EP0021457A1 - Elektrode für die Wasserelektrolyse - Google Patents

Elektrode für die Wasserelektrolyse Download PDF

Info

Publication number
EP0021457A1
EP0021457A1 EP80200269A EP80200269A EP0021457A1 EP 0021457 A1 EP0021457 A1 EP 0021457A1 EP 80200269 A EP80200269 A EP 80200269A EP 80200269 A EP80200269 A EP 80200269A EP 0021457 A1 EP0021457 A1 EP 0021457A1
Authority
EP
European Patent Office
Prior art keywords
electrode
mol
titanium
sintered body
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP80200269A
Other languages
English (en)
French (fr)
Inventor
Anton Dr. Menth
René Dr. Dipl.-Phys. Müller
Samuel Dr. Stucki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BBC Brown Boveri AG Switzerland
Original Assignee
BBC Brown Boveri AG Switzerland
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BBC Brown Boveri AG Switzerland filed Critical BBC Brown Boveri AG Switzerland
Publication of EP0021457A1 publication Critical patent/EP0021457A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form

Definitions

  • the invention relates to an electrode according to the preamble of claim 1.
  • Electrodes and processes for their production are known primarily from the technology developed for fuel cells (e.g. Carl Berger, Handbook of Fuel Cell Technology pp. 401-406, Prentice Hall 1968; HA Liebhafsky and EJ Cairns, Fuel Cells and Fuel Batteries, p 289-294, John Wiley & Sons, 1968).
  • the demand for precisely defined reaction zones requires a multilayer structure and special treatment processes for such fuel cell electrodes.
  • the structure of the electrodes described above is too complicated for water decomposition and their manufacturing methods are too complex and costly. This applies in particular with regard to manufacturing methods for large industrial plants for the economical production of hydrogen.
  • Electrodes for water decomposition cells have already been proposed (eg US Pat. No. 4,039,409). To accelerate the electrochemical reactions, they are usually used with kata dysers doped.
  • the described electrodes leave something to be desired in terms of their mechanical and chemical properties. The same applies to the catalysts used.
  • the invention has for its object to provide an electrode for water electrolysis, which with good mechanical and chemical stability, high electrical conductivity and good permeability to water and gas has a long service life and the property to catalytically accelerate the water decomposition reaction in an optimal manner.
  • the figure shows the cross section through an electrode.
  • 3 is a sintered body made of titanium or a titanium alloy (eg Ti6A1 4V), which on its side facing the electrolyte has a surface coating of platinum metal oxides, preferably a mixture of 20% (mol) Ru0 2 and 80% Ir0 2 , which acts as a catalyst.
  • the bond between the sintered body 3 and the porous plate 1 takes place via the formation of a very thin layer of titanium carbide (TiC), not shown here.
  • a plate 1 made of porous carbon or graphite 60 mm in diameter and 4 mm in thickness (e.g. quality S 1602 from Le Carbone AG) was provided with a grid of grooves 2.
  • the latter do not need to be triangular, as shown in the drawing, but can have any other suitable cross section, for example a rectangle or square.
  • the titanium sintered body 3 was connected to the plate 1 made of carbon under argon as a protective gas at a temperature of 900 ° C. and a pressure of 50 bar to form an intermediate layer of titanium carbide (TiC) for 10 minutes.
  • the entire composite body was then preheated to 200 ° C. and provided with the catalyst as the surface coating 4 on the side of the titanium sintered body 3 as follows.
  • this consisted of a powder mixture of 20 mol% Ru0 2 and 80 mol% Ir0 2 . 93 rel. %
  • this powder mixture was 7 rel. %
  • powdered tetrafluoroethylene and the whole (0.5 g). mixed with 10 to 20 times the amount (5 to 10 g) of water and mixed to a suspension.
  • the latter was brushed onto the side of the preheated sintered body 3 facing the electrolyte and the liquid was evaporated at 200.degree.
  • the process of surface coating described above was repeated two more times.
  • the sintered body coated with the catalyst was then heat-treated in an argon atmosphere at 375 ° C. for 1 h.
  • Electrodes combine particularly high corrosion resistance on the electrolyte side with optimal permeability on the water side. Another advantage of this composite construction is the lower price compared to pure metallic electrodes and at the same time higher mechanical strength and resistance compared to pure graphite electrodes during cell production. In addition, channel grids on the water side in graphite or carbon are cheaper to stand than corresponding grooves in metallic surfaces. The aforementioned advantages are likely to be particularly important for electrodes of very large dimensions.
  • the method described can be used in a particularly advantageous manner in the production of electrodes for high-performance water decomposition apparatus for the production of hydrogen. Thanks to its economy, it is ideally suited for the production of standard electrodes of the largest dimensions for large industrial plants.
  • the electrodes produced in this way are characterized by good mechanical strength, high chemical resistance and a favorable decomposition voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

Elektrode für die Wasserelektrolyse, bestehend aus einer auf der der Wasserzufuhr zugewandten Seite mit Rillen (2) versehenen porösen Platte (1) aus Kohlenstoff und einem auf der Elektrolytseite mit einem Katalysator (4) beschichteten porösen Körper (3) aus Titan oder Titanlegierung. Bevorzugte Zusammensetzung des Katalysators: 20 mol-% Rutheniumoxyd und 80 mol-% Iridiumoxyd.

Description

  • Die Erfindung geht aus von einer Elektrode nach der Gattung des Anspruchs 1.
  • Elektroden sowie Verfahren zu deren Herstellung sind vor allem von der für Brennstoffzellen entwickelten Technologie her bekannt (z.B. Carl Berger, Handbook of Fuel Cell Technology S. 401-406, Prentice Hall 1968; H.A. Liebhafsky and E.J. Cairns, Fuel Cells and Fuel Batteries, S. 289-294, John Wiley & Sons, 1968). Die-Forderung nach genau definierten Reaktionszonen bedingt einen vielschichtigen Aufbau und spezielle Behandlungsverfahren derartiger Brennstoffzellen-Elektroden.
  • Für die Wasserzersetzung sind die oben beschriebenen Elektroden in ihrem Aufbau zu kompliziert und ihre Fertigungsmethoden zu aufwendig und kostspielig. Dies gilt insbesondere im Hinblick auf Herstellungsmethoden für industrielle Grossanlagen zur wirtschaftlichen Erzeugung von Wasserstoff.
  • Elektroden für Wasserzersetzungszellen sind bereits vorgeschlagen worden (z.B. US-PS 4 039 409). Zur Beschleunigung der elektrochemischen Reaktionen werden sie meist mit Katalysatoren dotiert.
  • Die beschriebenen Elektroden lassen sowohl bezüglich ihrer mechanischen und chemischen Eigenschaften zu wünschen übrig. Das gleiche gilt bezüglich der verwendeten Katalysatoren.
  • Der Erfindung liegt die Aufgabe zugrunde, eine Elektrode für die Wasserelektrolyse anzugeben, welche bei guter mechanischer und chemischer Stabilität, hoher elektrischer Leitfähigkeit und guter Durchlässigkeit für Wasser und Gas eine hohe Lebensdauer sowie die Eigenschaft besitzt, die Wasserzersetzungsreaktion katalytisch in optimaler Weise zu beschleunigen.
  • Diese Aufgabe wird erfindungsgemäss durch die Merkmale des Anspruchs 1 gelöst.
  • Es hat sich gezeigt, dass es vorteilhaft ist, als Elektrodenmaterial einen porösen, durchlässigen Verbundwerkstoff auf der Basis von Kohlenstoff (Wasserseite) und Titan (Elektrolytseite) zu benutzen. Als Katalysator ist eine aus Platinmetalloxyden bestehende Imprägnierung,in vorteilhafter Weise aus 20 mol-% Rutheniumoxyd und 80 mol-% Iridiumoxyd bestehend, vorgesehen.
  • Die Erfindung wird anhand des nachfolgenden, durch eine Figur erläuterten Ausführungsbeispiels beschrieben.
  • Dabei zeigt die Figur den Querschnitt durch eine Elektrode.
  • 1 ist eine Platte aus porösem Kohlenstoff, vorzugsweise Graphit, welche auf der der Wasserzufuhr zugewandten Seite Rillen 2 in Form eines Rasters aufweist. Diese in der Zeichnung mit dreieckigem Querschnitt dargestellten Rillen 2 können selbstverständlich auch rechteckige oder quadratische oder eine beliebige andere geeignete Form haben. 3 ist ein Sinterkörper aus Titan oder einer Titanlegierung (z.B. Ti6A1 4V), welcher auf seiner dem Elektrolyten zugewandten Seite eine als Katalysator wirkende Oberflächenbeschichtung aus Platinmetalloxyden, vorzugsweise eine Mischung von 20 % (mol) Ru02 und 80 % Ir02 aufweist. Die Bindung zwischen dem Sinterkörper 3 und der porösen Platte 1 erfolgt über die Bildung einer hier nicht weiter gezeichneten sehr dünnen Schicht aus Titankarbid (TiC).
  • Ausführungsbeispiel:
  • Es wurden 5 g Titanpulver mit einer Korngrösse zwischen 50 ü und 150 p abgewogen. Eine hohlzylindrische Matrize und ein zylindrischer Stempel aus Elektrographit (z.B. EK 85 von Ringsdorff-Werke GmbH) von 60 mm Durchmesser wurden mit Bornitrid eingerieben. Das Titanpulver wurde in-die Matrize eingefüllt, homogen verteilt und der Stempel aufgesetzt. Das Ganze wurde zunächst während 5 bis 10 Minuten einem Schutzgasstrom von Argon unterworfen, welcher während des ganzen Vorgangs anhielt. Hierauf wurde der Anpressdruck des Stempels auf 75 bar erhöht. Die Temperatur wurde mit einer Erwärmungsgeschwindigkeit von 40°C/min sukzessive auf 820°C erhöht und während 10 Minuten auf diesem Wert gehalten. Danach wurde die Vorrichtung abgekühlt und der Sinterkörper 3 nach Erreichen von Raumtemperatur aus der Matrize herausgenommen.
  • Eine Platte 1 aus porösem Kohlenstoff oder Graphit von 60 mm Durchmesser und 4 mm Dicke (z.B. Qualität S 1602 von Le Carbone AG) wurde mit einem Raster von Rillen 2 versehen. Letztere brauchen nicht, wie in der Zeichnung dargestellt, dreieckig zu sein, sondern können jeden beliebigen anderen geeigneten Querschnitt, beispielsweise Rechteck oder Quadrat aufweisen.
  • Nun wurde der Titan-Sinterkörper 3 mit der Platte 1 aus Kohlenstoff unter Argon als Schutzgas bei einer Temperatur von 900°C und einem Druck von 50 bar unter Bildung einer Zwischenschicht von Titankarbid (TiC) während 10 min verbunden .
  • Hierauf wurde der gesamte Verbundkörper auf 200°C vorgewärmt und wie folgt auf der Seite des Titan-Sinterkörpers 3 mit dem Katalysator als Oberflächenbeschichtung 4 versehen. Im vorliegenden Fall bestand diese aus einer Pulvermischung von 20 mol-% Ru02 und 80 mol-% Ir02. 93 rel. Gew.-% dieser Pulvermischung wurden mit 7 rel. Gew.-% pulverisierten Tetrafluoräthylens vermengt und das Ganze (0,5 g). mit der 10- bis 20-fachen Menge (5 bis 10 g) Wasser versetzt und zu einer Suspension angerührt. Letztere wurde auf die dem Elektrolyt zugewandte Seite des vorgewärmten Sinterkörpers 3 aufgepinselt und die Flüssigkeit bei 200°C verdampft. Der vorgängig beschriebene Prozess der Oberflächenbeschichtung wurde noch weitere zwei Male wiederholt. Nun wurde der mit dem Katalysator beschichtete Sinterkörper in Argonatmosphäre während lh bei 375°C wärmebehandelt.
  • Die gemäss dem vorigen Ausführungsbeispiel hergestellten Elektroden verbinden eine besonders hohe Korrosionsbeständigkeit auf der Elektrolytseite mit optimaler Durchlässigkeit auf der Wasserseite. Ein weiterer Vorteil dieser Verbundkonstruktion liegt im gegenüber reinen metallischen Elektroden niedrigeren Preis bei gleichzeitig gegenüber reinen Graphitelektroden höherer mechanischer Festigkeit und Widerstandsfähigkeit während der Zellenfertigung. Ausserdem kommen Kanalraster auf der Wasserseite in Graphit oder Kohlenstoff eingearbeitet billiger zu stehen als entsprechende Rillen in metallischen Oberflächen. Die vorgenannten Vorteile dürften vor allem bei Elektroden sehr grosser Dimensionen ins Gewicht fallen.
  • Das beschriebene Verfahren lässt sich in besonders vorteilhafter Weise bei der Herstellung von Elektroden für Hochleistungs-Wasserzersetzungsapparate zur Herstellung von Wasserstoff anwenden. Dank seiner Wirtschaftlichkeit eignet es sich vorzüglich zur Herstellung serienmässiger Elektroden grösster Abmessungen für industrielle Grossanlagen.
  • Die auf diese Art hergestellten Elektroden zeichnen sich durch gute mechanische Festigkeit, hohe chemische Beständigkeit und eine günstige Zersetzungsspannung aus.
  • B e z e i c h n u n g s l i s t e
    • 1 = Platte aus porösem Kohlenstoff
    • 2 = Rillen
    • 3 = Sinterkörper (Ti, Ti-Legierung)
    • 4 = Oberflächenbeschichtung (Ru02/Ir02)

Claims (2)

1. Elektrode für die Wasserelektrolyse auf der Basis eines Verbundwerkstoffes, dadurch gekennzeichnet, dass sie auf der der Wasserzufuhr zugewandten Seite aus einer porösen, mit Rillen (2) versehenen Platte (1) aus Kohlenstoff und auf der dem Festelektrolyten zugewandten Seite aus einem dünnwandigen porösen Sinterkörper (3) aus Titan oder einer Titanlegierung besteht, weicher eine Oberflächenbeschichtung (4) aus einer Mischung von 20 mol-% Ru0 2und 80 mol-% Ir02 trägt.
2. Elektrode nach Anspruch 1, dadurch gekennzeichnet, dass das zur Herstellung der Platte aus Kohlenstoff verwendete Pulver eine Partikelgrösse von 50 µ bis 1000 µ und dasjenige zur Herstellung des Sinterkörpers verwendete eine solche von 50 µ bis 150 µ aufweist.
EP80200269A 1979-06-29 1980-03-24 Elektrode für die Wasserelektrolyse Withdrawn EP0021457A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH608479 1979-06-29
CH6084/79 1979-06-29

Publications (1)

Publication Number Publication Date
EP0021457A1 true EP0021457A1 (de) 1981-01-07

Family

ID=4304003

Family Applications (1)

Application Number Title Priority Date Filing Date
EP80200269A Withdrawn EP0021457A1 (de) 1979-06-29 1980-03-24 Elektrode für die Wasserelektrolyse

Country Status (2)

Country Link
EP (1) EP0021457A1 (de)
DE (1) DE2928909A1 (de)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0139133A1 (de) * 1983-08-12 1985-05-02 Asahi Glass Company Ltd. Elektrolytische Zelle zur Elektrolyse eines Alkalimetallchlorids
GB2343192A (en) * 1998-10-27 2000-05-03 Eastman Kodak Co Electrochemical cell for metal recovery
GB2343193A (en) * 1998-10-27 2000-05-03 Eastman Kodak Co Metal recovery using electrochemical cell
KR100349247B1 (ko) * 1999-09-18 2002-08-19 이호인 오.하수 처리를 위한 전기 분해용 촉매전극 및 그 제조방법
KR100407710B1 (ko) * 2001-11-08 2003-12-01 (주) 테크윈 고온 소결에 의한 촉매성 산화물 전극의 제조방법
CN105803482A (zh) * 2016-03-17 2016-07-27 同济大学 一种电解水制氢用电解池的集电极材料的改性方法及用途

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1180316A (en) * 1981-12-23 1985-01-02 James A. Mcintyre Electrode material; improved electrolytic process

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2636856A (en) * 1948-06-29 1953-04-28 Mallory & Co Inc P R Electrode for electrochemical oxidation
US3846273A (en) * 1967-12-14 1974-11-05 Electronor Corp Method of producing valve metal electrode with valve metal oxide semiconductive coating having a chlorine discharge catalyst in said coating
FR2230412A1 (de) * 1973-05-25 1974-12-20 Hooker Chemicals Plastics Corp
US4135039A (en) * 1969-02-21 1979-01-16 Unigate, Limited Electrode structures and electrodes therefrom for use in electrolytic cells or batteries
US4140615A (en) * 1977-03-28 1979-02-20 Olin Corporation Cell and process for electrolyzing aqueous solutions using a porous anode separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2636856A (en) * 1948-06-29 1953-04-28 Mallory & Co Inc P R Electrode for electrochemical oxidation
US3846273A (en) * 1967-12-14 1974-11-05 Electronor Corp Method of producing valve metal electrode with valve metal oxide semiconductive coating having a chlorine discharge catalyst in said coating
US4135039A (en) * 1969-02-21 1979-01-16 Unigate, Limited Electrode structures and electrodes therefrom for use in electrolytic cells or batteries
FR2230412A1 (de) * 1973-05-25 1974-12-20 Hooker Chemicals Plastics Corp
US4140615A (en) * 1977-03-28 1979-02-20 Olin Corporation Cell and process for electrolyzing aqueous solutions using a porous anode separator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0139133A1 (de) * 1983-08-12 1985-05-02 Asahi Glass Company Ltd. Elektrolytische Zelle zur Elektrolyse eines Alkalimetallchlorids
GB2343192A (en) * 1998-10-27 2000-05-03 Eastman Kodak Co Electrochemical cell for metal recovery
GB2343193A (en) * 1998-10-27 2000-05-03 Eastman Kodak Co Metal recovery using electrochemical cell
US6086733A (en) * 1998-10-27 2000-07-11 Eastman Kodak Company Electrochemical cell for metal recovery
US6149797A (en) * 1998-10-27 2000-11-21 Eastman Kodak Company Method of metal recovery using electrochemical cell
GB2343192B (en) * 1998-10-27 2003-06-04 Eastman Kodak Co Electrochemical cell for metal recovery
GB2343193B (en) * 1998-10-27 2003-06-04 Eastman Kodak Co Method of metal recovery using electrochemical cell
KR100349247B1 (ko) * 1999-09-18 2002-08-19 이호인 오.하수 처리를 위한 전기 분해용 촉매전극 및 그 제조방법
KR100407710B1 (ko) * 2001-11-08 2003-12-01 (주) 테크윈 고온 소결에 의한 촉매성 산화물 전극의 제조방법
CN105803482A (zh) * 2016-03-17 2016-07-27 同济大学 一种电解水制氢用电解池的集电极材料的改性方法及用途

Also Published As

Publication number Publication date
DE2928909A1 (de) 1981-01-29

Similar Documents

Publication Publication Date Title
DE3122786C2 (de)
DE2720529C2 (de) Verfahren zur Herstellung einer Brennstoffzellenelektrode
EP0297315B1 (de) Verfahren zur Herstellung eines Verbundes aus einer Cermet-Schicht und einer porösen Metallschicht auf einer oder beiden Seiten der Cermet-Schicht als Diaphragma mit Elektrode(n)
EP0021456B1 (de) Elektrode für die Wasserelektrolyse
DE3642423A1 (de) Brennstoffzelle, ternaerer metallegierungskatalysator und verfahren zu dessen herstellung
DE2752875C2 (de) Elektrode für elektrochemische Prozesse und Verfahren zu deren Herstellung
DE1219104B (de) Poroeses Sintergeruest fuer Elektroden galvanischer Elemente
EP1769551B1 (de) SILBER-GASDIFFUSIONSELEKTRODE FÜR DEN EINSATZ IN CO<sb>2</sb>-HALTIGER LUFT SOWIE VERFAHREN ZUR HERSTELLUNG
EP0021458B1 (de) Elektrode für die Wasserelektrolyse
DE2652152A1 (de) Elektrode fuer elektrolytische reaktionen und verfahren zu deren herstellung
EP0021457A1 (de) Elektrode für die Wasserelektrolyse
DE3004080C2 (de) Verfahren zum Beschichten einer porösen Elektrode
DE2914094A1 (de) Poroese nickelelektrode fuer alkalische elektrolysen, verfahren zur herstellung derselben und deren verwendung
DE2127807A1 (de) Elektrode für die elektrochemische Reduktion von Sauerstoff und Verfahren zu ihrer Herstellung
DE2710802C3 (de) Verfahren zur Herstellung von Elektroden für Elektrolysezellen
DE2836316A1 (de) Verfahren zur herstellung von keramikteilen mittels elektrophorese
DE1269213B (de) Verfahren zur Herstellung von poroesen Brennstoffelektroden fuer Brennstoffelemente
DE1533319B1 (de) Verfahren zur pulvermetallurgischen Herstellung poroeser Zinkkoerper aus oberflaechlich oxydierten Zinkteilchen
DE2632152C3 (de) Galvanische Zelle
DE1671826A1 (de) Brennstoffelektrode fuer ein Brennstoffelement
DE102007060272A1 (de) Bipolarplatte und Verfahren zum Herstellen einer Schutzschicht an einer Bipolarplatte
DE2713855A1 (de) Verfahren zur herstellung eines silberkatalysators fuer elektrochemische zellen
DE1927093A1 (de) Luftsauerstoffatmende Elektrode
EP0029520B1 (de) Verfahren zur Trennung der bei einer Schmelzflusselektrolyse entwickelten Gase und Schmelzflusselektrolysevorrichtung
DE2238431C3 (de) Verfahren zur Erzeugung von elektrischem Strom durch elektrochemische Oxidation eines aktiven Metalls und elektrochemischer Generator zur Durchfürung des Verfahrens

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Designated state(s): CH DE FR IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BBC AKTIENGESELLSCHAFT BROWN, BOVERI & CIE.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 19811214

RIN1 Information on inventor provided before grant (corrected)

Inventor name: MENTH, ANTON, DR.

Inventor name: STUCKI, SAMUEL, DR.

Inventor name: MUELLER, RENE, DR. DIPL.-PHYS.