EP0022980A1 - Verfahren zur Herstellung von Silberpulver - Google Patents

Verfahren zur Herstellung von Silberpulver Download PDF

Info

Publication number
EP0022980A1
EP0022980A1 EP80103900A EP80103900A EP0022980A1 EP 0022980 A1 EP0022980 A1 EP 0022980A1 EP 80103900 A EP80103900 A EP 80103900A EP 80103900 A EP80103900 A EP 80103900A EP 0022980 A1 EP0022980 A1 EP 0022980A1
Authority
EP
European Patent Office
Prior art keywords
silver
silver powder
cadmium
oxide
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP80103900A
Other languages
English (en)
French (fr)
Other versions
EP0022980B1 (de
Inventor
Rainer Dr. Dipl.-Phys. Schmidberger
Albert Prof. Dr.Phil.Nat. Keil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inovan Stroebe KG
Dornier System GmbH
Original Assignee
Inovan Stroebe KG
Dornier System GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6076411&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0022980(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Inovan Stroebe KG, Dornier System GmbH filed Critical Inovan Stroebe KG
Publication of EP0022980A1 publication Critical patent/EP0022980A1/de
Application granted granted Critical
Publication of EP0022980B1 publication Critical patent/EP0022980B1/de
Expired legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1026Alloys containing non-metals starting from a solution or a suspension of (a) compound(s) of at least one of the alloy constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H1/00Contacts
    • H01H1/02Contacts characterised by the material thereof
    • H01H1/021Composite material
    • H01H1/023Composite material having a noble metal as the basic material
    • H01H1/0237Composite material having a noble metal as the basic material and containing oxides
    • H01H1/02372Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te
    • H01H1/02374Composite material having a noble metal as the basic material and containing oxides containing as major components one or more oxides of the following elements only: Cd, Sn, Zn, In, Bi, Sb or Te containing as major component CdO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S75/00Specialized metallurgical processes, compositions for use therein, consolidated metal powder compositions, and loose metal particulate mixtures
    • Y10S75/956Producing particles containing a dispersed phase

Definitions

  • the invention relates to silver powder in which an oxidic or metallic phase is dispersed, and to a method for producing this powder.
  • materials for electrical switch contacts should have a low tendency to sweat and a high resistance to erosion.
  • the tendency to sweat and the erosion resistance of silver contacts can be significantly improved by adding oxidic phases or by adding a metallic phase that is not soluble in silver (e.g. Ni).
  • the amount of such additives such as Cadmium oxide is up to 15% by weight. Spark extinguishing behavior or resistance to erosion when the power is switched off are determined by the type and quantity and degree of distribution of the additives.
  • composite materials consisting of two components In addition to composite materials consisting of two components, composite materials consisting of three or more components are also used, e.g. Silver metal metal oxide or silver metal oxide (1) metal oxide (2).
  • the structural parameters are in particular the corridor size distribution and the porosity.
  • oxide-forming metal can be alloyed with silver. Alloy formation occurs with the exclusion of oxygen, which results in a homogeneous distribution of the oxide-forming metal in the silver. The oxide precipitates are then generated by the internal oxidation process. This process takes place e.g. application for silver and cadmium oxide materials.
  • the powder metallurgical production of heterogeneous systems is usually carried out by an intimate mixture of the individual powders with subsequent pressing and sintering.
  • the individual metal powders are manufactured e.g. by grinding in the solid state or by atomizing melts.
  • chemical and electrolytic processes for producing one-component metal powders are known.
  • the thermal decomposition of silver carbonate to fine-grain silver powder or the decomposition of nickel carbonyl at elevated temperature to the known carbonyl nickel powder For example, the thermal decomposition of silver carbonate to fine-grain silver powder or the decomposition of nickel carbonyl at elevated temperature to the known carbonyl nickel powder.
  • Another method is the reduction of metal compounds, e.g. is also used to extract metal from natural ores.
  • Metal powders can be produced electrolytically by a suitable choice of bath composition, bath temperature and current density and concentration of the electrolyte. Silver powder can be produced with high purity.
  • a common method used in the manufacture of silver-cadmium oxide composite material is that of internal oxidation.
  • the average grain size of Cadmiumoxidausscheidungen amounts to 5 / um with particle sizes of 1 to 10 / um.
  • Desired homogeneous and fine-grained cadmium oxide distribution with particle sizes ⁇ 1 / um cannot be achieved with this method.
  • the invention has for its object to provide silver powder which is suitable for the production of electrical contacts with low tendency to sweat, good spark suppression and good erosion behavior, and to provide a method for producing this powder.
  • a silver powder to consists of particles in the size range of 1 to 10 /, the cadmium oxide as the precipitation with a grain size ⁇ 0.5 / um included, wherein for the preparation of this powder a common aqueous solution of silver and Cadmium salts, for example in a ratio of 9: 1, are atomized into a hot reactor and thermally decomposed at temperatures below the melting point of the individual components.
  • the thermal decomposition takes place either in an oxidizing atmosphere (air) or in a reducing atmosphere (hydrogen, forming gas, water vapor-hydrogen mixtures).
  • the homogenization of the individual components of the composite material takes place very effectively in the liquid phase.
  • the solvent evaporates suddenly, leaving behind the solid constituents, in which the homogeneity of the element distribution from the liquid phase is practically retained.
  • these solid particles continue to react with the surrounding gas in the hot reactor either by decomposition of the metal compound into the metal and gaseous fission products of the metal compound, or by absorption of oxygen in the corresponding metal oxide, or in the case of a reducing atmosphere by reduction Metal connections to metal.
  • the process according to the invention has the advantage that no further process steps are necessary after the actual powder production. Moreover, the selection of the composite powders that can be produced is not limited by the fact that a common precipitant must be found for the components contained. The method according to the invention is therefore also very well suited for the production of more than two-component composite materials.
  • Compressed air is used as the atomizing gas. With a throughput of 10 liters of solution per hour and 10 m 3 of air per hour, 1 kg of silver powder is produced per hour.
  • the size of the resulting silver-cadmium oxide powder particles is between approx. 1 and 5 / um. After sintering the powder, the size of the cadmium oxide precipitates in the finished molded part is 0.2-0.5 / um.
  • a mixture of 97 g of silver and 12 g of tin in a mixture of nitric acid and acetic acid is diluted to a total volume of 3.4 liters with water.
  • the solution is atomized in the reactor under the same conditions as given in Example 1 and the resulting powder particles are separated from the hot exhaust gases in a centrifugal separator.
  • the diameter of the silver-tin oxide particles is approximately 1/3 / .mu.m, the dimensions of the tin oxide precipitates in the sintered molded part being approximately 50 nm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Switches (AREA)
  • Contacts (AREA)

Abstract

Ein Silberpulver zur Verwendung bei elektrischen Kontakten der Zusammensetzung Ag/CdO, wobei das Pulver aus Partikeln im Grössenbereich von 1 bis 10 µm besteht, die Cadmiumoxid als Ausscheidung mit einer Korngrösse <0,5 µm enthalten, wird hergestellt durch eine wässrige Lösung von Silbersalzen und Cadmiumsalzen in einem heissen Reaktor zu zerstäuben und bei Temperaturen unterhalb des Schmelzpunktes der einzelnen Komponenten zu zersetzen.

Description

  • Die Erfindung betrifft Silberpulver, in dem eine oxidische oder metallische Phase dispergiert ist, sowie ein Verfahren zur Herstellung dieses Pulvers.
  • Werkstoffe für elektrische Schaltkontakte sollen neben hoher elektrischer Leitfähigkeit eine geringe Schweissneigung und eine hohe Abbrandfestigkeit der Kontakte aufweisen. Schweissneigung und Abbrandfestigkeit von Silberkontakten können durch Zusätze von oxidischen Phasen oder durch Zusätze einer nicht im Silber löslichen metallischen Phase (z.B. Ni) wesentlich verbessert werden.
  • Der Mengenanteil derartiger Zusätze wie z.B. Cadmiumoxid beträgt bis zu 15 Gew%. Funkenlöschverhalten bzw. Abbrandfestigkeit beim Abschalten des Stromes werden durch Art und Menge sowie Verteilungsgrad der Zusätze bestimmt.
  • Neben Verbundwerkstoffen, die aus zwei Komponenten bestehen, werden auch Verbundwerkstoffe aus drei oder mehr Komponenten eingesetzt, wie z.B. Silber-Metall-Metalloxid oder Silber-Metalloxid (1)-Metalloxid (2).
  • Mechanische und elektrische Eigenschaften eines elektrischen Kontaktes werden darüberhinaus durch das Kristallgefüge bestimmt. Die gefügekennzeichnenden Parameter sind insbesondere die Korrigrössenverteilung und die Porosität. Dazu kommt Homogenität und Feinheit der Fremdphasenverteilung bei mehrkomponentigen Kontaktwerkstoffen. Feinkörnigkeit und Homogenität der Fremdphasenverteilung bestimmen entscheidend das Kontaktverhalten.
  • Die Herstellung der erwähnten Verbundmaterialien ist mit üblichen Schmelzverfahren normalerweise nicht möglich, so dass pulvermetallurgische oder andere Herstellungsverfahren herangezogen werden müssen.
  • Eine Ausnahme bilden solche Werkstoffe, bei denen das oxidbildende Metall mit Silber legiert werden kann. Die Legierungsbildung erfolgt unter Sauerstoffausschluss, wodurch sich eine homogene Verteilung des oxidbildenden Metalls im Silber einstellt. Die oxidischen Ausscheidungen werden dann durch das Verfahren der inneren Oxidation erzeugt. Dieses Verfahren findet z.B. bei Silber-, Cadmiumoxid-Werkstoffen Anwendung.
  • Die pulvermetallurgische Herstellung heterogener Systeme erfolgt üblicherweise über eine innige Mischung der Einzelpulver mit anschliessendem Pressen und Sintern.
  • Die Herstellung der einzelnen Metallpulver erfolgt z.B. durch Mahlen im festen Zustand oder durch Zerstäuben von Schmelzen. Darüberhinaus sind chemische und elektrolytische Verfahren zur Herstellung einkomponentiger Metallpulver bekannt.
  • So führt z.B. die thermische Zersetzung von Silbercarbonat zu feinkörnigem Silberpulver oder die Zersetzung von Nickelcarbonyl bei erhöhter Temperatur zu dem bekannten Carbonyl-Nickelpulver.
  • Naßchemische Verfahren, wie die Fällung aus wässriger Lö- sung, werden bei Edelmetallen, wie Silber oder Gold, angewendet.
  • Ein weiteres Verfahren ist die Reduktion von Metallverbindungen, die z.B. auch zur Metallgewinnung aus natürlichen Erzen herangezogen wird.
  • Elektrolytisch können Metallpulver durch geeignete Wahl von Badzusammensetzung, Badtemperatur und Stromdichte sowie Konzentration des Elektrolyten hergestellt werden. Silberpulver lässt sich dabei mit hoher Reinheit herstellen.
  • Darüberhinaus ist die Verdüsung von Metallschmelzen oder homogenen Legierungsschmelzen zur Herstellung von Metallpulvern bekannt.
  • Alle oben genannten Verfahren eignen sich jedoch nicht zur direkten Herstellung von Metallpulvern mit oxidischen oder mit metallischen Fremdphasen. Gewisse Erfolge wurden durch die gemeinsame Fällung zweier Komponenten aus wässriger Lösung erzielt. So können z.B. Silber und Nickel aus einer Nitratlösung gemeinsam als Carbonate gefällt werden. Um daraus die heterogene Metallegierung herzustellen, ist jedoch ein weiterer thermischer Verfahrensschritt notwendig, bei dem die Carbonate thermisch zersetzt werden. Ausser diesem wirtschaftlichen Nachteil ergibt sich auch ein technischer Nachteil des Verfahrens dadurch, dass bei der thermischen Zersetzung der Carbonate die feinkörnigen Metallpulver zum Zusammensintern neigen, d.h. es findet bereits vor dem eigentlichen Sinterprozess eine Agglomeration statt.
  • Ein häufig in der Praxis für die Herstellung von Silber-Cadmiumoxid-Verbundmaterial angewandtes Verfahren ist das der inneren Oxidation. Die mittlere Korngrösse der Cadmiumoxidausscheidungen beträgt dabei 5 /um mit Teilchengrössen zwischen 1 und 10 /um. Die im Interesse einer guten Funken- 'löschung gewünschte homogene und feinkörnige Cadmiumoxidverteilung mit Partikelgrössen < 1 /um lässt sich mit diesem Verfahren nicht erreichen. Darüberhinaus ergibt sich eine Inhomogenität der Cadmiumoxidteilchengrössen als Funktion des Abstandes von der Phasengrenzfläche Legierung-Luft, die auf die Diffusion von Cadmium in Richtung zur Oberfläche zurückzuführen ist.
  • Alle pulvermetallurgischen Verfahren, bei denen von einkomponentigen Metallen bzw. Oxid ausgegangen wird, liefern wesentlich gröbere Ausscheidungen der zweiten Phase. Dies ist darauf zurückzuführen, dass entweder die Ausgangspartikelgrössen der Einzelpulver zu gross sind oder beim Mahl- und Mischvorgang die Agglomeration gleichartiger Teilchen nicht verhindert werden kann.
  • Der Erfindung liegt die Aufgabe zugrunde, Silberpulver zu schaffen, das zur Herstellung von elektrischen Kontakten mit geringer Schweissneigung, guter Funkenlöschung und gutem Abbrandverhalten geeignet ist, sowie ein Verfahren zur Herstellung dieses Pulvers anzugeben.
  • Die Aufgabe wird erfindungsgemäss durch ein Silberpulver gelöst, das aus Partikeln im Grössenbereich von 1 bis 10 /um besteht, die Cadmiumoxid als Ausscheidung mit einer Korngrösse < 0,5 /um enthalten, wobei zur Herstellung dieses Pulvers eine gemeinsame wässrige Lösung von Silber- und Cadmiumsalzen z.B. im Verhältnis 9 : 1 in einen heissen Reaktor zerstäubt wird und bei Temperaturen unterhalb des Schmelzpunktes der einzelnen Komponenten thermisch zersetzt wird. Die thermische Zersetzung erfolgt je nach Materialzusammensetzung und gewünschtem Endprodukt entweder in einer oxidierenden Atmosphäre (Luft) oder einer reduzierenden Atmosphäre (Wasserstoff, Formiergas, Wasserdampf-Wasserstoffgemische).
  • Bei dem erfindungsgemässen Verfahren erfolgt die Homogenisierung der Einzelkomponenten des Verbundwerkstoffes sehr effektiv in der flüssigen Phase. Beim Einsprühen der gemeinsamen Lösung in den heissen Reaktor verdampft das Lösungsmittel schlagartig unter Zurücklassung der festen Bestandteile, in denen die Homogenität der Elementverteilung aus der flüssigen Phase praktisch erhalten bleibt. Die Weiterreaktion dieser Feststoffpartikel mit dem umgebenden Gas im heissen Reaktor erfolgt je nach Gaszusammensetzung und Material entweder durch Zerfall der Metallverbindung in das Metall und gasförmige Spaltprodukte der Metallverbindung, oder durch Aufnahme von Sauerstoff in das entsprechende Metalloxid, oder im Fall reduzierender Atmosphäre durch Reduktion-der Metallverbindungen zum Metall. Da nach der Verdampfung des Lösungsmittels keine schmelzflüssigen Phasen in den einzelnen Partikeln auftreten, erfolgt die Agglomeration einzelner Komponenten im Verbundmaterial nur durch relativ langsame Diffusionsprozesse. Die kurze Verweilzeit der Partikel in der heissen Reaktionszone (einige Sekunden) lässt ein Kornwachstum über den Bereich von 1 /um nicht zu.
  • Im Vergleich zu den konkurrierenden-Fällungsverfahren bietet das erfindungsgemässe Verfahren den Vorteil, dass nach der eigentlichen Pulverherstellung keine weiteren Verfahrensschritte mehr notwendig sind. Im übrigen ist die Auswahl der herstellbaren Verbundpulver nicht dadurch begrenzt, dass ein gemeinsames Fällungsmittel für die enthaltenen Komponenten gefunden werden muss. Das erfindungsgemässe Verfahren eignet sich daher auch sehr gut zur Herstellung von mehr als zweikomponentigen Verbundwerkstoffen.
  • Darüberhinaus ist das Auswaschen von Fällungsmitteln nach der Pulverherstellung bei dem erfindungsgemässen Verfahren nicht notwendig.
  • Beispiel 1:
  • Eine Lösung von 611,52 g Silbernitrat (AgN03) und 103,67 g Cadmiumnitrat (Cd (NO3)2 x 4 H20) in 4 Liter Wasser wird mit Hilfe pneumatischer Zweistoffdüsen in einen Rohrreaktor der Abmessungen 0,3 m 0, 1,5 m Länge eingesprüht, wobei die Wandtemperatur des Reaktors 950° C beträgt. Als Zerstäubergas wird Pressluft verwendet. Bei einem Durchsatz von 10 Liter Lösung pro Stunde und 10 m3 Luft pro Stunde wird 1 kg Silberpulver pro Stunde hergestellt. Die Grösse der entstandenen Silber-Cadmium-Oxidpulverpartikel liegt zwischen ca. 1 und 5 /um. Nach dem Sintern des Pulvers beträgt die Grösse der Cadmiumoxidausscheidungen im fertigen Formteil 0,2 - 0,5 /um.
  • Beispiel 2:
  • Eine Mischung von 97 g Silber und 12 g Zinn in einer Mischung von Salpetersäure und Essigsäure wird auf ein Gesamtvolumen von 3,4 Liter mit Wasser verdünnt. Die Lösung wird unter denselben Bedingungen, wie in Beispiel 1 angeführt, im Reaktor zerstäubt und die entstandenen Pulverpartikel werden in einem Zentrifugalabscheider von den heissen Abgasen getrennt. Der Durchmesser der Silber-Zinn-Oxidpartikel beträgt ca. 1 - 3 /um, wobei im gesinterten Formteil die Abmessungen der Zinn-Oxidausscheidungen ca. 50 nm betragen.

Claims (7)

1. Silberpulver zur Verwendung bei elektrischen Kontakten der Zusammensetzung Ag/CdO, dadurch gekennzeichnet, dass das Pulver aus Partikeln im Grössenbereich von 1 bis 10 /um besteht, die Cadmiumoxid als Ausscheidung mit einer Korngrösse < 0,5 /um enthalten.
2. Silberpulver nach Anspruch 1, dadurch gekennzeichnet, dass Cadmium ganz oder teilweise durch Zinn, Indium, Magnesium, Zink, Gadolinium, Blei, Molybdän oder Wolfram ersetzt ist.
3. Silberpulver nach Anspruch 1, dadurch gekennzeichnet, dass Cadmiumoxid ganz oder teilweise durch Nickel ersetzt ist.
4. Silberpulver der Zusammensetzung Ag/Cd, dadurch gekennzeichnet, dass das Pulver aus Partikeln im Grössenbereich von 1 - 10/um besteht, die eine homogene metallische Legierung von Cadmium und Silber darstellen.
5. Silberpulver nach Anspruch 3, dadurch gekennzeichnet, dass Nickel in Form von Nickeloxid vorliegt.
6. Silberpulver nach Anspruch 4, dadurch gekennzeichnet, dass Cadmium ganz oder teilweise durch Indium, Magnesium, Zink, Gadolinium, Blei, Molybdän oder Wolfram ersetzt ist.
7. Verfahren zur Herstellung von Silberpulver nach einem oder mehreren der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass eine wässrige Lösung von Silbersalzen und Cadmiumsalzen in einem heissen Reaktor zerstäubt wird und bei Temperaturen unterhalb des Schmelzpunktes der einzelnen Komponenten thermisch zersetzt wird.
EP80103900A 1979-07-21 1980-07-09 Verfahren zur Herstellung von Silberpulver Expired EP0022980B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2929630 1979-07-21
DE2929630A DE2929630C2 (de) 1979-07-21 1979-07-21 Verfahren zur Herstellung von Silberpulver

Publications (2)

Publication Number Publication Date
EP0022980A1 true EP0022980A1 (de) 1981-01-28
EP0022980B1 EP0022980B1 (de) 1985-09-04

Family

ID=6076411

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80103900A Expired EP0022980B1 (de) 1979-07-21 1980-07-09 Verfahren zur Herstellung von Silberpulver

Country Status (4)

Country Link
US (1) US4396420A (de)
EP (1) EP0022980B1 (de)
JP (1) JPS5651501A (de)
DE (1) DE2929630C2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0283536A1 (de) * 1987-03-24 1988-09-28 INOVAN GmbH &amp; Co. KG Metalle und Bauelemente Verfahren zum Herstellen von Silber/MeO-Kontaktplättchen mit löt- oder schweissfähiger Unterseite
EP0299099A1 (de) * 1987-07-14 1989-01-18 INOVAN GmbH &amp; Co. KG Metalle und Bauelemente Verfahren zum Herstellen von Silber/Me0-Kontaktplättchen mit löt- oder schweissfähiger Unterseite
US4863514A (en) * 1985-09-11 1989-09-05 Degussa Atiengesellschaft Material for facing denture
US5284527A (en) * 1992-01-21 1994-02-08 United Technologies Corporation Method of making silver-metal oxide materials and electrical contacts
EP0662521A2 (de) * 1994-01-05 1995-07-12 E.I. Du Pont De Nemours And Company Verfahren zur Herstellung von Silber-Palladium Pulver durch Aerosol Zersetzung

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3715979A1 (de) * 1985-11-13 1988-12-08 Mtu Muenchen Gmbh Verfahren zur herstellung dispersionsgehaerteter metallegierungen
DE3621398C1 (de) * 1986-06-26 1987-11-19 Dornier System Gmbh Verfahren zur Herstellung einer hochkonzentrierten waessrige Silber- und Zinnsalze enthaltenden Suspension
DE3622123A1 (de) * 1986-07-02 1988-01-21 Dornier System Gmbh Verfahren und vorrichtung zur herstellung von verbundpulvern
US4911769A (en) * 1987-03-25 1990-03-27 Matsushita Electric Works, Ltd. Composite conductive material
DE3734178A1 (de) * 1987-10-09 1989-04-20 Duerrwaechter E Dr Doduco Pulvermetallurgisch hergestellter werkstoff fuer elektrische kontakte aus silber mit graphit und verfahren zu seiner herstellung
DE58909449D1 (de) * 1988-04-16 1995-11-02 Duerrwaechter E Dr Doduco Pulvermetallurgisches Verfahren zum Herstellen eines Halbzeugs für elektrische Kontakte aus einem Verbundwerkstoff auf Silberbasis mit Eisen.
FR2639466B1 (fr) * 1988-11-22 1991-02-15 Telemecanique Procede de preparation d'un materiau de contact electrique et procede de fabrication d'un element de contact incorporant un tel materiau
DE59302122D1 (de) * 1992-06-10 1996-05-09 Duerrwaechter E Dr Doduco Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid
TW261554B (de) * 1992-10-05 1995-11-01 Du Pont
TW256798B (de) * 1992-10-05 1995-09-11 Du Pont
DE19503182C1 (de) * 1995-02-01 1996-05-15 Degussa Sinterwerkstoff auf der Basis Silber-Zinnoxid für elektrische Kontakte und Verfahren zu dessen Herstellung
US5846288A (en) * 1995-11-27 1998-12-08 Chemet Corporation Electrically conductive material and method for making
US6699304B1 (en) * 1997-02-24 2004-03-02 Superior Micropowders, Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US7625420B1 (en) * 1997-02-24 2009-12-01 Cabot Corporation Copper powders methods for producing powders and devices fabricated from same
US6159267A (en) * 1997-02-24 2000-12-12 Superior Micropowders Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US6338809B1 (en) * 1997-02-24 2002-01-15 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US6268014B1 (en) * 1997-10-02 2001-07-31 Chris Eberspacher Method for forming solar cell materials from particulars
US20050097987A1 (en) * 1998-02-24 2005-05-12 Cabot Corporation Coated copper-containing powders, methods and apparatus for producing such powders, and copper-containing devices fabricated from same
TWI237064B (en) * 2002-03-25 2005-08-01 Ind Tech Res Inst Supported metal catalyst for synthesizing carbon nanotubes by low-temperature thermal chemical vapor deposition and method of synthesizing nanotubes using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB960592A (en) * 1959-11-12 1964-06-10 Handy & Harman Alloys and electric contacts formed therefrom
US3451810A (en) * 1967-08-01 1969-06-24 Lucas Industries Ltd Method of manufacturing oxygen electrodes by sintering ag and an ag-cd alloy
US3501287A (en) * 1968-07-31 1970-03-17 Mallory & Co Inc P R Metal-metal oxide compositions
DE2506547A1 (de) * 1974-04-11 1975-10-30 Plessey Inc Verfahren zur herstellung von pulverfoermigen materialien
GB1524074A (en) * 1976-07-12 1978-09-06 Square D Co Electrically conductive composite materials
US4138251A (en) * 1977-05-31 1979-02-06 Texas Instruments Incorporated Electrical contact material
EP0012202A1 (de) * 1978-12-14 1980-06-25 DORNIER SYSTEM GmbH Verfahren zur Herstellung metallischer Pulver

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA561828A (en) * 1958-08-12 N. Mackiw Vladimir Method of producing composite metal powder
US2737445A (en) * 1951-09-14 1956-03-06 Nossen Ernest Samuel Process for the thermal decomposition of metal nitrates
US2893859A (en) * 1956-02-21 1959-07-07 Bernard H Triffleman Method of manufacture of homogeneous compositions
US3045331A (en) * 1959-06-26 1962-07-24 Mallory & Co Inc P R Electrical contacts of high arc erosion resistance and method of making the same
JPS369163B1 (de) * 1959-09-01 1961-06-30
US3085876A (en) * 1960-03-01 1963-04-16 Du Pont Process for dispersing a refractory metal oxide in another metal
CH434588A (de) * 1962-11-15 1967-04-30 Tesla Np Verfahren zur Herstellung von Silberpulver
US3317991A (en) * 1965-04-02 1967-05-09 Mallory & Co Inc P R Method of fabricating preoxidized silver-cadmium oxide electrical contacts
FR1483744A (fr) * 1965-12-08 1967-06-09 Electronique & Automatisme Sa Couche résistive mince perfectionnée
DE1533377B1 (de) * 1966-08-12 1969-10-02 Siemens Ag Verfahren zur inneren Oxydation von Legierungspulver oder einer teilweise legierten Metallpulvermischung
US3669634A (en) * 1968-06-18 1972-06-13 Chase Brass & Copper Co Metal composites
DE1900119B2 (de) * 1969-01-02 1977-06-30 Siemens AG, 1000 Berlin und 8000 München Verfahren zum abscheiden hochschmelzender kontaktmetallschichten bei niedrigen temperaturen
DE2011002C3 (de) * 1970-03-09 1978-10-05 Fa. Dr. Eugen Duerrwaechter Doduco, 7530 Pforzheim Schmelzmetallurgisch hergestellter innenoxidierter Kontaktwerkstoff auf Silber-Kadmiumoxid-Basis
GB1462049A (en) * 1973-05-18 1977-01-19 Atomic Energy Authority Uk Production of metal-containing material in particulate form
US3930849A (en) * 1973-05-24 1976-01-06 P. R. Mallory & Co., Inc. Electrical contact material of the ag-cdo type and method of making same
US3877931A (en) * 1973-07-20 1975-04-15 Daniel R Neskora Continuous preparation of pure metals by gaseous reduction
US4186244A (en) * 1977-05-03 1980-01-29 Graham Magnetics Inc. Novel silver powder composition
US4115325A (en) * 1977-05-31 1978-09-19 Texas Instruments Incorporated Electrical contact material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB960592A (en) * 1959-11-12 1964-06-10 Handy & Harman Alloys and electric contacts formed therefrom
US3451810A (en) * 1967-08-01 1969-06-24 Lucas Industries Ltd Method of manufacturing oxygen electrodes by sintering ag and an ag-cd alloy
US3501287A (en) * 1968-07-31 1970-03-17 Mallory & Co Inc P R Metal-metal oxide compositions
DE2506547A1 (de) * 1974-04-11 1975-10-30 Plessey Inc Verfahren zur herstellung von pulverfoermigen materialien
GB1524074A (en) * 1976-07-12 1978-09-06 Square D Co Electrically conductive composite materials
US4138251A (en) * 1977-05-31 1979-02-06 Texas Instruments Incorporated Electrical contact material
EP0012202A1 (de) * 1978-12-14 1980-06-25 DORNIER SYSTEM GmbH Verfahren zur Herstellung metallischer Pulver

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863514A (en) * 1985-09-11 1989-09-05 Degussa Atiengesellschaft Material for facing denture
EP0283536A1 (de) * 1987-03-24 1988-09-28 INOVAN GmbH &amp; Co. KG Metalle und Bauelemente Verfahren zum Herstellen von Silber/MeO-Kontaktplättchen mit löt- oder schweissfähiger Unterseite
EP0299099A1 (de) * 1987-07-14 1989-01-18 INOVAN GmbH &amp; Co. KG Metalle und Bauelemente Verfahren zum Herstellen von Silber/Me0-Kontaktplättchen mit löt- oder schweissfähiger Unterseite
US5284527A (en) * 1992-01-21 1994-02-08 United Technologies Corporation Method of making silver-metal oxide materials and electrical contacts
EP0662521A2 (de) * 1994-01-05 1995-07-12 E.I. Du Pont De Nemours And Company Verfahren zur Herstellung von Silber-Palladium Pulver durch Aerosol Zersetzung
EP0662521A3 (de) * 1994-01-05 1995-10-11 Du Pont Verfahren zur Herstellung von Silber-Palladium Pulver durch Aerosol Zersetzung.

Also Published As

Publication number Publication date
DE2929630A1 (de) 1981-01-29
JPS5651501A (en) 1981-05-09
DE2929630C2 (de) 1983-12-15
US4396420A (en) 1983-08-02
EP0022980B1 (de) 1985-09-04

Similar Documents

Publication Publication Date Title
EP0022980B1 (de) Verfahren zur Herstellung von Silberpulver
DE3642423C2 (de) Dreistoffedelmetallegierungskatalysator, Verfahren zu dessen Herstellung und Verwendung eines solchen Katalysators in einer Brennstoffzelle
DE2506547A1 (de) Verfahren zur herstellung von pulverfoermigen materialien
DE10017282C2 (de) Verfahren zur Herstellung von Verbundpulver auf Basis Siler-Zinnoxid und deren Verwendung zur Herstellung von Kontaktwerkstoffen
EP0858833B1 (de) Katalysatoren auf Kupferbasis, Verfahren zu ihrer Herstellung sowie ihre Verwendung und ein Verfahren zur Herstellung von alkylhalogensilanen
DE60017635T2 (de) Verfahren zur Herstellung von Metallpulvern, insbesondere von Eisenpulver
EP1915765B1 (de) Werkstoff auf der basis silber-kohlenstoff und verfahren zu dessen herstellung
DE19535814C2 (de) Material zur Herstellung elektrischer Kontakte auf Silberbasis
EP0645049B1 (de) Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid
EP2831298B1 (de) Kontaktwerkstoff
DE2924896C2 (de)
DE3421758A1 (de) Sinterkontaktwerkstoff fuer niederspannungsschaltgeraete der energietechnik und verfahren zu dessen herstellung
DE2549298C2 (de) Verfahren zur Herstellung einer gesinterten Silber-Cadmiumoxyd-Legierung
DE3911904A1 (de) Pulvermetallurgisches verfahren zum herstellen eines halbzeugs fuer elektrische kontakte aus einem verbundwerkstoff auf silberbasis mit eisen
DE2156024A1 (de) Kontaktmaterial
EP0660964B2 (de) Werkstoff für elektrische kontakte auf der basis von silber-zinnoxid oder silber-zinkoxid und verfahren zu seiner herstellung
DE2303050A1 (de) Zusammengesetztes elektrisches kontaktmaterial
DE2639107A1 (de) Verfahren zur herstellung eines kontaktstueckes aus silber und mindestens zwei oxiden von unedelmetallen
EP0736217B1 (de) Sinterkontaktwerkstoff, verfahren zu dessen herstellung sowie diesbezügliche kontaktauflagen
DE2341729C3 (de) Verfahren zur Herstellung eines elektrisch leitenden Verbundpulvers
EP0338401B1 (de) Pulvermetallurgisches Verfahren zum Herstellen eines Halbzeugs für elektrische Kontakte aus einem Verbundwerkstoff auf Silberbasis mit Eisen
EP0876670B1 (de) Verfahren zur herstellung eines formstücks aus einem kontaktwerkstoff auf silberbasis
CH618808A5 (en) Process for preparing an electroconductive material.
DE2341731C2 (de) Material für elektrische Kontakte und Verfahren zu seiner Herstellung
DE2745728A1 (de) Gaslaser bzw. elektrode hierfuer und verfahren zu deren herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH FR GB NL SE

17P Request for examination filed

Effective date: 19810522

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH FR GB LI NL SE

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: DEGUSSA AG, FRANKFURT - ZWEIGNIEDERLASSUNG WOLFGAN

Effective date: 19860515

NLR1 Nl: opposition has been filed with the epo

Opponent name: DEGUSSA AG

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 19870731

Year of fee payment: 8

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 19880401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Effective date: 19880731

Ref country code: CH

Effective date: 19880731

NLR2 Nl: decision of opposition
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Effective date: 19890201

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19890710

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732

EUG Se: european patent has lapsed

Ref document number: 80103900.9

Effective date: 19900418

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19950606

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19950622

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19960709

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19960709

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970328

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO