EP0004903A2 - Verfahren zur Herstellung von Chlor aus Salzsäure durch Elektrolyse und Salzsäure-Elektrolysezelle - Google Patents

Verfahren zur Herstellung von Chlor aus Salzsäure durch Elektrolyse und Salzsäure-Elektrolysezelle Download PDF

Info

Publication number
EP0004903A2
EP0004903A2 EP79101017A EP79101017A EP0004903A2 EP 0004903 A2 EP0004903 A2 EP 0004903A2 EP 79101017 A EP79101017 A EP 79101017A EP 79101017 A EP79101017 A EP 79101017A EP 0004903 A2 EP0004903 A2 EP 0004903A2
Authority
EP
European Patent Office
Prior art keywords
electrolysis
electrolytes
floor
hydrochloric acid
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP79101017A
Other languages
English (en)
French (fr)
Other versions
EP0004903B1 (de
EP0004903A3 (en
Inventor
Franz-Rudolf Dr. Minz
Herbert Wiechers
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0004903A2 publication Critical patent/EP0004903A2/de
Publication of EP0004903A3 publication Critical patent/EP0004903A3/xx
Application granted granted Critical
Publication of EP0004903B1 publication Critical patent/EP0004903B1/de
Expired legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof

Definitions

  • the electrolytic generation of hydrogen and chlorine from hydrochloric acid is generally carried out in electrolytic cells in which 30 to 45 vertically arranged bipolar electrodes are combined, the electrolytic chamber formed between two electrodes being divided by a diaphragm.
  • the electrode area is usually approximately 2.5 m 2 and has a square cross section; see, for example, DAS 1 216 852 or Chem. Ing.technik 39, 731 (1967).
  • the hydrochloric acid flows through the electrolysis chamber from bottom to top, hydrogen forming in the catholyte space and chlorine in the anolyte space.
  • the catholyte and anolyte are thus enriched with gas bubbles on their way through the electrolysis chamber.
  • the gas bubbles are separated after the electrolytes have left the cell.
  • the subject of the present invention is therefore a process for the production of chlorine and hydrogen from hydrochloric acid by electrolysis in an electrolytic cell, consisting of a plurality of vertically arranged bipolar electrodes, a diaphragm being arranged between two electrodes for dividing the electrolytic chambers formed between them into an anolyte space and a catholyte space Drainage and inflow devices for the electrolytes, which is characterized in that the hydrochloric acid is electrolyzed in at least two successive stages, being degassed after leaving one stage and before entering the next stage.
  • the present invention also relates to a hydrochloric acid electrolysis cell, consisting of a multiplicity of vertically arranged bipolar electrodes, a diaphragm being arranged between two electrodes for dividing the electrolysis chamber formed between them into an anolyte space and a catholyte space, furthermore drainage and inflow devices for the electrolytes, which are characterized in that the bipolar electrodes and the electrolysis chambers "are each divided into floors in at least one horizontal plane perpendicular to the electrode surface and additional inflow and outflow devices for the electrolytes are provided in this plane, so that each floor is separated from one another independent electrolyte circuits are formed.
  • the height of the partial electrode surfaces resulting from the subdivision of the electrodes is preferably 40 to 80 cm, particularly preferably approximately 60 cm.
  • the bipolar electrodes are expediently each held in holding frames which are stacked together in the manner of filter presses.
  • the principle of such arrangements is e.g. in DOS 2 222 637 or DOS 2 317 359.
  • the electrolysis frames for receiving the electrodes contain a plurality of windows lying one above the other, the webs containing inflow and outflow channels for the electrolytes.
  • Electrolysis cell is operated in such a way that both catholyte and anolyte flow through the individual levels of the electrolysis cell one after the other and are degassed each time after exiting from one level and before entering the next level, the electrolytes being gradually depleted.
  • Approx. 25% hydrochloric acid is supplied to the electrolytic cell both in the anolyte and in the catholyte circuit, the anolyte acid being able to have a somewhat higher concentration.
  • the acid is depleted in several stages to finally 20% hydrochloric acid.
  • the electrolysis is preferably operated at current densities of 4 to 8 kA / m 2 , preferably 5 to 7 kA / m 2 .
  • the different levels of an electrolysis cell are preferably connected in parallel.
  • the acid is preferably first introduced into the top floor of an electrolysis cell and, after exiting from one floor and degassing, is introduced into the next floor below.
  • Each floor is preferably flowed through from bottom to top in order to ensure entrainment and thus accelerated discharge of the gas bubbles.
  • the preferred flow path of anolyte and catholyte is shown in FIG. 2 by the arrows.
  • the specific energy consumption in the electrolysis of hydrochloric acid is reduced, with about 20% of graphite being saved at the same time by reducing the necessary active electrode areas.
  • the electrolysis can be operated at the same voltage with a considerably increased current density.
  • the current density is to be maintained, a voltage gain is achieved which, for example in existing systems, enables an increased number of bipolar electrodes to be connected in series.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

Es wird ein Verfahren zur Elektrolyse von Salzsäure zur Herstellung von Chlor und Wasserstoff nach dem Diaphragmaverfahren beschrieben, nachdem die Elektrolyse mehrstufig durchgeführt wird und die Sole nach jeder Elektrolysestufe vor Eintritt in die jeweils nächste Stufe entgast wird. Ferner wird eine für das Verfahren geeignete Elektrolysezelle beschrieben.

Description

  • Die elektrolytische Erzeugung von Wasserstoff und Chlor aus Salzsäure erfolgt im allgemeinen in Elektrolysezellen, in denen 30 bis 45 vertikal angeordnete bipolare Elektroden, wobei die zwischen je zwei Elektroden gebildete Elektrolysekammer durch ein Diaphragma unterteilt ist, zusammengefaßt sind. Üblicherweise beträgt die Elektrodenfläche ca. 2,5 m2 und besitzt quadratischen Querschnitt; siehe z.B. DAS 1 216 852 oder Chem. Ing. Technik 39, 731 (1967). Die Salzsäure durchströmt die Elektrolysekammer von unten nach oben, wobei sich im Katholytraum Wasserstoff und im Anolytraum Chlor bildet. Katholyt und Anolyt werden also auf ihrem Weg durch die Elektrolysekammer mit Gasblasen angereichert. Die Gasblasen werden nach dem Austritt der Elektrolyte aus der Zelle abgeschieden.
  • Durch die Anwesenheit von Gasblasen im Elektrolyten wird dessen elektrischer Widerstand, und damit der spezifische Leistungsverbrauch der Elektrolysezelle erhöht. Es ist daher wünschenswert, bei gegebener Stromdichte die Aufenthaltszeit des Elektrolyten in der Zelle, d.h. die Zeit, während der sich die Gasblasen anreichern, möglichst kurz zu wählen. Andererseits ist es zum wirtschaftlichen Betrieb der Zelle notwendig, die Konzentration der Salzsäure während des Durchgangs durch die Elektrolysezelle hinreichend zu verarmen. Üblicherweise wird eine Verarmung von ca. 25 % auf ca. 20 % HCl angestrebt.
  • Gegenstand der vorliegenden Erfindung ist daher
    ein Verfahren zur Herstellung von Chlor und Wasserstoff aus Salzsäure durch Elektrolyse in einer Elektrolysezelle, bestehend aus einer Vielzahl von vertikal angeordneten bipolaren Elektroden, wobei zwischen je zwei Elektroden zur Unterteilung der zwischen diesen gebildeten Elektrolysekammern in einen Anolytraum und einen Katholytraum ein Diaphragma angeordnet ist, ferner Abfluß- und Zuflußeinrichtungen für die Elektrolyte, das dadurch gekennzeichnet ist, daß die Salzsäure in mindestens zwei aufeinanderfolgenden Stufen elektrolysiert wird, wobei sie nach Austritt aus einer Stufe und vor Eintritt in die jeweils nächste Stufe entgast wird.
  • Gegenstand der vorliegenden Erfindung ist auch eine Salzsäure-Elektrolysezelle, bestehend aus einer Vielzahl von vertikal angeordneten bipolaren Elektroden, wobei zwischen je zwei Elektroden zur Unterteilung der zwischen diesen gebildeten Elektrolysekammer in einen Anolytraum und einen Katholytraum ein Diaphragma angeordnet ist, ferner Abfluß- und Zuflußeinrichtungen für die Elektrolyte, die dadurch gekennzeichnet ist, daß die bipolaren Elektroden und die Elektrolysekammern " jeweils in mindestens einer horizontalen Ebene senkrecht zur Elektrodenfläche in Etagen unterteilt sind und in dieser Ebene zusätzliche Zufluß- und Abflußeinrichtungen für die Elektrolyte vorgesehen sind, so daß in jeder Etage voneinander unabhängige Elektrolytkreisläufe ausgebildet sind. Vorzugsweise beträgt die Höhe der durch die Unterteilung der Elektroden entstehenden Teilelektrodenflächen 40 bis 80 cm, besonders bevorzugt ca. 60 cm.
  • Zweckmäßigerweise werden die bipolaren Elektroden jeweils in Halterahmen gehalten, die nach Art von Filterpressen aneinander geschichtet werden. Das Prinzip solcher Anordnungen ist z.B. in der DOS 2 222 637 oder DOS 2 317 359 beschrieben. Erfindungsgemäß enthalten die Elektrolyserahmen zur Aufnahme der Elektroden mehrere übereinander liegende Fenster, wobei die Stege Zufluß- und Abflußkanäle für die Elektrolyte enthalten.
  • Die Erfindung wird nachfolgend anhand der Figuren näher erläutert. Fig. 1 zeigt beispielhaft einen Querschnitt durch eine zwei etagige Elektrolysezelle. Fig. 2 zeigt stark vereinfacht einen Elektrodenrahmen, senkrecht zu der in Fig. 1 gezeigten Schnittrichtung. Den in den Figuren angegebenen Ziffern kommt im Einzelnen folgende Bedeutung zu:
    • 1 Elektrodenrahmen
    • 2 Bipolare Elektrode
    • 3 Kathode
    • 4 Anode
    • 5 Anolytkammer
    • 6 Katholytkammer
    • 7 Diaphragma
    • 8 Anolytzufuhr
    • 9 Katholytzufuhr
    • 10 Katholyt
    • 11 Anolyt- und Chlorgasableitung
    • 12 Katholytentgasung
    • 13 Anolytentgasung
    • A Anolyt
    • K Katholyt
  • Das erfindungsgemäße Verfahren unter Einsatz der erfindungsgemäßen. Elektrolysezelle, wird so betrieben, daß sowohl Katholyt als auch Anolyt die einzelnen Etagen der Elektrolysezelle nacheinander durchströmen und jeweils nach Austritt aus einer Etage und vor Eintritt in die nächste Etage entgast werden, wobei die Elektrolyte stufenweise verarmt werden. Der Elektrolysezelle wird sowohl im Anolyt- als auch im Katholytkreislauf ca. 25 %ige Salzsäure zugeführt, wobei die Anolytsäure eine etwas höhere Konzentration aufweisen kann. Die Säure wird in mehreren Stufen auf schließlich 20 %ige Salzsäure verarmt.
  • Die Elektrolyse wird vorzugsweise bei Stromdichten von 4 bis 8 kA/m2, vorzugsweise 5 bis 7 kA/m2 betrieben. Dabei werden vorzugsweise die verschiedenen Etagen einer Elektrolysezelle parallel geschaltet.
  • Um Druckdifferenzen in den Elektrolyten zu vermeiden, wird die Säure vorzugsweise zunächst in die oberste Etage einer Elektrolysezelle eingeführt und nach dem Austritt aus einer Etage und Entgasung jeweils in die nächste darunter liegende Etage eingeführt. Jede Etage wird vorzugsweise von unten nach oben durchströmt, um so eine Mitnahme und damit einen beschleunigten Austrag der Gasblasen zu gewährleisten. Für den Fall einer zwei-etagigen Elektrolysezelle ist der bevorzugte Strömungsweg von Anolyt und Katholyt in Fig. 2 durch die eingezeichneten Pfeile dargestellt.
  • Mit der Erfindung wird der spezifische Energieverbrauch bei der Elektrolyse von Salzsäure herabgesetzt, wobei gleichzeitig durch Verringerung der notwendigen aktiven Elektrodenflächen etwa 20 % Graphit eingespart wird. Die Elektrolyse kann gegenüber den bisher üblichen Stromdichten von ca. 4 kA/m2 bei gleicher Spannung mit erheblich erhöhter Stromdichte betrieben werden. Andererseits wird, wenn die Stromdichte erhalten bleiben soll, ein Spannungsgewinn erreicht, der z.B. bei bestehenden Anlagen die Hintereinanderschaltung von einer erhöhten Zahl von bipolaren Elektroden ermöglicht.

Claims (5)

1. Verfahren zur Herstellung von Chlor und Wasserstoff aus Salzsäure durch Elektrolyse in einer Elektrolysezelle bestehend aus einer Vielzahl von vertikal angeordneten bipolaren Elektroden, wobei zwischen je zwei Elektroden zur Unterteilung der zwischen diesen gebildeten Elektrolysekammern in einen Anolytraum und einen Katholytraum ein Diaphragma angeordnet ist, ferner Abfluß- und Zuflußeinrichtungen für die Elektrolyte, dadurch gekennzeichnet, daß die Salzsäure in mindestens zwei aufeinanderfolgenden Stufen elektrolysiert wird, wobei sie nach Austritt aus einer Stufe und vor Eintritt in die jeweils nächste Stufe entgast wird.
2. Salzsäure-Elektrolysezelle bestehend aus einer Vielzahl von vertikal angeordneten bipolaren Elektroden, wobei zwischen je zwei Elektroden zur Unterteilung der zwischen diesen gebildeten Elektrolysekammer in einen Anolytraum und einen Katholytraum ein Diaphragma angeordnet ist, ferner Abfluß- und Zuflußeinrichtungen für die Elektrolyte, dadurch gekennzeichnet, daß die bipolaren Elektroden und Elektrolysekammern jeweils in mindestens einer horizontalen Ebene senkrecht zur Elektrodenfläche in Etagen unterteilt sind und in dieser Ebene zusätzliche Zufluß- und Abflußeinrichtungen für die Elektrolyte vorgesehen sind, so daß in jeder Etage voneinander unabhängige Elektrolytkreisläufe ausgebildet sind.
3. Elektrolysezelle nach Anspruch 2, wobei die Höhe der durch Unterteilung der Elektroden entstehenden Teilelektrodenflächen 40 bis 80 cm, vorzugsweise ca. 60 cm beträgt.
4. Verfahren zum Betrieb der Elektrolysezelle nach Anspruch 2 oder 3, dadurch gekennzeichnet, daß die Elektrolyte die Etagen der Elektrolysezelle nacheinander durchströmen und jeweils nach Austritt aus einer Etage und vor Eintritt in die nächste Etage entgast werden, wobei die Elektrolyte stufenweise verarmt werden.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Elektrolyte zunächst die oberste Etage einer Zelle und nachfolgend jeweils die nächst tiefere Etage durchströmen, wobei jede Etage von unten nach oben durchströmt wird.
EP79101017A 1978-04-14 1979-04-04 Verfahren zur Herstellung von Chlor aus Salzsäure durch Elektrolyse und Salzsäure-Elektrolysezelle Expired EP0004903B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE2816152 1978-04-14
DE2816152A DE2816152C2 (de) 1978-04-14 1978-04-14 Verfahren zur Herstellung von Chlor aus Salzsäure durch Elektrolyse und Salzsäure-Elektrolysezelle

Publications (3)

Publication Number Publication Date
EP0004903A2 true EP0004903A2 (de) 1979-10-31
EP0004903A3 EP0004903A3 (en) 1979-11-14
EP0004903B1 EP0004903B1 (de) 1980-12-10

Family

ID=6036937

Family Applications (1)

Application Number Title Priority Date Filing Date
EP79101017A Expired EP0004903B1 (de) 1978-04-14 1979-04-04 Verfahren zur Herstellung von Chlor aus Salzsäure durch Elektrolyse und Salzsäure-Elektrolysezelle

Country Status (5)

Country Link
US (1) US4236983A (de)
EP (1) EP0004903B1 (de)
JP (1) JPS54137496A (de)
DE (2) DE2816152C2 (de)
ES (1) ES479479A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024126607A1 (en) 2022-12-14 2024-06-20 Basf Se Process for preparing at least one polyisocyanate from co2

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039757B2 (ja) * 1979-02-02 1985-09-07 クロリンエンジニアズ株式会社 塩酸の電解方法
DE2908269C2 (de) * 1979-03-02 1984-04-26 Uhde Gmbh, 4600 Dortmund Salzsäure-Elektrolysezelle
IN156372B (de) * 1980-05-15 1985-07-06 Ici Plc
DE3041897A1 (de) * 1980-11-06 1982-06-09 Bayer Ag, 5090 Leverkusen Salzsaeure-elektrolysezelle zur herstellung von chlor und wasserstoff
US4402809A (en) * 1981-09-03 1983-09-06 Ppg Industries, Inc. Bipolar electrolyzer
US4999284A (en) * 1988-04-06 1991-03-12 E. I. Du Pont De Nemours And Company Enzymatically amplified piezoelectric specific binding assay
US5501986A (en) * 1988-04-06 1996-03-26 E. I. Du Pont De Nemours And Company Piezoelectric specific binding assay with mass amplified reagents
US5348579A (en) * 1993-08-11 1994-09-20 Silberline Manufacturing Co., Inc. Water resistant metal pigment-containing paste and method for making
DE19956787A1 (de) * 1999-11-25 2001-05-31 Bayer Ag Elektrolyseplatte
ITMI20012003A1 (it) * 2001-09-27 2003-03-27 De Nora Elettrodi Spa Cella a diaframma per la produzione cloro-soda di aumentata superficie elettrodica e metodo per realizzarla
CN100557085C (zh) * 2007-06-28 2009-11-04 马来西亚大光蓄电池有限公司 无导线连接的串联式电解槽
CN112759036A (zh) * 2020-12-28 2021-05-07 云南驰宏国际锗业有限公司 电解法处理盐酸废水的方法及用于盐酸废水电解的电解池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR358245A (fr) * 1905-10-03 1906-02-02 Eugene Francois Cote Mode de fabrication du chlore par électrolyse de l'acide chlorhydrique
DE2162487A1 (de) * 1971-12-16 1973-06-28 Dow Chemical Co Verfahren zur herstellung von chlor durch elektrolyse von chlorwasserstoff und polyvalenten metallchloriden
DE2222637A1 (de) * 1972-05-09 1973-11-29 Bayer Ag Halterahmen fuer elektroden von elektrolysevorrichtungen

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA743083A (en) * 1966-09-20 S. Kircher Morton Electrolytic cell
US1485461A (en) * 1922-07-13 1924-03-04 Knowles Albert Edgar Electrolytic cell
US2719822A (en) * 1952-01-10 1955-10-04 Universal Oil Prod Co Production of chlorine from hydrogen chloride
US3236760A (en) * 1959-11-09 1966-02-22 Oronzio De Nora Impianti Cells for the production of chlorine from hydrochloric acid
IT1004132B (it) * 1973-04-06 1976-07-10 Bayer Ag Dispositivo a telaio per elettro lisi di hci con piastra di grafite
US3876517A (en) * 1973-07-20 1975-04-08 Ppg Industries Inc Reduction of crevice corrosion in bipolar chlorine diaphragm cells by locating the cathode screen at the crevice and maintaining the titanium within the crevice anodic

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR358245A (fr) * 1905-10-03 1906-02-02 Eugene Francois Cote Mode de fabrication du chlore par électrolyse de l'acide chlorhydrique
DE2162487A1 (de) * 1971-12-16 1973-06-28 Dow Chemical Co Verfahren zur herstellung von chlor durch elektrolyse von chlorwasserstoff und polyvalenten metallchloriden
DE2222637A1 (de) * 1972-05-09 1973-11-29 Bayer Ag Halterahmen fuer elektroden von elektrolysevorrichtungen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024126607A1 (en) 2022-12-14 2024-06-20 Basf Se Process for preparing at least one polyisocyanate from co2

Also Published As

Publication number Publication date
JPS54137496A (en) 1979-10-25
US4236983A (en) 1980-12-02
EP0004903B1 (de) 1980-12-10
EP0004903A3 (en) 1979-11-14
ES479479A1 (es) 1979-07-16
DE2816152B1 (de) 1979-10-18
DE2816152C2 (de) 1980-07-03
DE2960061D1 (en) 1981-02-19

Similar Documents

Publication Publication Date Title
EP0004903B1 (de) Verfahren zur Herstellung von Chlor aus Salzsäure durch Elektrolyse und Salzsäure-Elektrolysezelle
DD154831A5 (de) Verfahren und vorrichtung zur elektrolyse
DE1252643B (de) Diaphragmenzelle zur Erzeugung von Chlor und Atzkali durch Elek trolyse einer Alkalimetallchloridlosung
DE69015518T2 (de) Elektrode für Elektrolyse.
EP0717130A1 (de) Druckkompensierte elektrochemische Zelle
DE69107992T2 (de) Verfahren zur elektrolytischen Herstellung von Ozon und Vorrichtung dazu.
EP0168600B1 (de) Bipolarer Elektrolyseapparat mit Gasdiffusionskathode
DE2856882A1 (de) Vorrichtung zum elektrolysieren und verfahren zum herstellen von chlor durch elektrolysieren
DE2821982A1 (de) Trennwand mit einer membran fuer filterpressenartig angeordnete elektrolysezellen
EP0051764B1 (de) Salzsäure-Elektrolysezelle zur Herstellung von Chlor und Wasserstoff
DE2609212C3 (de) Diaphragmalose Elektrolysezelle
EP0097991B1 (de) Membran-Elektrolysezelle mit vertikal angeordneten Elektroden
DE2904441C2 (de) Stromschienensystem von Elektrolysezellen zur Aluminiumherstellung
DE3005032A1 (de) Verfahren zur elektrolytischen gewinnung von wasserstoff
DE2747381A1 (de) Verfahren zum elektrolysieren von waessrigen alkalihalogenidloesungen
DE2240731C3 (de) Verfahren zur Herstellung von Glyoxylsäure
DE2705895C2 (de) Verfahren zur Isotopentrennung
EP0717791B1 (de) Electrolysezelle mit teilelektroden und zumindest einer gegenpoligen gegenelektrode
DE4032856A1 (de) Membranelektrolysemodul
DE68928338T2 (de) Zelle und Verfahren zum Betrieb einer elektrochemischen Zelle vom Typ flüssig-gasförmig
DE2703456C2 (de) Elektrolytische Zelle
DE4419683C2 (de) Bipolare Filterpressenzelle für anodische Oxidationen an Platin
DE2821979A1 (de) Elektrolysezellen-anlage
DE170419T1 (de) Hochstromdichte zelle.
DE753434C (de) Verfahren zur Reinigung von Loesungen, die zur Erzeugung von Perverbindungen dienen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

17P Request for examination filed
AK Designated contracting states

Designated state(s): BE DE FR IT SE

AK Designated contracting states

Designated state(s): BE DE FR IT SE

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): BE DE FR IT SE

REF Corresponds to:

Ref document number: 2960061

Country of ref document: DE

Date of ref document: 19810219

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19840331

Year of fee payment: 6

Ref country code: BE

Payment date: 19840331

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19840402

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19840630

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Effective date: 19880405

BERE Be: lapsed

Owner name: BAYER A.G.

Effective date: 19880430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19881229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19890103

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Effective date: 19890430

EUG Se: european patent has lapsed

Ref document number: 79101017.6

Effective date: 19890725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT