgase gekühlt werden und mindestens ein Teil der aufgeheizten Kühlgase in die thermische Behandlungsstufe geleitet wird.
  • Die thermische Behandlung von Pellets, insbesondere das Hartbrennen von Eisenerzpellets, erfolgt meistens auf Wanderrosten mit Gashauben, die als Pelletsbrennmaschinen bezeichnet werden. Die Pelletsbrennmaschinen haben in Laufrichtung gesehen verschiedene Behandlungszonen, nämlich Trockenzone, thermische Behandlungszone und Kühlzone. Diese Zonen können unterteilt sein, wie z.B. Vortrocknungs- und Nachtrocknungszone, Aufheizzone, Vorbrennzone, Hauptbrennzone, Nachbrennzone, erste und zweite Kühlzone. Die erforderliche Prozesswärme wird meistens ausschliesslich oder überwiegend durch heisse Gase in den Prozess eingebracht. Diese heissen Gase werden in Gashauben über dem Pellets-Bett durch Verbrennung von flüssigen, gasförmigen oder staubförmigen festen Brennstoffen erzeugt bzw. verteilt und aufgefangen. Da die Abgase zum Teil sehr heiss sind, werden zur Wärmeausnutzung verschiedene Gasrückführungssysteme angewendet.
  • Eine solche Pelletsbrennmaschine ist z.B. aus der DE-PS 14 33 339 bekannt. Bei dieser Maschine wird das heisse Kühlgas aus der ersten Druck-Kühlzone in einer gemeinsamen Gashaube ohne Zwischenschaltung eines Gebläses in die thermische Behandlungszone - die aus Aufheizzone, Brennzone und Nachbrennzone besteht - geleitet. Die Verteilung des heissen Kühlgases auf die einzelnen Zonen der thermischen Behandlungszone erfolgt mittels Einbauten in der gemeinsamen Gashaube, wobei diese Einbauten Kanäle zu den eigentlichen Brennräumen der einzelnen Zonen offen lassen. In den Brennräumen der Aufheiz-und Brennzone werden die heissen Kühlgase durch Brenner auf die erforderliche Temperatur aufgeheizt. Die heissen Gase werden durch das Bett in Windkästen gesaugt. In die Trockenzonen werden Gase aus der zweiten Kühlzone und Abgase aus der Nachbrenn- und Brennzone geleitet. Es ist auch beschrieben, dass die heissen Kühlgase aus einer Gashaube über der Kühlzone durch eine Gassammelleitung abgeführt und durch Verteilungsleitungen in die einzelnen Zonen der thermischen Behandlungszone verteilt werden.
  • Aus der US-PS 36 20 519 ist eine ähnliche Pelletsbrennmaschine bekannt, bei der jedoch die heissen Kühlgase in der gemeinsamen Gashaube über der Kühlzone und/oder in der Obergangszone zur thermischen Behandlungsstufe mittels Brennern aufgeheizt werden. Mindestens in einem Teil der Obergangszone ist in der gemeinsamen Gashaube über dem Pellets-Bett ein Einbau zur Abschirmung der Pellets gegen die heissen Verbrennungsgase angeordnet. Bei der Dekkung des gesamten Wärmebedarfs mittels Brennern besteht die Gefahr, dass örtliche Übertemperaturen auftreten, wodurch die Brennstoffasche und/oder der in den Prozessgasen enthaltene Staub verschlacken, Ansätze im Bereich der Brenneinrichtungen bilden, die durch Flammenablenkung und Infiltration das feuerfeste Material zerstören könnten. Dadurch kann auch die thermische Behandlung nachteilig beeinflusst werden oder die Leistung verringert bzw. die Produktion muss zur Ausbesserung eingestellt werden. Ausserdem ist der Brennerbetrieb wegen der Vielzahl der Brenner an Pelletsbrennmaschinen in erster Linie für relativ teure gasförmige und flüssige Brennstoffe besonders geeignet. Bei Kohlenstaubbrennern ist die Verringerung der Brennerzahl wegen der notwendigen Transport- und Verteilungseinrichtungen für den Brennstoff zweckmässig.
  • Es ist auch bekannt, einen Teil des erforderlichen Brennstoffes in die Pellets einzubinden. Dies ist aber nur zu einem geringen Anteil möglich, ohne die Qualität der Pellets nachteilig zu beeinflussen.
  • Der Erfindung liegt die Aufgabe zugrunde, die örtlichen Überhitzungen und die dabei auftretenden Verschlackungs- und Haltbarkeitsprobleme zu vermeiden oder wesentlich zu verringern. Ausserdem soll möglichst billiger Brennstoff verwendet werden können, und das Verfahren soll ohne grossen Aufwand auch für Verbesserungen an bestehenden Anlagen verwendbar sein.
  • Die Lösung dieser Aufgabe erfolgt erfindungsgemäss dadurch, dass mindestens 10% des von aussen dem Prozess zugeführten Brennstoffs in Form von festem Brennstoff auf die Oberfläche des Pellets-Bettes aufgegeben wird, die Aufgabe des festen Brennstoffs so gesteuert wird, dass mindestens in einem Teil der thermischen Behandlungszone mit abwärts gerichteter Strömung der heissen Gase und/oder mindestens in einem Teil der Kühlzone mit aufwärts gerichteter Gasströmung, aus der die aufgeheizten Kühlgase in die thermische Behandlungszone geleitet werden, fester Brennstoff auf dem Bett vorhanden ist.
  • Der Gesamtwärmebedarf wird gedeckt durch rückgeführte Prozesswärme im rückgeführten Gas, plus der Brennstoffwärme aus eventuell in den Pellets eingebundenem Brennstoff, plus eventuell Reaktionswärme (z.B. Oxidationswärme von Fe304 zu Fe203), plus von aussen dem Prozess zugeführtem Brennstoff. Auf diesen von aussen zugeführten Brennstoff bezieht sich das Merkmal «mindestens 10%». Es können alle Kohlesorten als fester Brennstoff verwendet werden, auch solche mit hohem Anteil an flüchtigen Bestandteilen. Die Korngrössenverteilung des festen Brennstoffs, seine Menge und die Wahl der Aufgabestellen werden so eingestellt, dass in den einzelnen Zonen und Abschnitten der Zonen die gewünschte Wärmemenge zur Verfügung steht, dass im Abwurf kein fester Brennstoff mehr enthalten ist, und dass örtliche Übertemperaturen möglichst weitgehend vermieden werden. Dabei muss - bei sonst gleichen Bedingungen - die Reaktivität des festen Brennstoffs und sein Gehalt an flüchtigen Bestandteilen berücksichtigt werden. Die Aufgabe des festen Brennstoffs kann durch mechanische oder pneumatische Beschickung erfolgen. Der Rest des «von aussen» zugeführten Brennstoffs wird in konventioneller Weise mittels Brennern zugeführt, die mit flüssigen oder gasförmigen Brennstoffen oder mit Kohlenstaub betrieben werden. Der feste Brennstoff kann dabei an einer oder mehreren Stellen nur in der thermischen Behandlungszone aufgegeben werden, wobei dann die Korngrössenverteilung und Aufgabestelle so gewählt wird, dass noch ein Teil des Brennstoffes auf der Oberfläche des Bettes in die Kühlzone gelangt. Ab einer bestimmten Korngrösse wird der feste Brennstoff in der Kühlzone durch das aufwärts strömende Kühlgas mitgerissen und verbrennt im Kühlgas auf dem Weg in die thermische Behandlungszone. Falls bis zum Auftreffen des Kühlgases auf die Oberfläche des Pellets-Bettes in der thermischen Behandlungszone der mitgerissene feste Brennstoff noch nicht ausgebrannt ist, fällt dieser wieder auf das Bett. Der feste Brennstoff kann auch in die thermische Behandlungszone und in die Kühlzone aufgegeben werden. Auch in diesem Fall wird in der Kühlzone der feste Brennstoff mitgerissen, wenn er duch die Verbrennung eine bestimmte Korngrösse erreicht hat. Bei der Aufgabe in die Kühlzone wird der Anteil, der diese Korngrösse bei der Aufgabe bereits besitzt, sofort mitgerissen. Das Vorhandensein von festem Brennstoff in der thermischen Behandlungszone und in der Kühlzone bewirkt eine «mehrstufige Verbrennung», da das in der Kühlstufe aus dem Pellets-Bett austretende Kühlgas durch Verbrennung von festem Brennstoff zunächst in der Schicht aus festem Brennstoff auf den Pellets weiter aufgeheizt wird, dann durch Verbrennung von mitgerissenem festen Brennstoff auf dem Weg in die thermische Behandlungszone und schliesslich beim Durchgang durch die Schicht aus festem Brennstoff auf der Oberfläche des Bettes in dieser Zone. Dadurch treten nur geringe Temperaturunterschiede im Gasstrom auf, wodurch die Schlackenbildung aus Asche und Staub sowie die Bildung von thermischem NOX wesentlich verringert wird.
  • Eine vorzugsweise Ausgestaltung besteht darin, dass die in der Kühlzone oberhalb des Pellets-Bettes austretenden aufgeheizten Kühlgase unter einer gemeinsamen Gashaube in die thermische Behandlungszone mit abwärts gerichteter Strömung der heissen Gase geleitet werden, und die Verteilung der heissen Gase durch Steuerung des Strömungswiderstandes des Pellets-Bettes erfolgt. Der Strömungswiderstand des Pellet-Bettes in den einzelnen Abschnitten der thermischen Behandlungszone wird durch Regelung des Unterdruckes in den entsprechenden Abschnitten eingestellt. Dadurch kann die Gasverteilung in der thermischen Behandlungszone ohne Einbauten in der Gashaube erfolgen. Dadurch ist ein geringerer Überdruck in der Kühlzone und ein geringerer Unterdruck in der thermischen Behandlungszone erforderlich, wodurch die Wärmeverluste durch Austritt von heissen Gasen und Ansaugen von Falschluft verringert werden und ausserdem der Energieverbrauch der Gebläse gesenkt wird. Ausserdem strömen die kältesten Kühlgase-aus dem letzten Teil der Kühlzone - unter der Decke der Gashaube entlang und schützen sie vor hohen Temperaturen.
  • Eine vorzugsweise Ausgestaltung der Erfindung besteht darin, dass 40 bis 80% des von aussen zugeführten Brennstoffs auf die Oberfläche des Pellets-Bettes aufgegeben werden. Dieser Bereich ist besonders vorteilhaft, wenn in der thermischen Behandlungszone keine Einbauten in der Gashaube vorhanden sind. Dadurch werden besonders gute Betriebsbedingungen erzielt, weil ein beträchtlicher Teil der Wärme gleichmässig verteilt auf einer grösseren Fläche des Pellets-Bettes erzeugt wird, dieser Anteil kann aus billigem Brennstoff erzeugt werden, und die restliche Wärme kann in leicht regelbarer Weise durch Brenner eingebracht werden, wobei der oder die zum Anfahren sowieso erforderlichen Brenner verwendet werden können.
  • Bei bestehenden Anlagen, die in den Gashauben der thermischen Behandlungszone Einbauten haben, werden bevorzugt 10 bis 40% des von aussen zugeführten Brennstoffs auf die Oberfläche des Pellets-Bettes aufgegeben.
  • Eine bevorzugte Ausgestaltung besteht darin, dass in die thermische Behandlungszone fester Brennstoff mit hohem Gehalt an flüchtigen Bestandteilen aufgegeben wird und die Schichtdicke und/oder Körnung des festen Brennstoffs so eingestellt wird, dass die ausgetriebenen brennbaren flüchtigen Bestandteile überwiegend in unteren Schichten des Pellets-Bettes verbrennen. Dadurch wird auch in den unteren Schichten des Bettes die gewünschte Brenntemperatur erzielt, ohne dass die oberen Schichten überhitzt werden. Ausserdem kann die Behandlungszeit verkürzt werden. Mit grösserer Schichthöhe des aufgegebenen festen Brennstoffes und gröberer Körnung werden mehr flüchtige Bestandteile in den unteren Schichten des Pellets-Bettes verbrannt. Ausserdem kann die Temperatur der oberen Schichten des Pellets-Bettes durch Zufuhr von heissen Gasen mit geringerer Temperatur in der Nachbrennzone bereits gesenkt werden. Ausserdem kann durch einen geregelten Anteil an Feinkorn erreicht werden, dass ein Teil des festen Brennstoffs durch die Zwischenräume in tiefere Schichten fällt und dort ausbrennt.
  • Die Erfindung wird an Hand von Figuren und Beispielen näher erläutert.
    • Abb. 1 ist ein schematischer Längsschnitt durch die Pellets-Brennmaschine mit Einbauten in der thermischen Behandlungszone;
    • Abb. 2 ist ein schematischer Längsschnitt durch die Pellets-Brennmaschine ohne Einbauten in der thermischen Behandlungszone.
  • Die Pellets-Brennmaschine hatte eine Reaktionsfläche von 430 m2 und eine Bandbreite von 3,5 m.
  • Abb. 1:
  • Die ungebrannten Pellets 1 werden über einen Rollenrost 2 auf den Wanderrost 3 aufgegeben und in der Drucktrocknungszone 4 und der Saugtrocknungszone 5 mittels rückgeführter Prozessgase getrocknet. In der Aufheizzone 6 und in der Brennzone 7 werden aufgeheizte Kühlgase durch die Pelletsschicht gesaugt. Diese werden aus der Kühlzone 8b über eine Rekuperationsleitung 9 und 38 Zuführungskanäle 10 den 38 Brennkammern 11 zugeführt, dort mit den 38 Öl-Brennern 12 aufgeheizt und über die Brennkammeraustritte 13 der Aufheiz- und Brennzone zugeführt. (Zur besseren Obersicht ist in Abb. 1 nur ein Zuführungskanal 10 mit Brennkammeraustritt 13 dargestellt.) In der Nachbrennzone 14 wird mittels heisser Kühlgase aus der Kühlzone 8a Wärme aus der oberen in die untere Pelletsschicht transportiert. Die Nachbrennzone 14 ist von der Brennzone 7 durch ein Trennwehr 17 abgeteilt, das den direkten Zutritt der Kühlgase aus der Kühlzone 8a und 8b in die Aufheiz- bzw. Brennzone 6 bzw. 7 verhindert und damit das für den Transport der Kühlgase von der Kühlzone in die vorgenannten Zonen erforderliche Druckgefälle ermöglicht.
  • Durch das Trennwehr 20 sind die Aufheiz- und Brennzone voneinander getrennt.
  • Diese Arbeitsweise entspricht dem bekannten Stand der Technik.
  • Ausführungsbeispiel 1
  • In die Nachbrennzone 14 werden 2 t Kohle der Körnung 0 bis 10 mm über die Aufgabestellen 15 und 16 aufgegeben. Diese Kohlenmenge entspräche einer Temperaturerhöhung der Kühlgase von 200 °C. Diese Temperaturerhöhung erfolgt jeweils stufenweise und zwar durch Verbrennung der flüchtigen und feinsten Bestandteile des bei 15 aufgegebenen Brennstoffanteiles, die innerhalb der darunterliegenden Pelletsschicht ihre Wärme an die Kühlluft bzw. Pelletsschicht abgeben; durch Verbrennung der grösseren Brennstoffteilchen der Aufgabestelle 15, die auf der Oberfläche der Pelletsschicht im Bereich der Nachbrennzone (mit abwärts gerichteter Strömung) verbrennen; durch Verbrennen der flüchtigen und feinsten Bestandteile des an Aufgabestelle 16 zugeführten Brennstoffes innerhalb des zur Aufheizzone 14 gerichteten Kühlgasstromes; durch Verbrennung der grösseren Brennstoffteilchen der Aufgabestelle 16, die an der Oberfläche der Pelletsschicht liegend, verbrennen (mit aufwärts gerichteter Strömung).
  • Durch diese, an verschiedenen Orten erfolgende Teilverbrennung (multistage-combustion), bei der also die Temperaturerhöhung in mehreren Stufen erfolgt, werden örtliche Überhitzungen, die die Schlackebildung (aus dem Staubgehalt der Prozessgase und/oder der Brennstoffasche) verursachen ebenso vermieden bzw. vermindert, wie die Entstehung von thermischen Stickoxiden (NOx). Dieser Effekt wird noch unterstützt durch die gleichmässige Zuteilung von Brennstoff und Kühlgas auf der Pelletsschicht, da das Kühlgas durch den Widerstand der Pelletsschicht sehr gleichmässig verteilt dem Brennstoff zugeführt wird. Grössere Bereiche, in denen Ungemischtheiten und damit Übertemperaturen auftreten, werden also vermieden. Die Verbrennung in der Schicht kann deshalb auch mit der Verbrennung des Brennstoffes mittels einer Vielzahl von kleinen Brennern verglichen werden.
  • Wie die Vorversuche gezeigt haben, brennen die grösseren Brennstoffteilchen der Aufgabestelle 15 (mit abwärts gerichteter Strömung der Kühlgase aus 8a) unter Gewichtsverlust ab und werden, soweit sie nicht vollkommen abgebrannt sind am Übergang zur bzw. innerhalb der Kühlzone (mit aufwärts gerichteter Strömung der Kühlgase 8a) wieder zur Nachbrennzone 14 rezirkuliert, bis sie vollständig ausgebrannt sind.
  • Diese Ausgestaltung hat folgende Vorteile:
    • Die Nachbrennzone 14 wird zusätzlich beheizt, ohne dass ein zusätzlicher Anbau von Zuführungskanälen 10 an die Rekuperationsleitung 9, von Brennkammern 11 mit Brennern 12 und das Versetzen des Trennwehres 17 an die Übergangsstelle zwischen der Nachbrennzone 14 und der Kühlzone 8a notwendig ist, da die Aufheizung der Kühlgase 8a direkt über dem Pellets-Bett durch die daraufliegende und teilweise darüber rezirkulierende Brennstoffschicht erfolgt. Der zusätzliche Druckverlust, der bei Anwendung des vorhandenen Beheizungsverfahrens mit Zuführungskanälen 10, Brennkammern 11 und Brennern 12 durch das grössere Gasvolumen am Eintritt in die Rekuperationsleitung entstehen würde, wird vermieden. Damit wird das für den Transport der Kühlgase von der Kühlzone 8b in die Aufheiz- bzw. Brennzone 6 bzw. 7 notwendige Druckgefälle niedriger gehalten und zusätzliche Wärmeverluste durch aus dem Brennofen austretendes Kühlgas 8a (Temperatur 750 °C) oder eintretende Falschluft im Bereich der thermischen Behandlungszonen 6 und 7 entfallen. Der zusätzliche Wärmebedarf für die Beheizung der Nachbrennzone kann durch billigen, verfügbaren festen Brennstoff gedeckt werden. Er beträgt ca. 14% des von aussen zugeführten Brennstoffes.
    Ausführungsbeispiel 2
  • Zusätzlich zu der Aufgabe von festem Brennstoff über Aufgabestellen 15 und 16 werden über die Aufgabestellen 18, 19, 21 und 22 weitere 30% des von aussen dem Prozess zugeführten Brennstoffs in Form von festem Brennstoff aufgegeben, d.h. insgesamt 44%. Die Brennstoffzugabestellen 18 und 19 werden zum Anfahren der Anlage mit Öl bestrichen. Nach Erreichen der Betriebstemperatur werden diese Aufgabestellen auf festen Brennstoff umgestellt.
  • Die Brennstoffaufgabestelle 22 in der Saugtrocknung 5 ist als kombinierte Brennstelle ausgeführt und zwar mit einer für festen Brennstoff und einer unmittelbar anschliessenden für flüssigen oder gasförmigen Brennstoff zur Zündung des vorher aufgegebenen festen Brennstoffs. Diese Brennstelle 22 wird sowohl beim Anfahren der Anlage als auch im Normalbetrieb betrieben.
  • Ausführungsbeispiel 3 (Abb. 2)
  • Die Kühlzone 8a, 8b ist mit der Nachbrennzone 14 und Brennzone 7 durch eine gemeinsame Gashaube ohne Einbauten direkt verbunden. Der feste Brennstoff wird über die Aufgabestellen 15,16,18, 21 und 22 aufgegeben. Die Verbrennung erfolgt in der für den Bereich der Nachbrennzone bereits beschriebenen Weise in mehreren Stufen, wobei wiederum der Abbrand der flüchtigen und feinsten Bestandteile der Kohle innerhalb der Pelletsschicht erfolgt, soweit diese im Bereich der abwärts gerichteten Strömung der Kühlgase, d.h. an den Aufgabestellen 15, 21 und 22 aufgegeben wird. Auf diese Weise ist es möglich, bis zu 100% des von aussen zugeführten Brennstoffs durch festen Brennstoff zu decken.
  • Vorzugsweise werden über die Aufgabestellen 15, 16, 18, 21 und 22 jedoch nur 80% zugeführt und die restlichen 20% zur Regelung der Temperatur des Kühlgasstromes 8b über die Brennstoffaufgabestellen 19 und 23 benutzt, wobei gleichzeitig mit der Temperatur der Kühlluft auch die Abbrandgeschwindigkeit des festen Brennstoffes im Kühlgasstrom und auf der Pelletsschicht gesteuert wird. Zur Erhöhung der Regelfähigkeit wird über die Brennstoffaufgabestellen 19 und 23 vorzugsweise Kohlenstaub, Öl oder Hydratalkohol verwendet, wobei die flüssigen Brennstoffe vorwiegend während des Anfahrbetriebes zum Einsatz kommen.
  • Die Vorteile der Erfindung bestehen darin, dass örtliche Überhitzungen an den Brennern und die damit verbundenen Nachteile weitgehendst vermieden werden können. Schon bei einer Aufgabe von 10% festem Brennstoff können die Brenner mit geringerer Belastung betrieben werden und die geschilderten Nachteile wesentlich verringert werden. Die Aufheizung der Gase bei der Verbrennung in der Brennstoffschicht erfolgt sehr gleichmässig, so dass diese mit einer Vielzahl von Brennern zu vergleichen ist. Bei einer mehrstufigen Aufheizung der Gase in mehreren Stufen hintereinander wird diese Vergleichmässigung noch wesentlich gesteigert. Die thermische NOx- Bildung wird wesentlich verringert und es ist der Einsatz von billigen Brennstoffen möglich. Das Volumen der Gase wird zum Teil erst bei der Aufheizung in der Brennstoffschicht vergrössert und die Wärmeübertragung innerhalb des Pellets-Bettes verbessert.

Claims (4)

1. Verfahren zur thermischen Behandlung von Pellets auf einer Pelletsbrennmaschine unter Hindurchleiten von heissen Gasen durch das Pellets-Bett, wobei fester kohlenstoffhaltiger Brennstoff zur Erzeugung mindestens eines Teiles der heissen Gase verbrannt wird, die Pellets mittels hindurchgeleiteter Kühlgase gekühlt werden und mindestens ein Teil der aufgeheizten Kühlgase in die thermische Behandlungszone geleitet wird, dadurch gekennzeichnet, dass mindestens 10% des von aussen dem Prozess zugeführten Brennstoffs in Form von festem Brennstoff auf die Oberfläche des Pellets-Bettes aufgegeben werden,
die Aufgabe des festen Brennstoffes so gesteuert wird, dass mindestens in einem Teil der thermischen Behandlungszone mit abwärts gerichteter Strömung der heissen Gase und/oder mindestens in einem Teil der Kühlzone mit aufwärts gerichteter Gasströmung, aus der die aufgeheizten Kühlgase in die thermische Behandlungszone geleitet werden, fester Brennstoff auf dem Bett vorhanden ist.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die in der Kühlzone oberhalb des Pellets-Bettes austretenden aufgeheizten Kühlgase unter einer gemeinsamen Gashaube in die thermische Behandlungszone mit abwärts gerichteter Strömung der heissen Gase geleitet werden, und die Verteilung der heissen Gase durch Steuerung des Strömungswiderstandes des Pellets-Bettes erfolgt.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass 40 bis 80% des von aussen zugeführten Brennstoffs auf die Oberfläche des Pellets-Bettes aufgegeben werden.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass in die thermische Behandlungszone fester Brennstoff mit hohem Gehalt an flüchtigen Bestandteilen aufgegeben wird, und die Schichtdicke und/oder Körnung des festen Brennstoffes so eingestellt wird, dass die ausgetriebenen brennbaren flüchtigen Bestandteile überwiegend in unteren Schichten des Pellets-Bettes verbrennen.
EP80201002A 1979-12-08 1980-10-22 Verfahren zur thermischen Behandlung von Pellets Expired EP0030396B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT80201002T ATE3446T1 (de) 1979-12-08 1980-10-22 Verfahren zur thermischen behandlung von pellets.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2949418 1979-12-08
DE2949418 1979-12-08

Publications (2)

Publication Number Publication Date
EP0030396A1 EP0030396A1 (de) 1981-06-17
EP0030396B1 true EP0030396B1 (de) 1983-05-18

Family

ID=6087913

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80201002A Expired EP0030396B1 (de) 1979-12-08 1980-10-22 Verfahren zur thermischen Behandlung von Pellets

Country Status (8)

Country Link
US (1) US4373946A (de)
EP (1) EP0030396B1 (de)
AT (1) ATE3446T1 (de)
BR (1) BR8007987A (de)
CA (1) CA1160456A (de)
DE (1) DE3063361D1 (de)
IN (1) IN150952B (de)
ZA (1) ZA807587B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026709A1 (en) 2011-08-23 2013-02-28 Outotec Oyj Apparatus and method for the thermal treatment of lump or agglomerated material

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3221283A1 (de) * 1982-06-05 1984-03-15 Klöckner-Humboldt-Deutz AG, 5000 Köln Verfahren zum abtrennen von nichteisenmetallen aus eisenhaltigen sekundaerstoffen
DE3433043A1 (de) * 1984-09-08 1986-03-20 Metallgesellschaft Ag, 6000 Frankfurt Verfahren zur thermischen behandlung von stueckigen oder agglomerierten materialien auf einem wanderrost
FR2650204B1 (fr) * 1989-07-26 1993-07-16 Saint Gobain Isover Procede et dispositif pour le traitement de dechets de verre ou de fibres minerales en vue de leur recuperation
US5207572A (en) * 1989-07-26 1993-05-04 Isover Saint-Gobain Method and apparatus for the treatment and recovery of mineral fiber or glass waste
DE4234085A1 (de) * 1992-10-09 1994-04-14 Metallgesellschaft Ag Verfahren zum Hartbrennen von eisenoxidhaltigen Pellets
DE19513549B4 (de) * 1995-04-10 2005-03-03 Siemens Ag Pelletieranlage
EA011459B1 (ru) * 2007-03-28 2009-04-28 Открытое Акционерное Общество "Научно-Исследовательский Институт Металлургической Теплотехники" Оао "Вниимт" Способ термообработки железорудных окатышей
US20110143291A1 (en) * 2009-12-11 2011-06-16 Clements Bruce Flue gas recirculation method and system for combustion systems
CN106435165B (zh) * 2016-08-31 2019-01-11 山东钢铁股份有限公司 一种球团烧结设备
RU2652684C1 (ru) * 2017-03-10 2018-04-28 Общество с ограниченной ответственностью "Научно-производственное внедренческое предприятие ТОРЭКС" Способ и устройство для производства окатышей

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA682991A (en) * 1964-03-24 Dravo Corporation Method of and apparatus for the endothermic processing of ores
US1896884A (en) * 1931-11-06 1933-02-07 Lehigh Navigation Coal Company Method of producing light weight aggregates from breaker waste and the like
DE735258C (de) * 1933-11-14 1943-05-10 Fellner & Ziegler G M B H Verblaserost zum Kalzinieren, Roesten und Sintern unter Zumischung von Brennstoff zum Rohstoff
US3024101A (en) * 1956-05-25 1962-03-06 Cleveland Cliffs Iron Updraft traveling grate pelletizing furnace
US3042390A (en) * 1958-07-11 1962-07-03 Metallgesellschaft Ag Seals for the gas hoods of sintering machines
ES284703A1 (es) * 1962-02-12 1963-07-01 Metallgesellschaft Ag Un procedimiento para la calcinación dura de píldoras de minerales, materias primas de cemento y similares
GB1069317A (en) * 1964-04-13 1967-05-17 Allied Chem Processing of oxidic ores
US3332770A (en) * 1965-04-01 1967-07-25 Dravo Corp Apparatus for reduction firing of iron ore pellets
US3620519A (en) * 1969-11-24 1971-11-16 Dravo Corp Traveling grate apparatus and method
US4181520A (en) * 1975-01-14 1980-01-01 Metallgesellschaft Aktiengesellschaft Process for the direct reduction of iron oxide-containing materials in a rotary kiln

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013026709A1 (en) 2011-08-23 2013-02-28 Outotec Oyj Apparatus and method for the thermal treatment of lump or agglomerated material
DE102011110842A1 (de) 2011-08-23 2013-02-28 Outotec Oyj Vorrichtung und Verfahren zur thermischen Behandlung von stückigem oder agglomeriertem Material
US9790570B2 (en) 2011-08-23 2017-10-17 Outotec Oyj Apparatus and method for the thermal treatment of lump or agglomerated material

Also Published As

Publication number Publication date
EP0030396A1 (de) 1981-06-17
US4373946A (en) 1983-02-15
BR8007987A (pt) 1981-06-23
IN150952B (de) 1983-01-29
ZA807587B (en) 1982-07-28
ATE3446T1 (de) 1983-06-15
CA1160456A (en) 1984-01-17
DE3063361D1 (en) 1983-07-07

Similar Documents

Publication Publication Date Title
DE2325468A1 (de) Vorrichtung zum sintern von zement und aehnlichen stoffen
EP0030396B1 (de) Verfahren zur thermischen Behandlung von Pellets
DE2633789B2 (de) Verfahren und Vorrichtung zur . Herstellung von Petrolkokskalzinat
DE2349932A1 (de) Verfahren und vorrichtung zur waermebehandlung von material
DE3045253A1 (de) Verfahren und vorrichtung zum brennen von pellets
DE2546098C2 (de) Brennmaschine für die thermische Härtung von Pellets
DE2621220A1 (de) Verfahren zur behandlung von materialien und ofensystem zur waermebehandlung von materialien
DE2816276C3 (de) Verbessertes mehrstufiges Verfahren zur Calcinierung von Grün-Koks der aus dem Delayed-Coking-Verfahren stammt, und Anlage zur Durchführung des Verfahrens
EP1114193A1 (de) Verfahren zur thermischen behandlung öl- und eisenoxidhaltiger reststoffe
DE3209836A1 (de) Verfahren zur herstellung von sinterdolomit in einem schachtofen sowie schachtofen zur durchfuehrung des verfahrens
DE2639611A1 (de) System und verfahren zum regenerieren oder herstellen von aktivkohle
EP1108070B1 (de) Verfahren zur thermischen behandlung schwermetall- und eisenoxidhaltiger reststoffe
DE3003014C2 (de)
DE1433339A1 (de) Verfahren zum Hartbrennen von Pellets
EP0573756B1 (de) Verfahren zur Verbrennung von Abfall und Abfallverbrennungsanlage
DE4116300C2 (de)
DE3012866A1 (de) Verfahren zum brennen von kalk im drehrohrofen
DE2161410A1 (de) Verfahren und Vorrichtung zur Wärmebehandlung von Materialien
DE2001563C3 (de) Drehrohrofen zur thermischen Behandlung von Feststoffen und Verfahren zum Betreiben des Drehrohrofens
EP0068526A1 (de) Verfahren zur Gewinnung von Öl aus ölhaltigen Mineralien
EP0089701A1 (de) Verfahren zur Direktreduktion von eisenoxidhaltigen Materialien zu Eisenschwamm im Drehrohrofen
DE3306684A1 (de) Verfahren zur thermischen behandlung von gruenpellets auf einer pelletbrennmaschine
DE19838686C2 (de) Vorrichtung und Verfahren zur gleichmäßigen Dampferzeugung auf hohem Niveau in Kokstrockenkühlanlagen
DE2349933C3 (de) Verfahren zur Herstellung von harten Hämatit-Pellets aus Magnetit-Pellets
DE3119517A1 (de) Verfahren zum brennen oder calcinieren von kohlebloecken in einem ringkammerofen unter zurueckfuehrung des rauchgases sowie eine vorrichtung zur durchfuehrung des verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT LU NL SE

17P Request for examination filed

Effective date: 19810519

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT LU NL SE

Designated state(s): AT BE DE FR GB IT LU NL SE

REF Corresponds to:

Ref document number: 3446

Country of ref document: AT

Date of ref document: 19830615

Kind code of ref document: T

REF Corresponds to:

Ref document number: 3063361

Country of ref document: DE

Date of ref document: 19830707

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
ITTA It: last paid annual fee
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19920914

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 19920915

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19920917

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19921009

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 19921029

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19921031

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 19921103

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19921110

Year of fee payment: 13

EPTA Lu: last paid annual fee
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19931022

Ref country code: GB

Effective date: 19931022

Ref country code: AT

Effective date: 19931022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19931023

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19931031

BERE Be: lapsed

Owner name: METALLG. A.G.

Effective date: 19931031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19940501

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19931022

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19940630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19940701

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

EUG Se: european patent has lapsed

Ref document number: 80201002.5

Effective date: 19940510